$\mathrm{X}^{\mathrm{M}} \mathrm{MT}_{\mathrm{E}} \mathrm{X}$ for Typesetting Chemical Structural Formulas. Size Reduction and Added Commands for Version 3.00

Shinsaku Fujita
Department of Chemistry and Materials Technology,
Kyoto Institute of Technology,
Matsugasaki, Sakyoku, Kyoto, 606-8585 Japan

April 30, 2002 (For Version 3.00)
May 30, 2002 (Revised for Version 4.00)
December 20, 2004 (Typeset by PostScript Compatible Mode of Version 4.02)

Contents

1 Introduction 5
1.1 History 5
1.2 Package Files of X_{M} TEX Version 3.00 6
2 Size Reduction 9
2.1 Basic Functions 9
2.1.1 Changing Unit Lengths 9
2.1.2 Size Reduction of Carbocycles 10
2.1.3 Size Reduction of Heterocycles 11
2.1.4 Nested Substitution 12

Chapter 1

Introduction

1.1 History

The previous versions of the $\mathrm{X}^{\Upsilon} \mathrm{MT}$ EX system are summarized in Table 1.1. A brief history has been described in the on-line manual attached to Version 2.00. The manual for Version 1.01 (attached to this distribution and published as a reference book [3]) and the manual for Version 2.00 (attached to this distribution) have described the specification and the usage of commands supported by the $\mathrm{X}_{\mathrm{M}} \mathrm{MT}_{\mathrm{E}} \mathrm{X}$ system. They are still effective for Version 3.00.

Table 1.1: Versions of X MTEX

version	package files and comments	
$1.00(1993)$	(for $\left.\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2.09\right)$ See Ref. [1, 2]. aliphat.sty, carom.sty, low- cycle.sty, hetarom.sty, hetaromh.sty, hcycle.sty, chemstr.sty, lo- cant.sty, xymtex.sty	
$1.01(1996)$	(for $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$) See Ref. [3]. ccycle.sty, polymers.sty, chemist.sty	
$1.02(1998)$	(not released) Nested substitution by 'yl'-function.	
$2.00(1998)$	Enhanced version based on the XfM Notation. See Ref. [4]. fuser- ing.sty, methylen.sty	
$2.01(2001)$	(not released) Size reduction, sizeredc.sty (version 1.00)	
$3.00(2002)$	(this version) Size reduction (sizeredc.sty, version 1.01), and re- construction of the command system	

To be as portable as possible, the $\mathrm{X}^{〔} \mathrm{MT}_{\mathrm{E}} \mathrm{X}$ system has been designed to depend on the $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ picture environment and only one command of epic.sty (\backslash dottedline), since the mechanism of epic.sty for obtaining the slope of a line sometimes provides an erroneous result so that it occasionally gives a split line. For example, the commands \drawline $(0,0)(171,103)$ and \drawline $(0,0)(171,-103)$ of epic.sty under \unitlength=0.08pt give the following split lines if we encounter the wrongest situation:

This is because we have adopted the \dottedline of epic.sty only in the $\mathrm{X}_{\mathrm{M}} \mathrm{NT}_{\mathrm{E}} \mathrm{X}$ system. This means, however, that the previous versions of $\mathrm{X}^{\mathrm{M}} \mathrm{MT}_{E} \mathrm{X}$ have no methods of reducing the size of a formula into
less than \unitlength $=0.1 \mathrm{pt}$, since the original picture environment of $\mathrm{EAT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$ cannot draw a short line.

The $\mathrm{X}^{\wedge} \mathrm{MT}_{\mathrm{E}} \mathrm{X}$ version 2.00 permits us to a nested usage of commands, where many flags (\backslash @acliptrue etc.) have been declared for designating vertices to be clipped. It follows that these flags may interfere each other in a nested condition.

Accordingly, the purposes of the present version (3.00) are

1. to give functions for reducing sizes of structural formulas (sizeredc.sty),
2. to give a more reliable mechanism for clipping (truncating) vertices, and
3. to add further commands for drawing cyclic sugars (hcycle.sty).

1.2 Package Files of $\mathrm{X}^{\mathbf{1}} \mathrm{MT}_{\mathrm{E}} \mathrm{X}$ Version 3.00

The $\mathrm{X}_{\mathrm{M}} \mathrm{MT}_{\mathrm{E}} \mathrm{X}$ system (version 3.00) consists of package files listed in Table 1.2.

Table 1.2: Package Files of $\mathrm{X}^{\Upsilon} \mathrm{MT}_{\mathrm{E}} \mathrm{X}$

package name	included functions
aliphat.sty carom.sty	macros for drawing aliphatic compounds macros for drawing vertical and horizontal types of carbocyclic compounds
lowcycle.sty	macros for drawing five-or-less-membered carbocycles. ccycle.sty
macros for drawing bicyclic compounds etc.	
hetarom.sty	macros for drawing vertical types of heterocyclic compounds
hetaromh.sty	macros for drawing horizontal types of heterocyclic compounds
hcycle.sty	macros for drawing pyranose and furanose derivatives (added fur- ther commands for cyclic sugars in Version 3.00)
chemstr.sty	basic commands for atom- and bond-typesetting
locant.sty	commands for printing locant numbers
polymers.sty	commands for drawing polymers
fusering.sty	commands for drawing units for ring fusion
methylen.sty	commands for drawing zigzag polymethylene chains
xymtex.sty	a package for calling all package files commands for using 'chem' version and chemical environments
comist.sty	commands for size reduction (Version 1.01)

The use of xymtex.sty calling all package files may sometimes cause the " {\mathrm{E}}\mathrm{X}\)capacityexceeded"error.Inthiscase,youshouldcallnecessarypackagesdistinctlybyusingthe\usepackagecommandinthefollowingway:undefined

```
\documentclass{article}
%\usepackage{xymtex}% to use for large capacity of computer
\usepackage{carom}
\usepackage{hetaromh}
\usepackage{aliphat,hcycle}
\usepackage{fusering}
\usepackage{locant}
\usepackage{epic}
\usepackage{sizeredc}
```

\usepackage\{xymman\}\begin\{document\}}(textsandformulas)\end\{document\}}undefinedundefinedundefinedundefinedundefinedundefinedundefined

Chapter 2

Size Reduction

2.1 Basic Functions

2.1.1 Changing Unit Lengths

The default unit length of the hrm{X}_{\mathrm{M}}^{\mathrm{M}}\mathrm{T}_{\mathrm{E}}\mathrm{X}\)systemisequalto0.1pt.Thissettingcanbechangedbythecommand\changeunitlength,whichisdefinedinthesizeredc.stypackage.Asshowninthefollowingcode,thesettingby\changeunitlengthcanbedoneinthepreambleofadocumentifthevalueisusedinthewholedocument.\documentclass\{article\}\usepackage\{carom\}\usepackage\{sizeredc\}\changeunitlength\{0.08pt\}\begin\{document\}}\backslashbzdrv\{1==0H;4==0H\}\end\{document\}}undefined

Compare this formula with the counterpart with the standard unit length (0.1pt).

The command \changeunitlength can be declared at any place of a document, where the setting of the command is effective after the declaration place until an alternative declaration is carried out afterward. The grouping technique can be used to limit the effect of the setting within a pair of braces. For example, the code represented by
\{\%grouping by braces
\changeunitlength\{0.06pt\}
\backslash bzdrv\{1==0H; $4==0 \mathrm{H}\}\}$
\qquad \bzdrh\{1==OH;4==OH\}
produces a size-reduced formula as follows:

In the PostScript compatible mode of X § $\mathrm{MT}_{\mathrm{E}} \mathrm{X}$ Version 4.02, the command \backslash setxymtxps [0.05pt] can be also used in place of the command \changeunitlength\{0.05pt\}.

```
{%
\setxymtxps[0.05pt]
\bzdrv{1==0H;4==OH}
}
```


2.1.2 Size Reduction of Carbocycles

When the \sizereductiontrue is not declared (i.e. \sizereductionfalse), the original picture environment of $\mathrm{LA}_{E} \mathrm{X} 2 \varepsilon$ works. The following example shows the comparison between cases with and without the use of sizeredc.sty. Note Version 4.00 requires the declaration of \originalpicture.

```
\begin{table}
\caption{With and Without \textsf{sizeredc.sty}}
\label{tt:300c}
\begin{center}
\begin{tabular}{ll}
\hline
without \textsf{sizeredc.sty} & with \textsf{sizeredc.sty} \\
\hline
0.08pt & \\
{\originalpicture\unitlength=0.08pt \bzdrv{}} &
{\changeunitlength{0.08pt}\bzdrv{}} \\
0.07pt & \\
{\originalpicture\unitlength=0.07pt\bzdrv{}} &
{\changeunitlength{0.07pt}\bzdrv{}} \\
0.06pt & \\
{Version 4.00 \originalpicture\unitlength=0.06pt \bzdrv{}} &
{\changeunitlength{0.06pt}\bzdrv{}} \\
\hline
\end{tabular}
\end{center}
\end{table}
```

This code gives the results shown in Table 2.1. Without sizeredc.sty, the resulting formulas $(0.07 \mathrm{pt}$ and 0.06 pt in the left column) have no slanting lines (inner double bonds) in agreement with the original

Table 2.1: With and Without sizeredc.sty
without sizeredc.sty with sizeredc.sty
specification of the $\mathrm{LA}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$ picture environment. ${ }^{1}$ By using sizeredc.sty, the slanted lines are revived, as shown in the right column of Table 2.1.

2.1.3 Size Reduction of Heterocycles

Table 2.2 shows the effect of size reduction to the drawing of 4 -chloropyridine, where \unitlength is changed from 0.1 pt (default value) to 0.04 pt by using \changeunitlength.

Table 2.2: Size Reduction of 4-Chloropyridine

0.1 pt	0.08 pt	0.07 pt	0.06 pt	0.05 pt
(default)	0.04 pt			

[^0]
2.1.4 Nested Substitution

Formulas by nested substitution can be totally reduced in size by the following code:
\changeunitlength\{0.07pt\}
\scriptsize
\decaheterov[] $\{4 \mathrm{a}==\mathrm{N}\}\{4 \mathrm{D}==0 ; 7 \mathrm{~B}==\mathrm{HO} ;\{\{10\} \mathrm{A}\}==\mathrm{H} ; \%$
$5==\backslash \mathrm{bzdrv}\{3==0 \mathrm{Me} ; 4==0 \mathrm{Me} ; 6==\mathrm{Br} ; 1==(\mathrm{yl})\}\}$
This code produces the left formula shown below:

The right formula is drawn by the same code with the standard unit length (0.1pt).
Spaces between dots in a dotted line can be changed by redefining the command \dottedline as follows.

```
\makeatletter
\let\olddottedline=\dottedline
\def\dottedline#1(#2,#3)(#4,#5){\ifsizereduction
\olddottedline{30}(#2,#3)(#4,#5)\else
\olddottedline{#1}(#2,#3)(#4,#5)\fi}
\makeatother
\changeunitlength{0.07pt}
\scriptsize
\decaheterov[]{4a==N}{4D==0;7B==HO;{{10}A}==H;%
5==\bzdrv{3==0Me;4==0Me;6==Br;1==(yl)}}
```


A cyan dye releaser has been drawn by using two or more \ryl and \lyl commands, as shown in the on-line manual of $\mathrm{X}^{\mathrm{G}} \mathrm{MT}_{\mathrm{E}} \mathrm{X}$ Version 2.00 and has also been depicted in different ways (see Chapters 14 and 15 of the $\mathrm{X}_{\mathrm{M}} \mathrm{MT} \mathrm{E}_{\mathrm{E}}$ Xbook [3]). The size of the formula can be reduced with a code represented by
\changeunitlength\{0.07pt\}
$\% \backslash c h a n g e u n i t l e n g t h\{0.08 p t\}$
\scriptsize
\bzdrv\{1==0H;5==CH\$_\{3\}\$;4==OC\$_\{16\}\$H\$_\{33\}\$;\%
$2==\backslash r y l(4==$ NH--SO\$_\{2\}\$) \{4==\bzdrh\{1==(yl);2==0CH\$_\{2\}\$CH\$_\{2\}\$OCH\$_\{3\}\$;\%
$5==\backslash \mathrm{ryl}(2==\mathrm{NH}--\mathrm{SO}$ _ $\{2\}$) $\{4==\backslash \mathrm{bzdrh}\{1==(\mathrm{yl}) ; \%$
$5==\backslash \mathrm{ryl}(2==$ SO\$_\{2\}\$--NH) $\{4==\backslash$ naphdrh $\{1==(\mathrm{yl}) ; 5==0 \mathrm{H} ; \%$
$8==\backslash \mathrm{lyl}(4==\mathrm{N}=\mathrm{N})\left\{4==\backslash \mathrm{bzdrh}\left\{4==(\mathrm{yl}) ; 1==\mathrm{NO} \$_{-}\{2\} \$; 5==\right.\right.$ SO\$_\{2\}\$CH\$_\{3\}\$\}\}\}\}\}\}\}\}\}
Thereby, we obtain a target formula:
-0.07pt:

-0.08pt:

A further reduction is possible. The following example shows the case of \unitlength=0.05pt and font size of \tiny.
-0.05pt:

The structural formula of adonitoxin, which has once been depicted in a different way in Chapter 15 of the X^{M} MTEXbook can be obtained by the code,
\steroid\{\{\{10\}\}==\lmoiety\{0HC\};\{\{14\}\}==OH;\%
$\{\{13\}\}==\backslash \mathrm{lmoiety}\left\{\mathrm{H} \$ _\{3\} \$ \mathrm{C}\right\} ;\{\{16\}\}==\mathrm{OH} ; \%$
$\{\{17\}\}==\backslash$ fiveheterov $[e]\{3==0\}\{4 D==0 ; 1==(y l)\} ; \%$
$3==\backslash \operatorname{lyl}(3==0)\{8==\%$
\backslash pyranose $\{1 \mathrm{Sb}==(\mathrm{yl}) ; 1 \mathrm{Sa}==\mathrm{H} ; 2 \mathrm{Sb}==\mathrm{H} ; 2 \mathrm{Sa}==0 \mathrm{H} ; 3 \mathrm{Sb}==\mathrm{H} ; 3 \mathrm{Sa}==\mathrm{OH} ; 4 \mathrm{Sb}==\mathrm{HO} ; \%$
$\left.\left.4 \mathrm{Sa}==\mathrm{H} ; 5 \mathrm{Sb}==\mathrm{H} ; 5 \mathrm{Sa}==\mathrm{CH} \$ _\{3\} \$\right\}\right\}$
$-0.1 \mathrm{pt}$

$-0.08 \mathrm{pt}$

Bibliography

[1] Fujita S., "Typesetting structural formulas with the text formatter $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{E} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ ", Comput. Chem., 18, 109 (1994).
[2] Fujita S., "X $\mathrm{X}_{\mathrm{M}} \mathrm{MT}_{\mathrm{E}} \mathrm{X}$ for Drawing Chemical Structural Formulas", TUGboat, 16 (1), 80 (1995).
[3] Fujita, S., $X^{\Upsilon} M_{M} T_{E} X$-Typesetting Chemical Structural Formulas, Addison-Wesley, Tokyo (1997). The book title is abbreviated as "XMTEXbook" in the present manual.
[4] Fujita, S.; Tanaka, N. "XyM Notation for Electronic Communication of Organic Chemical Structures", J. Chem. Inf. Comput. Sci., 39, 903 (1999).
[5] NIFTY-Serve achieves, FPRINT library No. 7, Item Nos. 201, 202, 204.
[6] CTAN, tex-archive/macros/latex209/contrib/xymtex/.
[7] Lamport L., $L^{A} T_{E} X$. A document Preparation System, 2nd ed. for $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$, Addison-Wesley, Reading (1994). See also Lamport L., $E^{A} T_{E} X$. A document Preparation System, Addison-Wesley, Reading (1986).
[8] Goossens, M., Mittelbach, F., \& Samarin, A., The $L^{A} T_{E} X$ Companion, Addison-Wesley, Reading (1994).
[9] NIFTY-Serve achieves, FPRINT library No. 7, Item Nos. 385, 386.
[10] http://imt.chem.kit.ac.jp/fujita/fujitas/fujita.html
[11] For the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ system, see Knuth D. E., The $T_{E} X b o o k$, Addison-Wesley, Reading (1984).
[12] For the ChemTEX macros, see Haas R. T. \& O'Kane K. C., Comput. Chem., 11, 251 (1987).
[13] For drawing chemical formulas by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, see Ramek, M., in Clark, M. (ed), $\mathrm{T}_{\mathrm{E} X}$: Applications, Uses, Methods, Ellis Horwood, London (1990), p. 277.
[14] For chemical application of the $\mathrm{A}_{\mathrm{E}} \mathrm{X}$ system, see Fujita S., Kagakusha-Seikagakusha no tame no ${ }^{A} T_{E} X$ ($E^{A} T_{E} X$ for Chemists and Biochemists), Tokyo Kagaku Dozin, Tokyo (1993).
[15] For epic macros, see Podar S., "Enhancements to the picture environment of $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ ", Manual for Version 1.2 dated July 14, 1986.
[16] For graphic applications of $\mathrm{T}_{\mathrm{E}} \mathrm{X}, \mathrm{L}_{\mathrm{E}} \mathrm{EX}$ and relevant systems, see Goossens, M., Rahtz, S., \& Mittelbach, F., $E^{A} T_{E} X$ Graphics Companion, Addison Wesley Longman, Reading (1997).

[^0]: ${ }^{1}$ Note that $\mathrm{X}^{\mathrm{I}} \mathrm{MT} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ is based on the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$ picture environment without using sizeredc.sty. The slanted lines of the benzene ring are drawn by the \backslash line command with slopes $(5,3)$ and $(5,-3)$.

