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Foreword

What MINUIT is intended to do

MINUIT is conceived as a tool to find the minimum value of a multi-parameter
function (the “FCN”) and analyze the shape of the function around the minimum.
The principal application is foreseen for statistical analysis, working on chisquare
or log-likelihood functions, to compute the best-fit parameter values and uncertain-
ties, including correlations between the parameters. It is especially suited to handle
difficult problems, including those which may require guidance in order to find the
correct solution.

What MINUIT is not intended to do

Although MINUIT will of course solve easy problems faster than complicated ones, it
is not intended for the repeated solution of identically parametrized problems (such
as track fitting in a detector) where a specialized program will in general be much
more efficient.

Further remarks

MINUIT was initially written in Fortran around 1975-1980 at CERN by Fred James
[1]. Its main field of usage is statistical data analysis of experimental data recorded at
CERN, but it is also used by people doing data analysis outside CERN or outside high
energy physics (HEP). In 2002 Fred James started a project aiming to re-implement
MINUIT in an object-oriented way using C++ .

More information about recent developments, releases and installation can be ob-
tained from the MINUIT homepage [2].

The names of MINUIT applications are written in capital letters (e.g. MIGRAD, MINOS,
CONTOURS), the corresponding names of the C++ classes are written using sans-serif
font type (MnMigrad, MnMinos, MnContours).
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1 Introduction: MINUIT basic concepts

1.1 The organization of MINUIT

The MINUIT package acts on a multiparameter objective function which is called
— for historical reasons — the FCN function (see 3.1). This function is usually a
chisquared or a log–likelihood, but it could also be a mathematical function. The FCN
function needs to be written in C++ for which MINUIT defines the pure abstract base
class FCNBase as interface. The user must define and implement the FCN function in
a derived class from FCNBase. Sometimes this is done by an intermediate program
such as HippoDraw[3], in which case MINUIT is being used under the control of such
an intermediate program1. The value of the FCN function will in general depend on
one or more variable parameters whose meaning is defined by the user (or by the
intermediate program), but whose trial values are determined by MINUIT .

To take a simple example, suppose the problem is to fit a polynomial through a set
of data points. Then the user would write a FCN which calculates the χ2 between a
polynomial and the data; the variable parameters of FCN would be the coefficients
of the polynomials. Using objects for minimization from MINUIT , the user would
request MINUIT to minimize the FCN with respect to the parameters, that is, find
those values of the coefficients which give the lowest value of chisquare.

The user must therefore supply, in addition to the function to be analyzed, via a
set or sequence of MINUIT applications the instructions which analysis is wanted.
The instructions are coded in C++ in the calling program (main.cpp), which al-
lows looping, conditional execution, and all the other possibilities of C++ , but not
interactivity, since it must be compiled before execution.

1.2 Design aspects of MINUIT in C++

What MINUIT is:

• platform independent

• written in an object-oriented way using standard C++

• independent of any external package

The maintainability should be guaranteed with the choice of a modern computer
language. Choosing object-oriented technology MINUIT should profit from an in-
creased flexibility and functionality and make it also extendable (recursivness, new
algorithms, new functionality).

1ROOT [4] uses its own C++ version of the Fortran MINUIT when this manual was written.
However an interface for this C++ version exists and the library can be loaded dynamically on
demand
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What MINUIT does not:

• histogramming

• data handling

• graphics

MINUIT is kept as a low-level package with optimal performance.

The main usages of MINUIT are

• from a user’s program (such as int main()...)

• from a graphical data analysis tool such as HippoDraw[3]

The most important goals of MINUIT in C++ are

• its numerical accuracy (equivalent to its Fortran version)

• its computational performance (equivalent to its Fortran version)

For the design of the application programming interface (API) of MINUIT a two-way
strategy was imposed:

• a minimal required interface with minimum interaction with MINUIT objects
and with appropriate usage of the standard C++ library (STL): the user’s
implementation of the FCNBase class, initial parameter values and uncertainties
are provided by the to MINUIT user via std::vectors.

• a rich interface which provides the user with more functionality such as inter-
action with parameters.

The core of the minimization functionality and related tools (the kernel of MINUIT

) should be clearly separated from the user, who is interfacing via defined user inter-
faces (the API).

1.3 Internal and external parameters

Each of the parameters to the FCN is defined by the user as belonging to one of the
following types:

• Freely variable: allowed to take on any value.

2



• Variable with double sided limits: allowed to vary only between two limits
specified by the user.

• Variable with single sided limits: allowed to vary only between one upper or
one lower limit specified by the user and unlimited to the other side.

• Fixed: originally defined as variable, but now taking on only the value the
parameter had at the moment it was fixed, or a value later assigned by the
user.

• Constant: taking on only one value as specified by the user.

When using the minimal required interface, all variable parameters are free and
unbound.

The user, in his FCN, must of course be able to “see” all types of defined parameters,
and he therefore has access to what we call the external parameter list, that is, the
parameters as he defined them. On the other hand, the internal MINUIT minimizing
routines only want to “see” variable parameters without limits, and so they have
access only to the internal parameter list which is created from the external list by
the following transformation:

• Squeeze out all parameters that are not variable.

• Transform all variable parameters with limits, so that the transformed param-
eter can vary without limits. (See the next section for details concerning this
transformation.) Because this transformation is non-linear, it is recommended
to avoid putting limits on parameters where they are not needed.

As an example, suppose that the user has defined the following parameters:

• Parameter 0, constant.

• Parameter 1, freely variable.

• Parameter 2, variable with limits.

• Parameter 3, constant.

• Parameter 4, freely variable.

Then the internal parameter list would be as follows:

• Internal parameter 0 = external parameter 1.

• Internal parameter 1 = external parameter 2, transformed appropriately.

3



• Internal parameter 2 = external parameter 4.

In the above example, MINUIT considers that the number of external parameters is 5,
and the number of internal parameters is 3. This is the number which determines, for
example, the size of the error matrix of the parameters, since only variable parameters
have errors.

An important feature of MINUIT is that parameters are allowed to change types dur-
ing the MINUIT minimization and analysis of a FCN function. Several applications in
MINUIT have methods available to make variable parameters fixed and vice-versa;
to impose, change, or remove limits from variable parameters; and even to define
completely new parameters at any time during a run. In addition, some MINUIT

applications (notably the MINOS error analysis) cause one or more variable parame-
ters to be temporarily fixed during the calculation. Therefore, the correspondence
between external and internal parameter lists is in general a dynamic one, and the
number of internal parameters is not necessarily constant.

For more details about parameter interaction see 4.14.

1.3.1 The transformation for parameters with limits

For variable parameters with double sided limits a (lower) and b (upper), MINUIT

uses the following transformation:

Pint = arcsin

(

2
Pext − a

b − a
− 1

)

(1.1)

Pext = a +
b − a

2
(sin Pint + 1) (1.2)

so that the internal value Pint can take on any value, while the external value Pext

can take on values only between the lower limit a and the upper limit b. Since the
transformation is necessarily non-linear, it would transform a nice linear problem
into a nasty non-linear one, which is the reason why limits should be avoided if
not necessary. In addition, the transformation does require some computer time,
so it slows down the computation a little bit, and more importantly, it introduces
additional numerical inaccuracy into the problem in addition to what is introduced in
the numerical calculation of the FCN value. The effects of non-linearity and numerical
roundoff both become more important as the external value gets closer to one of the
limits (expressed as the distance to nearest limit divided by distance between limits).
The user must therefore be aware of the fact that, for example, if he puts limits of
(0, 1010) on a parameter, then the values 0.0 and 1.0 will be indistinguishable to the
accuracy of most machines.

For this purpose single sided limits on parameters are provided by MINUIT , with
their transformation being:
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Lower bound a:

Pint = ±
√

(Pext − a + 1)2 − 1 (1.3)

Pext = a − 1 +
√

P 2

int
+ 1 (1.4)

Upper bound b:

Pint = ±
√

(b − Pext + 1)2 − 1 (1.5)

Pext = b + 1 −
√

P 2

int
+ 1 (1.6)

The transformation of course also affects the parameter error matrix, so MINUIT does
a transformation of the error matrix (and the “parabolic” parameter errors) when
there are parameter limits. Users should however realize that the transformation is
only a linear approximation, and that it cannot give a meaningful result if one or
more parameters is very close to a limit, where ∂Pext/∂Pint ≈ 0. Therefore, it is
recommended that:

• Limits on variable parameters should be used only when needed in order to
prevent the parameter from taking on unphysical values.

• When a satisfactory minimum has been found using limits, the limits should
then be removed if possible, in order to perform or re-perform the error analysis
without limits.

Further discussion of the effects of parameter limits may be found in the last chapter.

1.4 MINUIT strategy

At many places in the analysis of the FCN (the user provided function), MINUIT must
decide whether to be “safe” and waste a few function calls in order to know where it
is, or to be “fast” and attempt to get the requested results with the fewest possible
calls at a certain risk of not obtaining the precision desired by the user. In order
to allow the user to influence these decisions, there is a MINUIT class MnStrategy
(see 4.12) which the user can use to put different settings. In the current release,
this MnStrategy can be instantiated with three different minimization quality levels
for low (0), medium (1) and high (2) quality. Default settings for iteration cycles
and tolerances are initialized then. The default setting is set for medium quality.
Value 0 (low) indicates to MINUIT that it should economize function calls; it is
intended for cases where there are many variable parameters and/or the function
takes a long time to calculate and/or the user is not interested in very precise values
for parameter errors. On the other hand, value 2 (high) indicates that MINUIT is
allowed to waste function calls in order to be sure that all values are precise; it is
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intended for cases where the function is evaluated in a relatively short time and/or
where the parameter errors must be calculated reliably. In addition all constants set
in MnStrategy can be changed individually by the user, e.g. the number of iteration
cycles in the numerical gradient.

1.5 Parameter errors

MINUIT is usually used to find the “best” values of a set of parameters, where
“best” is defined as those values which minimize a given function, FCN. The width
of the function minimum, or more generally, the shape of the function in some
neighbourhood of the minimum, gives information about the uncertainty in the best
parameter values, often called by physicists the parameter errors. An important
feature of MINUIT is that it offers several tools to analyze the parameter errors.

1.5.1 FCN normalization and the error definition

Whatever method is used to calculate the parameter errors, they will depend on the
overall (multiplicative) normalization of FCN, in the sense that if the value of FCN
is everywhere multiplied by a constant β, then the errors will be decreased by a
factor

√
β. Additive constants do not change the parameter errors, but may imply

a different goodness-of-fit confidence level.

Assuming that the user knows what the normalization of his FCN means, and also
that he is interested in parameter errors, the user can change the error definition
which allows him to define what he means by one “error”, in terms of the change
in the FCN value which should be caused by changing one parameter by one “error”.
If the FCN is the usual chisquare function (defined below) and if the user wants the
usual one-standard-deviation errors, then the error definition (return value of the
FCNBase::up() method, see 3.1.2) should be 1.0. If the FCN is a negative-log-likelihood
function, then the one-standard-deviation value for FCNBase::up() to return is 0.5.
If the FCN is a chisquare, but the user wants two-standard-deviation errors, then
FCNBase::up() should return = 4.0, etc.

Note that in the usual case where MINUIT is being used to perform a fit to some
experimental data, the parameter errors will be proportional to the uncertainty in
the data, and therefore meaningful parameter errors cannot be obtained unless the
measurement errors of the data are known. In the common case of a least-squares
fit, FCN is usually defined as a chisquare:

χ2(α) =
n

∑

i=1

(
f(xi, α) − mi)

2

σ2

i

(1.7)

where α is the vector of free parameters being fitted, and the σi are the uncertainties
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in the individual measurements mi. If these uncertainties are not known, and are
simply left out of the calculation, then the fit may still have meaning, but not the
quantitative values of the resulting parameter errors. (Only the relative errors of
different parameters with respect to each other may be meaningful.)

If the σi are all overestimated by a factor β, then the resulting parameter errors from
the fit will be overestimated by the same factor β.

1.5.2 The error matrix

The MINUIT processors MIGRAD (MnMigrad, see 4.6) and HESSE (MnHesse, see 4.4)
(normally) produce an error matrix. This matrix is twice the inverse of the matrix
of second derivatives of the FCN, transformed if necessary into external coordinate
space2, and multiplied by FCNBase::up(). Therefore, errors based on the MINUIT er-
ror matrix take account of all the parameter correlations, but not the non-linearities.
That is, from the error matrix alone, two-standard-deviation errors are always ex-
actly twice as big as one-standard-deviation errors.

When the error matrix has been calculated (for example by the successful execution of
MIGRAD (MnMigrad::operator(), see 4.6.4) or HESSE (MnHesse::operator())) then the
parameter errors printed by MINUIT are the square roots of the diagonal elements
of this matrix. The covariance or the correlations can be printed and shown via
std::cout as the ostream operator operator<< is overloaded. The eigenvalues of the
error matrix can be calculated using MnEigen, which should all be positive if the
matrix is positive-definite (see below on MIGRAD and positive-definiteness).

The effect of correlations on the individual parameter errors can be seen as follows.
When parameter n is fixed (e.g. via the method MnMigrad::fix(n)), MINUIT inverts
the error matrix, removes the row and column corresponding to parameter n, and
re-inverts the result. The effect on the errors of the other parameters will in general
be to make them smaller, since the component due to the uncertainty in parame-
ter n has now been removed. (In the limit that a given parameter is uncorrelated
with parameter n, its error will not change when parameter n is fixed.) However
the procedure is not reversible, since MINUIT forgets the original error matrix, so
if parameter n is then released (e.g. via the method MnMigrad::release(n)), the er-
ror matrix is considered as unknown and has to be recalculated with appropriate
commands.

2The internal error matrix maintained by MINUIT is transformed for the user into external

coordinates, but the numbering of rows and columns is of course still according to internal parameter
numbering, since one does not want rows and columns corresponding to parameters which are not
variable. The transformation therefore affects only parameters with limits; if there are no limits,
internal and external error matrices are the same.
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1.5.3 MINOS errors

The MINUIT processor MINOS (MnMinos, see 4.8) was probably the first, and may
still be the only, generally available program to calculate parameter errors taking into
account both parameter correlations and non-linearities. The MINOS error intervals
are in general assymmetric, and may be expensive to calculate, especially if there
are a lot of free parameters and the problem is very non-linear.

MINOS can only operate after a good minimum has already been found, and the error
matrix has been calculated, so the MINOS error analysis will normally follow a MIGRAD

minimization. The MINOS error for a given parameter is defined as the change in the
value of that parameter which causes F ′ to increase by the amount FCNBase::up(),
where F ′ is the minimum of FCN with respect to all other free parameters, and
FCNBase::up() is the return value of the error definition specified by the user (default
= 1.).

The algorithm for finding the positive and negative MINOS errors for parameter n con-
sists of varying parameter n, each time minimizing FCN with respect to all the other
npar - 1 variable parameters, to find numerically the two values of parameter n for
which the minimum of FCN takes on the values Fmin +up, where Fmin is the minimum
of FCN with respect to all npar parameters. In order to make the procedure as fast
as possible, MINOS uses the error matrix to predict the values of all parameters at the
various sub-minima which it will have to find in the course of the calculation, and
in the limit that the problem is nearly linear, the predictions of MINOS will be nearly
exact, requiring very few iterations. On the other hand, when the problem is very
non-linear (i.e., FCN is far from a quadratic function of its parameters), is precisely
the situation when MINOS is needed in order to indicate the correct parameter errors.

1.5.4 CONTOURS plotting

MINUIT offers a procedure for finding FCN CONTOURS (provided via the class MnCon-
tours, see 4.2).

The contour calculated by MnContours::operator() is dynamic, in the sense that it
represents the minimum of FCN with respect to all the other npar - 2 parameters
(if any). In statistical terms, this means that MnContours takes account of the corre-
lations between the two parameters being plotted, and all the other variable param-
eters, using a procedure analogous to that of MINOS. (If this feature is not wanted,
then the other parameters must be fixed before calling CONTOURS.) MnContours pro-
vides the actual coordinates of the points around the contour, suitable for plotting
with a graphics routine or by hand (using MnPlot, see 4.9). The points are given
in counter-clockwise order around the contour. Only one contour is calculated per
command, and the level is Fmin + up. where up is the return value of FCNBase::up()
specified by the user (usually 1.0 by default). The number of points to be calculated
is chosen by the user (default is 20). As a by-product, CONTOURS provides the MINOS
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errors of the two parameters in question, since these are just the extreme points
of the contour (use the MnContours::contour(...) method in order to get the points
of the contour and the ones of the MINOS errors). MnContours::operator() returns a
std::vector<std::pair<double,double>> of (x,y) points. Using MnPlot::operator() will
generate a text graphics plot in the terminal.
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2 MINUIT installation

2.1 MINUIT releases

To follow the current release process the user is referred to the MINUIT homepage
[2].

MINUIT was re–implemented in C++ from 2002–2004, but the functionality is largely
compatible with the one of the Fortran-77 version. The usage is different in the sense
that the re–write from Fortran-77 to C++ was done by its signification and not literally
(with minor exceptions). Applications such as MIGRAD have a corresponding C++

class MnMigrad, Fortran-77 MINUIT “commands” became classes or methods of classes
according to their purpose. Users familiar with the Fortran-77 version of MINUIT ,
who have not yet used releases from the C++ version, should however read this
manual, in order to adapt to the changes as well as to discover the new features and
easier ways of using old features.

2.2 Install MINUIT using autoconf/make

For each release of MINUIT a tar.gz file is provided for downloading from the MINUIT

homepage [2]. For non-UNIX platforms please refer to the MINUIT homepage.

The necessary steps to follow are:

1. download the tar.gz by clicking on it from the release page

2. unzip it:

$ unzip Minuit-x.x.x.tar.gz

3. untar it:

$ tar xvf Minuit-x.x.x.tar

4. step down to the created Minuit-x.x.x directory:

$ cd Minuit-x.x.x/

5. run the ”configure” script:

$ ./configure

6. run ”make” to compile the source code:

$ make
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7. run ”make check” to create the executable example:

$ make check

8. run the executable example:

$ tests/MnTutorial/Quad4FMain.C

The output should look like that:

Minuit did successfully converge.

# of function calls: 74

minimum function value: 1.12392e-09

minimum edm: 1.12392e-09

minimum internal state vector: LAVector parameters:

-1.82079e-05

-1.20794e-05

6.22382e-06

-3.0465e-05

minimum internal covariance matrix: LASymMatrix parameters:

4 1 2 2.70022e-18

1 5 3 1.87754e-17

2 3 6 2.29467e-17

2.70022e-18 1.87754e-17 2.29467e-17 1

# ext. || name || type || value || error +/-

0 || x || free ||-1.821e-05 || 2

1 || y || free ||-1.208e-05 || 2.236

2 || z || free || 6.224e-06 || 2.449

3 || w || free ||-3.047e-05 || 1

MnUserCovariance:

4 1 2 2.70022e-18
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1 5 3 1.87754e-17

2 3 6 2.29467e-17

2.70022e-18 1.87754e-17 2.29467e-17 1

MnUserCovariance parameter correlations:

1 0.223607 0.408248 1.35011e-18

0.223607 1 0.547723 8.39663e-18

0.408248 0.547723 1 9.36796e-18

1.35011e-18 8.39663e-18 9.36796e-18 1

MnGlobalCorrelationCoeff:

0.408248

0.547723

0.621261

0

2.3 CVS code repository

How to check out (–in) code from the CVS code repository is described at the MINUIT

homepage [2]. To get the source code from the CVS repository one needs to do:

Kerberos IV authorization:

$ setenv CVSROOT :kserver:SEAL.cvs.cern.ch:/cvs/SEAL

$ cvs co MathLibs/Minuit

Anonymous read-only access (if it’s enabled by the librarian, see details):

$ setenv CVSROOT :pserver:anonymous@SEAL.cvs.cern.ch:/cvs/SEAL

$ cvs login

(Logging in to :pserver:anonymous@seal.cvs.cern.ch:2401/cvs/SEAL) CVS password:cvs

$ cvs co MathLibs/Minuit

(If you want to check out a tagged version SEAL x x x of MINUIT, then do

$ cvs co -r SEAL\_x\_x\_x MathLibs/Minuit )
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2.4 Create a tar.gz from CVS

Once the sources are checked out from the CVS code repository,

1. change to the directory:

$ cd MathLibs/Minuit

2. run autogen:

$ ./autogen

3. create a new directory:

$ cd ..

$ mkdir Minuit-BUILD

$ cd Minuit-BUILD/

4. run configure:

$ ../Minuit/configure

5. create the tar.gz:

$ make dist

This will create a Minuit-x.x.x.tar.gz which can be distributed and used as described
above.

2.5 MINUIT versions

The version numbers of MINUIT follow the release numbers of the SEAL project [5]
at CERN [6].

2.5.1 From Fortran-77 to C++

The program is entirely written in standard portable C++ . MINUIT does not de-
pend on any external library. In its minimal usage the user must only provide an
implementation of the FCNBase class to MINUIT and parameters and uncertainties
in form of std::vector containers.
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2.5.2 Memory allocation and thread safety

Differently to the Fortran-77 version of MINUIT , the C++ version has its own memory
manager (StackAllocator. The user can select between the standard dynamic memory
allocation and deallocation (default) and performance-optimized stack–like allocation
(optional). However, the library is not thread save using stack–allocation.

2.5.3 MINUIT parameters

Differently to the Fortran-77 version of MINUIT there is no limit on the number
of parameters, variable or non-variable. Memory allocation is done dynamically
according to the actual needs and “on demand”. There is no protection against an
upper limit on the number of parameters, however the “technological” limitations of
MINUIT can be seen around a maximum of 15 free parameters at a time.

2.6 Interference with other packages

The new MINUIT has been designed to interfere as little as possible with other
programs or packages which may be loaded at the same time. MINUIT is thread safe
by default. Optionally the user can select a different way of dynamically allocating
memory in the class StackAllacator for MINUIT , in which case (and after an entire
recompiliation of the whole library) the thread safety is lost.

2.7 Floating-point precision

MINUIT is entirely based on C++ double precision. The actual floating point preci-
sion of double precision (32–bit or 64–bit) is platform dependent and can even vary
on the same platform, depending on whether a floating point number is read from
memory a CPU register.

The argument of the user’s implementation of FCNBase::operator() is therefore a
std:vector<double>. MINUIT expects that the calculations inside FCN will be per-
formed approximately to the same accuracy.

The accuracy MINUIT expects is called machine precision (MnMachinePrecision, see
4.5) and can be printed on demand using std::cout. If the user fools MINUIT by
making internal FCN computations in single precision, MINUIT will interpret roundoff
noise as significant and will usually either fail to find a minimum, or give incorrect
values for the parameter errors.

It is therefore recommended to make sure that all computations in FCN, as well as all
methods and functions called by FCN, are done in double precision. If for some reason
the computations cannot be done to a precision comparable with that expected by
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MINUIT , the user must inform MINUIT of this situation with setting a different
machine precision via the MnMachinePrecision::setPrecision(double) method.

With reduced precision, the user may find that certain features sensitive to first and
second differences (HESSE, MINOS, CONTOURS) do not work properly, in which case the
calculations must be performed in higher precision.
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FCNBase

+operator()(const std::vector<double>&): double
+up(): double

Figure 3.1: The base class FCNBase for the user’s FCN.

3 How to use MINUIT

3.1 The FCN Function

The user must always implement a derived class of FCNBase (the “FCN”) which
calculates the function value to be minimized or analyzed.

Note that when MINUIT is being used through an intermediate package such as
HippoDraw [3], then the user’s FCN may be supplied by the this package.

The name of the user’s class to implement the FCNBase interface may be chosen
freely (in documentation we give it the generic name FCN).

3.1.1 FCNBase::operator()(const std::vector<double>&)

The meaning of the vector of parameters std::vector<double> in the argument of
FCNBase::operator() are of course defined by the user, who uses the values of those
parameters to calculate his function value. The order and the position of these
parameters is strictly the one specified by the user when supplying the starting
values for minimization.

The starting values must be specified by the user, either via an std::vector<double> or
the MnUserParameters (see 4.14) supplied as input to the MINUIT minimizers such
as VariableMetricMinimizer or MnMigrad (see 4.6). Later values are determined by
MINUIT as it searches for the minimum or performs whatever analysis is requested
by the user.

3.1.2 FCNBase::up()

Returns the value of up (default value = 1.), defining parameter errors. MINUIT

defines parameter errors as the change in parameter value required to change the
function value by up. Normally, for chisquared fits up = 1, and for negative log
likelihood, up = 0.5.
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FCNGradientBase

+gradient(const std::vector<double>&): std::vector<double>

FCNBase

+operator()(const std::vector<double>&): double
+up(): double

Figure 3.2: The base classe FCNGradientBase for the user’s FCN with gradient

3.1.3 FCN function with gradient

By default first derivatives are calculated numerically by MINUIT . In case the user
wants to supply his own gradient calculator (e.g. analytical derivatives), he needs to
implement the FCNGradientBase interface.

The size of the output vector is the same as of the input one. The same is true for
the position of the elements (first derivative of the function with respect to the nth

variable has index n in the output vector).

3.2 MINUIT parameters

Interaction with the parameters of the function are essential both for MINUIT and
the user. Different interfaces are provided, depending on the level of interaction.

3.2.1 Minimal required interface

Starting values of parameters and uncertainties can be provided to MINUIT by the
user via std::vector<double> vector containers. Any interaction with the parameters
before minimization (fix, release, limits, etc.) is not possible then.

Optionally if the user wants to provide starting values for the covariance, he has to
provide the values in a std::vector<double> vector container stored in upper trian-
gular packed storage format (see 4.13).

3.2.2 MnUserParameters

A more functional interface to the user parameters is provided through MINUIT via
the class MnUserParameters. The user can add parameters giving them a name and
starting values. More information can be found in 4.14.
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3.2.3 MnUserCovariance

The user can (optionally) provide a covariance matrix as input using the class
MnUserCovariance. More information can be found in 4.13.

3.2.4 MnUserParameterState

The MnUserParameterState contains the parameters (MnUserParameters) and covari-
ance (MnUserCovariance). The MnUserParameterState has to main purposes:

• It can be used as input to minimization.

• The result of the minimization is transformed into the user representable format
by MINUIT .

For more explanations see 4.15.

3.3 Input to MINUIT

The following input combinations to MINUIT are possible:

• FCN + parameters + uncertainties

• FCN with gradient + parameters + uncertainties

• FCN + parameters + covariance

• FCN with gradient + parameters + covariance

For each of these combinations the user can chose between a minimal required inter-
face (using std::vector containers) for the parameters and uncertainties or a more
functional one provided by MINUIT . If the user wants to interact with the param-
eters before minimization (fixing, adding/removing limits), the minimal required
interface cannot be used.

3.3.1 What the user must supply

The user must supply to MINUIT

• a valid implementation of the FCNBase base class

• parameters with their starting values

• expected uncertainties on the parameters
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The input parameters can be simply defined via an std::vector<double>, which means
that all parameters are variables. If the user wants fix a parameter or put limits on it
before minimization, he has to instantiate a MnUserParameters object and then add
parameters one by one, giving them a name, value, uncertainty. Once all parameters
are added to MnUserParameters, he can fix a parameter or put limits on another one
before handing them over to Minit for minimization.

3.3.2 What the user can supply

Optionally the user can supply his own gradient calculator by implementing the
FCNGradientBase interface or supply a full covariance matrix for input if one is avail-
able. The covariance matrix can be supplied in form of a std::vector<double> in
packed storage format (upper triangular), or in a more user-friendly way by using
the interface provided by the MnUserCovariance.

3.4 Running a MINUIT minimization

Two use cases are addressed for minimization:

• The user just wants the function to be minimized in one go.

• The user wants to minimize the FCN in several minimization steps, re-using the
result of the preceeding minimization in the next step and change parameters
in between (fix/release/put limits on them, etc.).

How MINUIT minimizations can be performed is shown in 6.2.

3.4.1 Direct usage of minimizers

Minimizers such as the VariableMetricMinimizer are designed as state-less minimiza-
tion engines, which means that they do not depend on the current function and its
parameters. Any FCN function can be minimized with the same minimizer. The
interface is restricted to minimization and no parameter interaction is possible.

3.4.2 Using an application (MnMigrad)

MnMigrad uses the VariableMetricMinimizer for minimization but allows as well for
parameter interaction by the user. An instance of MnMigrad is specific to the cur-
rent FCN and user parameters. Any parameter interaction of the user between two
minimization steps will make use of the result of the preceeding minimization in an
optimal way. The interface for parameters (see 4.14, 4.13 and 4.15) is forwardedin
MnMigrad.
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3.4.3 Subsequent minimizations

MINUIT takes care that all information is treated in an optimal and correct wayif
the user interacts with the parameters between two minimizations. MnMigrad retains
the result of the last minimization and uses this as input for the next step. Between
two minimization requests to MnMigrad the user can fix or release parameters, put
limits on them or remove limits from them. Each instance of a MnMigrad object
maintains its own state and one can have multiple instances of MnMigrad objects.

3.4.4 MINUIT fails to find a minimum

If MINUIT fails to find a minimum, the user is notified by a warning message isued
by MINUIT when running into troubles. Problems can be:

• a bug in MINUIT

• an error in the FCN

• a highly difficult problem (usually strong correlations among parameters)

• floating–point precision

3.5 The output from minimization

3.5.1 The FunctionMinimum

The output of the minimizers is the FunctionMinimum. The FunctionMinimum con-
tains the result of the minimization in both internal parameter representation and
external parameter representation.

3.5.2 User representable format: MnUserParameterState

On request, the result of the minimzation is transformed into a user representable
format for parameters and errors, the MnUserParameterState.

3.5.3 Access values, errors, covariance

The result can be accessed via methods like MnUserParameterState::value(unsigned
int n) and MnUserParameterState::error(unsigned int n), where n is the index of the
parameter in the list of parameters defined by the user.
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3.5.4 Printout of the result

The FunctionMinimum can be printed on the output simply via std::cout. It will print
both the internal and external state, that is parameters, errors and the covariance
matrix (if available). It also tells the user if MINUIT did converge or not by issueing
an appropriate message. If a covariance matrix is available, the global correlation
coefficients are printed as well.

Global correlation coefficients

The global correlation coefficient for parameter n is a number between zero and one
which gives the correlation between parameter n and that linear combination of all
other parameters which is most strongly correlated with n.
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4 MINUIT application programming interface

(API)

4.1 FunctionMinimum

The FunctionMinimum is the output of the minimizers and contains the minimza-
tion result. The state at the minimum is available both in internal and external
representations. For the external representations the return methods

• FunctionMinimum::userState(),

• FunctionMinimum::userParameters() and

• FunctionMinimum::userCovariance()

are provided. These can be used as new input to a new minimization after some
manipulation. The parameters and/or the FunctionMinimum can be printed using
std::cout.

4.1.1 isValid()

In general, if the method bool FunctionMinimum::isValid() returns “true”, the mini-
mizer did find a minimum without running into troubles. However, in some cases it
may happen that a minimum cannot be found, then the return value will be “false”.
Reasons for the minimization to fail are

• the number of allowed function calls has been exhausted

• the minimizer could not improve the values of the parameters (and knowing
that it has not converged yet)

• a problem with the calculation of the covariance matrix

Additional methods for the analysis of the state at the minimum are provided.

4.1.2 fval(), edm(), nfcn()

The method double FunctionMinimum::fval() returns the function value at the mini-
mum, the method double FunctionMinimum::edm() returns the expected vertical dis-
tance to the minimum EDM and unsigned int FunctionMinimum::nfcn() returns the
total number of function calls during the minimization.
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4.2 MnContours

4.2.1 MnContours(const FCNBase&, const FunctionMinimum&)

Construct an MnContours object from the user’s FCN and a valid FunctionMinimum.
Additional constructors for user specific MnStrategy settings are provided.

4.2.2 operator()

The method MnContours::operator()(unsigned int parx, unsigned int pary, unsigned int
npoints = 20) const calculates one function contour of FCN with respect to parameters
parx and pary. The return value is a std::vector<std::pair<double,double> > of (x,y)
points. FCN minimized always with respect to all other n - 2 variable parameters
(if any). MINUIT will try to find npoints points on the contour (default 20). To
calculate more than one contour, the user needs to set the error definition 3.1.2 in
its FCN to the appropriate value for the desired confidence level and call the method
MnContours::operator() for each contour.

4.2.3 contour(...)

MnContours::contour(unsigned int parx, unsigned int pary, unsigned int npoints = 20)
causes a CONTOURS error analysis and returns the result in form of ContoursError. As
a by-product ContoursError keeps the MinosError information of parameters parx and
pary. The result ContoursError can be easily printed using std::cout.

4.3 MnEigen

MnEigen calculates and the eigenvalues of the user covariance matrix MnUserCovari-
ance.

4.3.1 MnEigen()

MnEigen is instantiated via default constructor.

4.3.2 operator()

operator()(const MnUserCovariance&) const will perform the calculation of the eigen-
values of the covariance matrix and return the result in form of a std::vector¡double¿.
The eigenvalues are ordered from the smallest first to the largest eigenvalue.
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4.4 MnHesse

With MnHesse the user can instructs MINUIT to calculate, by finite differences, the
Hessian or error matrix. That is, it calculates the full matrix of second derivatives
of the function with respect to the currently variable parameters, and inverts it.

4.4.1 MnHesse()

The default constructor of MnHesse() will use default settings of MnStrategy. Other
constructors with user specific MnStrategy settings are provided as well.

4.4.2 operator()

The MnHesse::operator() is overloaded both for internal (MINUIT ) and external
(user) parameters. External parameters can be specified as std::vector<double> or
as MnUserParameters. The return value is always a MnUserParameterState.

The optional argument maxcalls specifies the (approximate) maximum number of
function calls after which the calculation will be stopped.

4.5 MnMachinePrecision

4.5.1 MnMachinePrecision()

MINUIT determines the nominal precision itself in the default constructor MnMa-
chinePrecision().

4.5.2 setPrecision(double eps)

Informs MINUIT that the relative floating point arithmetic precision is eps. The
method can be used to override MINUIT ’s own determination, when the user knows
that the FCN function value is not calculated to the nominal machine accuracy. Typ-
ical values of eps are between 10−5 and 10−14.

4.6 MnMigrad and VariableMetricMinimizer

MnMigrad provides minimization of the function by the method of MIGRAD, the most
efficient and complete single method, recommended for general functions (see also
4.7), and the functionality for parameters interaction. It also retains the result from
the last minimization in case the user may want to do subsequent minimization steps
with parameter interactions in between the minimization requests. The minimization
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is done by the VariableMetricMinimizer. Minimization of the function can be done
by directly using the VariableMetricMinimizer if no parameters interaction is required.
The minimization produces as a by-product the error matrix of the parameters, which
is usually reliable unless warning messages are produced.

4.6.1 MnMigrad(const FCNBase&, const std::vector<double>&,
const std::vector<double>&, unsigned int)

Constructor for the minimal required interface: FCN and starting values for parame-
ters and uncertainties. Optional the strategy level in MnStrategy can be specified.

4.6.2 MnMigrad(const FCNBase&, const MnUserParameters&,
unsigned int)

Constructor for high level parameters interface. Optional the strategy level in Mn-
Strategy can be specified.

4.6.3 MnMigrad(const FCNBase&, const MnUserParameterState&,
const MnStrategy&)

Constructor from a full state (parameters + covariance) as starting input plus the
desired strategy.

4.6.4 operator()

MnMigrad::operator()(unsigned int maxfcn, double tolerance) causes minimization of
the FCN and returns the result in form of a FunctionMinimum. The optional argu-
ment maxfcn specifies the (approximate) maximum number of function calls after
which the calculation will be stopped even if it has not yet converged. The optional
argument tolerance specifies the required tolerance on the function value at the min-
imum. The default tolerance value is 0.1, and the minimization will stop when the
estimated vertical distance to the minimum (EDM) is less than 0.001∗tolerance∗up
(see 3.1.2).

4.6.5 Parameter interaction

MnMigrad retains the result after each minimization (MnUserParameterStae, see 4.15)
and forwards the interface.
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4.6.6 VariableMetricMinimizer()

The VariableMetricMinimizer is instantiated using default constructor.

4.6.7 minimize(const FCNBase&, ...)

The VariableMetricMinimizer provides several overloaded methods minimize with re-
turn value FunctionMinimum. Together with the user FCN (either an implementation
of FCNBase or FCNGradientBase) the user has to give as input the parameters with
starting values in one of the defined formats (std::vector<double>, MnUserParameters
or MnUserParameterState).

4.7 MnMinimize and CombinedMinimizer

Causes minimization of the function by the method of MIGRAD, as does the MnMigrad
class, but switches to the SIMPLEX method if MIGRAD fails to converge. Constructor
arguments, methods arguments and names of methods are the same as for MnMigrad
or MnSimplex and VariableMetricMinimizer or SimplexMinimizer.

4.8 MnMinos

Causes a MINOS error analysis to be performed on the parameter whose number is
specified. MINOS errors may be expensive to calculate, but are very reliable since
they take account of non-linearities in the problem as well as parameter correlations,
and are in general asymmetric. The optional argument maxcalls specifies the (ap-
proximate) maximum number of function calls per parameter requested, after
which the calculation will be stopped for that parameter.

4.8.1 MnMinos(const FCNBase&, const FunctionMinimum&)

Construct an MnMinos object from the user’s FCN and a valid FunctionMinimum.
Additional constructors for user specific MnStrategy settings are provided.

4.8.2 operator()

MnMinos::operator()(unsigned int n, unsigned int maxcalls) causes a MINOS error anal-
ysis for external parameter n. The return value is a std::pair<double,double> with
the lower and upper bounds of parameter n.
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4.8.3 minos(unsigned int n, unsigned int maxcalls)

MnMinos::minos(unsigned int n, unsigned int maxcalls) causes a MINOS error analysis
for external parameter n and returns a MinosError with the lower and upper bounds
of parameter n and additional information in case that one bound could not be found.
The result MinosError can be easily printed using std::cout.

4.8.4 Other methods

Additional methods exist to ask for one side of MINOS errors only.

4.9 MnPlot

MnPlot prints the result of CONTOURS or SCAN on a text terminal.

4.9.1 MnPlot()

The default constructor initializes default settings for the text window size.

4.9.2 operator()

MnPlot::operator()(const std::vector<std::pair<double,double> >&) prints a vector
of (x,y) points on the text terminal. operator()(double xmin, double ymin, const
std::vector<std::pair<double,double> >&) prints in addition the coordinates of the
(x,y) values at the minimum.

4.10 MnScan and ScanMinimizer

MnScan scans the value of the user function by varying one parameter. It is some-
times useful for debugging the user function or finding a reasonable starting point.
Constructor arguments, methods arguments and names of methods are the same as
for MnMigrad and VariableMetricMinimizer.

4.10.1 scan(unsigned int par, unsigned int npoint, double low, double high)

Scans the value of the user function by varying parameter number par, leaving all
other parameters fixed at the current value. If par is not specified, all variable
parameters are scanned in sequence. The number of points npoints in the scan is
40 by default, and cannot exceed 100. The range of the scan is by default 2 standard
deviations on each side of the current best value, but can be specified as from low
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to high. After each scan, if a new minimum is found, the best parameter values are
retained as start values for future scans or minimizations. The curve resulting from
each scan can be plotted on the output terminal using MnPlot 4.9 in order to show
the approximate behaviour of the function.

4.10.2 ScanMinimizer

Although the SCAN method is not intended for minimization it can be used as a
minimizer in its most primitive form.

4.11 MnSimplex and SimplexMinimizer

SIMPLEX is a function minimization method using the simplex method of Nelder and
Mead. MnSimplex provides minimization of the function by the method of SIMPLEX
and the functionality for parameters interaction. It also retains the result from the
last minimization in case the user may want to do subsequent minimization steps with
parameter interactions in between the minimization requests. The minimization is
done by the SimplexMinimizer. Minimization of the function can be done by directly
using the SimplexMinimizer if no parameters interaction is required. As SIMPLEX is a
stepping method it does not produce a covariance matrix.

4.11.1 MnSimplex(const FCNBase&, const std::vector<double>&,
const std::vector<double>&, unsigned int)

Constructor for the minimal required interface: FCN and starting values for parame-
ters and uncertainties. Optional the strategy level in MnStrategy can be specified.

4.11.2 MnSimplex(const FCNBase&, const MnUserParameters&,
unsigned int)

Constructor for high level parameters interface. Optional the strategy level in Mn-
Strategy can be specified.

4.11.3 MnSimplex(const FCNBase&, const MnUserParameterState&,
const MnStrategy&)

Constructor from a full state (parameters + covariance) as starting input plus the
desired strategy.
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4.11.4 operator()

MnSimplex::operator()(unsigned int maxfcn, double tolerance) causes minimization of
the FCN and returns the result in form of a FunctionMinimum. Minimization termi-
nates either when the function has been called (approximately) maxfcn times, or
when the estimated vertical distance to minimum (EDM) is less than tolerance*up.
The default value of tolerance is 0.1. (see 3.1.2).

4.11.5 Parameter interaction

MnSimplex retains the result after each minimization (MnUserParameterStae, see 4.15)
and forwards the interface for parameter interaction.

4.11.6 SimplexMinimizer()

The SimplexMinimizer() is instantiated using default constructor.

4.11.7 minimize(const FCNBase&, ...)

The SimplexMinimizer provides several overloaded methods minimize with return value
FunctionMinimum. Together with the user FCN (either an implementation of FCN-
Base or FCNGradientBase) the user has to give as input the parameters with start-
ing values in one of the defined formats (std::vector<double>, MnUserParameters or
MnUserParameterState).

4.12 MnStrategy

Sets the strategy to be used in calculating first and second derivatives and in certain
minimization methods. In general, low values of level mean fewer function calls
and high values mean more reliable minimization. Currently allowed values are 0
(low), 1 (default), and 2 (high).

4.12.1 MnStrategy()

Default constructor, sets all settings according to level= 1.

4.12.2 MnStrategy(unsigned int level)

Explicit constructor for predefined settings of desired level 0 (low), 1 (default), or
2 (high).
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4.12.3 setLowStrategy(), setMediumStrategy(), setHighStrategy()

Methods to set specific strategy level.

4.12.4 Other methods

In addition, methods for individual settings such as setGradientNCycles() are pro-
vided.

4.13 MnUserCovariance

MnUserCovariance is the external covariance matrix designed for the interaction of the
user. The result of the minimization (internal covariance matrix) is converted into
the user representable format. It can also be used as input prior to the minimization.
The size of the covariance matrix is according to the number of variable parameters
(free and limited).

4.13.1 MnUserCovariance(const std::vector<double>&, unsigned int nrow)

Construct from data, positions of the elements in the array are arranged according to
the packed storage format. The size of the array must be nrow ∗ (nrow + 1)/2. The
array must contain the upper triangular part of the symmetric matrix packed sequen-
tially, column by column, so that arr(0) contains covar(0,0), arr(1) and arr(2) contain
covar(0,1) and covar(1,1) respectively, and so on. The number of rows (colums) has
to be specified.

4.13.2 MnUserCovariance(unsigned int nrow)

Specify the number of rows (colums) at instantiation. It will allocate an array of the
length nrow ∗ (nrow + 1)/2 and inititalize it to 0. Elements can then be set using
the method operator()(unsigned int, unsigned int).

4.13.3 MnUserCovariance::operator()(unsigned int, unsigned int)

Individual elements can be accessed via the operator(), both for reading and writing.

4.14 MnUserParameters

MnUserParameters is the main class for user interaction with the parameters. It serves
both as input to the minimization as well as output as the result of the minimization is
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converted into the user representable format in order to allow for further interaction.
Parameters for MINUIT can be added (defined) specifying a name, value and initial
uncertainty.

4.14.1 add(...)

The method MnUserParameters::add(...) is overloaded for three kind of parameters:

• add(const char*, double, double) for adding a free variable parameter

• add(const char*, double, double, double, double) for adding a variable parameter
with limits (lower and upper)

• add(const char*, double) for adding a constant parameter

When adding parameters, MINUIT assigns indices to each parameter which will be
the same as in the std::vector<double> in the FCNBase::operator(). That means the
first parameter the user adds gets index 0, the second index 1, and so on. When
calculating the function value inside FCN, MINUIT will call FCNBase::operator() with
the elements at their positions.

4.14.2 setValue(...)

setValue(unsigned int parno, double value) or setValue(const char* name, double value)
set the value of parameter parno or with name name to value. The parameter in
question may be variable, fixed, or constant, but must be defined.

4.14.3 setError(...)

setError(unsigned int parno, double error) or setError(const char* name, double error)
set the error (sigma) of parameter parno or with name name to value.

4.14.4 fix(...)

fix(unsigned int parno) or fix(const char* name) fixes parameter parno or with name
name.

4.14.5 release(...)

release(unsigned int parno) or release(const char* name) releases a previously fixed
parameter parno or with name name.
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4.14.6 setLimits(...)

setLimits(unsigned int n, double low, double up) or setLimits(const char* name, double
low, double up) sets the lower and upper bound of parameter n or with name name.

However, if low is equal to up, an error condition results.

4.14.7 setUpperLimit(...)

setUpperLimit(unsigned int n, double up) or setUpperLimit(const char* name, double
up) sets the upper bound of parameter n or with name name. The parameters does
not have a lower limit.

4.14.8 setLowerLimit(...)

setLowerLimit(unsigned int n, double low) or setLowerLimit(const char* name, double
low) sets the lower bound of parameter n or with name name. The parameters does
not have an upper limit.

4.14.9 removeLimits(...)

removeLimits(unsigned int n) or removeLimits(const char* name) removes all possible
limits on parameter n or with name name. The parameter can then vary in both
directions without any bounds.

4.14.10 value(...)

value(unsigned int n) or value(const char* name) return the current value of parameter
n or with name name.

4.14.11 error(...)

error(unsigned int n) or error(const char* name) return the current uncertainty (error)
of parameter n or with name name.

4.14.12 index(...)

index(const char* name) returns the index (current position) of the parameter with
name name in the list of defined parameters. The index is the same as for the
calculation of the function value in the user’s FCN (FCNBase::operator()).
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4.14.13 name(...)

name(unsigned int n) returns the name of the parameter with index n.

4.15 MnUserParameterState

The class MnUserParameterState contains the MnUserParameters and the MnUser-
Covariance. It can be created on input by the user, or by MINUIT itself as user
representable format of the result of the minimization.

4.15.1 MnUserParameterState(const std::vector<double>&,
const std::vector<double>&)

Construct a state from starting values specified via std::vector<double>. No covari-
ance is available.

4.15.2 MnUserParameterState(const MnUserParameters&)

Construct a state from starting values specified via MnUserParameters. No covariance
is available.

4.15.3 MnUserParameterState(const MnUserParameters&,
const MnUserCovariance&)

Construct a state from starting values specified via MnUserParameters and MnUser-
Covariance.

4.15.4 parameters()

The method parameters() returns a const reference to the MnUserParameters data
member.

4.15.5 covariance()

The method covariance() returns a const reference to the MnUserCovariance data
member.
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4.15.6 globalCC()

The method globalCC() returns a const reference to the MnGlobalCorrelationCoeff
data member.

4.15.7 MnUserParameterState::isValid() and
MnUserParameterState::hasCovariance()

isValid() returns true if the the state is valid, false if not. hasCovariance returns true
if the the state has a valid covariance, false otherwise.

4.15.8 MnUserParameterState::fval(), MnUserParameterState::edm(),
MnUserParameterState::nfcn()

After minimization:

• fval() returns the function value at the minimum

• edm() returns the expected vertival distance to the minimum EDM

• nfcn() returns the number of function calls during the minimization

4.16 MnPrint.h

The following std::ostream operator<< output operators are defined in the file Mn-
Print.h.

4.16.1 operator<<(std::ostream&, const FunctionMinimum&)

Prints out the the values of the FunctionMinimum, internal parameters and external
parameters (MnUserParameterState), the function value, the expected distance to the
minimum and the number of fucntion calls.

4.16.2 operator<<(std::ostream&, const MnUserParameters&)

Prints out the MnUserParameters.

4.16.3 operator<<(std::ostream&, const MnUserCovariance&)

Prints out the MnUserCovariance.
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4.16.4 operator<<(std::ostream&, const MnGlobalCorrelationCoeff&)

Prints out the MnGlobalCorrelationCoeff.

4.16.5 operator<<(std::ostream&, const MnUserParameterState&)

Prints out the whole MnUserParameterState: MnUserParameters, MnUserCovariance
and MnGlobalCorrelationCoeff.

4.16.6 operator<<(std::ostream&, const MinosError&)

Prints out the MinosError of a given parameter.

4.16.7 operator<<(std::ostream&, const ContoursErros&)

Prints out the MinosError of the two parameters and plots a line printer graphic of
the contours on the output terminal.
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5 How to get the right answer from MINUIT

The goal of MINUIT — to be able to minimize and analyze parameter errors for
all possible user functions with any number of variable parameters — is of course
impossible to realise, even in principle, in a finite amount of time. In practice, some
assumptions must be made about the behaviour of the function in order to avoid
evaluating it at all possible points. In this chapter we give some hints on how the
user can help MINUIT to make the right assumptions.

5.1 Which minimizer to use

One of the historically interesting advantages of MINUIT is that it was probably
the first minimization program to offer the user a choice of several minimization
algorithms. This could be taken as a reflection of the fact that none of the algorithms
known at that time were good enough to be universal, so users were encouraged
to find the one that worked best for them. Since then, algorithms have improved
considerably, but MINUIT still offers several, mostly so that old users will not feel
cheated, but also to help the occasional user who does manage to defeat the best
algorithms. MINUIT currently offers four applications which can be used to find a
smaller function value, in addition to MINOS, which will retain a smaller function
value if it stumbles on one unexpectedly. The objects which can be used to minimize
are:

5.1.1 MIGRAD

This is the best minimizer for nearly all functions. It is a variable-metric method
with inexact line search, a stable metric updating scheme, and checks for positive-
definiteness. It will run faster if you instantiate it with a low–level MnStrategy and
will be more reliable if you instantiate it with a high–level MnStrategy (although the
latter option may not help much). Its main weakness is that it depends heavily on
knowledge of the first derivatives, and fails miserably if they are very inaccurate. If
first derivatives are a problem, they can be calculated analytically inside FCN (see 3.1)
or if this is not feasible, the user can try to improve the accuracy of MINUIT ’s nu-
merical approximation by adjusting values of MnMachinePrecision and/or MnStrategy
(see 4.5 and 4.12).

5.1.2 MINIMIZE

This is equivalent to MIGRAD, except that if MIGRAD fails, it reverts to SIMPLEX and
then calls MIGRAD again.
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5.1.3 SCAN

This is not intended to minimize, and just scans the function, one parameter at a
time. It does however retain the best value after each scan, so it does some sort of
highly primitive minimization.

5.1.4 SIMPLEX

This genuine multidimensional minimization routine is usually much slower than
MIGRAD, but it does not use first derivatives, so it should not be so sensitive to the
precision of the FCN calculations, and is even rather robust with respect to gross
fluctuations in the function value. However, it gives no reliable information about
parameter errors, no information whatsoever about parameter correlations, and worst
of all cannot be expected to converge accurately to the minimum in a finite time. Its
estimate of the expected distance to the minimum EDM is largely fantasy, so it would
not even know if it did converge.

5.2 Floating point precision

MINUIT figures out at execution time the machine precision 4.5, and assumes that
FCN provides about the same precision. That means not just the length of the
numbers used and returned by FCN, but the actual mathematical accuracy of the
calculations. Section 2.7 describes what to do if this is not the case.

5.3 Parameter limits

Putting limits (absolute bounds) on the allowed values for a given parameter, causes
MINUIT to make a non-linear transformation of its own internal parameter values
to obtain the (external) parameter values passed to FCN. To understand the adverse
effect of limits, see 1.3.1.

Basically, the use of limits should be avoided unless needed to keep the parameter
inside a desired range.

If parameter limits are needed, in spite of the effects described in Chapter One, then
the user should be aware of the following techniques to alleviate problems caused by
limits.

5.3.1 Getting the Right Minimum with Limits

If MIGRAD converges normally to a point where no parameter is near one of its limits,
then the existence of limits has probably not prevented MINUIT from finding the
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right minimum. On the other hand, if one or more parameters is near its limit at the
minimum, this may be because the true minimum is indeed at a limit, or it may be
because the minimizer has become “blocked” at a limit. This may normally happen
only if the parameter is so close to a limit (internal value at an odd multiple of ± π

2

that MINUIT prints a warning to this effect when it prints the parameter values.

The minimizer can become blocked at a limit, because at a limit the derivative seen
by the minimizer ∂F/∂Pint is zero no matter what the real derivative ∂F/∂Pext is.

∂F

∂Pint

=
∂F

∂Pext

∂Pext

∂Pint

=
∂F

∂Pext

= 0

For a stepping method (like SIMPLEX) this seldom poses any problem, but a method
based on derivatives (MIGRAD) may become blocked at such a value. If this happens, it
may be necessary to move the value of the parameter in question a significant distance
from the limit (e.g. with MnMigrad::setValue(...)) and restart the minimization,
perhaps with that parameter fixed temporarily.

5.3.2 Getting the right parameter errors with limits

In the best case, where the minimum is far from any limits, MINUIT will correctly
transform the error matrix, and the parameter errors it reports should be accurate
and very close to those you would have got without limits. In other cases (which
should be more common, since otherwise you wouldn’t need limits), the very meaning
of parameter errors becomes problematic. Mathematically, since the limit is an
absolute constraint on the parameter, a parameter at its limit has no error, at least
in one direction. The error matrix, which can assign only symmetric errors, then
becomes essentially meaningless. On the other hand, the MINOS analysis is still
meaningful, at least in principle, as long as MIGRAD (which is called internally by
MINOS) does not get blocked at a limit. Unfortunately, the user has no control over
this aspect of the MINOS calculation, although it is possible to get enough printout
from the MINOS result to be able to determine whether the results are reliable or not.

5.4 Fixing and releasing parameters

When MINUIT needs to be guided to the “right” minimum, often the best way to
do this is with the methods e.g. MnMigrad::fix(...) and MnMigrad::release(...). That
is, suppose you have a problem with ten free parameters, and when you minimize
with respect to all at once, MINUIT goes to an unphysical solution characterized
by an unphysical or unwanted value of parameter number four. One way to avoid
this is to fix parameter four at a “good” value (not necessarily the best, since you
presumably don’t know that yet), and minimize with respect to the others. Then
release parameter four and minimize again. If the problem admits a “good” physical

38



solution, you will normally find it this way. If it doesn’t work, you may see what
is wrong by the following sequence (where xxx is the expected physical value for
parameter four):

MnMigrad migrad(...);

migrad.setValue(4, xxx);

migrad.fix(4);

FunctionMinimum min = migrad();

migrad.release(4);

MnScan scan(...);

std::vector<std::pair<double, double> > points = scan(4);

where SCAN gives you a picture of FCN as a function of parameter four alone, the
others being fixed at their current best values. If you suspect the difficulty is due to
parameter five, then add

MnContours contour(...);

std::vector<std::pair<double, double> > points = contour(4, 5);

to see a two-dimensional picture.

5.5 Interpretation of parameter errors

There are two kinds of problems that can arise: The reliability of MINUIT ’s error
estimates, and their statistical interpretation, assuming they are accurate.

5.5.1 Statistical interpretation

For discussuion of basic concepts, such as the meaning of the elements of the er-
ror matrix, parabolic versus MINOS errors, the appropriate value for up (see 3.1.2),
and setting of exact confidence levels, see (in order of increasing complexity and
completeness):

• “Interpretation of the Errors on Parameters”, see Part 3 of this write-up.

• “Determining the Statistical Significance of Experimental Results”[7].

• “Statistical Methods in Experimental Physics”[8].

5.5.2 The reliability of MINUIT error estimates

MINUIT always carries around its own current estimates of the parameter errors,
which it will print out on request, no matter how accurate they are at any given
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point in the execution. For example, at initialization, these estimates are just the
starting step sizes as specified by the user. After a MIGRAD or HESSE step, the errors
are usually quite accurate, unless there has been a problem. If no mitigating adjective
is given in the printout of the errors, then at least MINUIT believes the errors are
accurate, although there is always a small chance that MINUIT has been fooled.
Some visible signs that MINUIT may have been fooled are:

• Warning messages produced during the minimization or error analysis.

• Failure to find new minimum.

• Value of EDM too big. For a “normal” minimization, after MIGRAD, the value of
EDM is usually more than three orders of magnitude smaller than up, unless a
looser tolerance has been specified.

• Correlation coefficients exactly equal to zero, unless some parameters are known
to be uncorrelated with the others.

• Correlation coefficients very close to one (greater than 0.99).
This indicates both an exceptionally difficult problem, and one which has been
badly parametrized so that individual errors are not very meaningful because
they are so highly correlated.

• Parameter at limit. This condition, signalled by a MINUIT warning message,
may make both the function minimum and parameter errors unreliable. See
section 5.3.2, Getting the right parameter errors with limits

The best way to be absolutely sure of the errors, is to use “independent” calculations
and compare them, or compare the calculated errors with a picture of the function
if possible. For example, if there is only one free parameter, SCAN allows the user
to verify approximately the function curvature. Similarly, if there are only two free
parameters, use CONTOURS. To verify a full error matrix, compare the results of
MIGRAD with those (calculated afterward) by HESSE, which uses a different method.
And of course the most reliable and most expensive technique, which must be used
if asymmetric errors are required, is MINOS.

5.6 Convergence in MIGRAD, and positive–definiteness

MIGRAD uses its current estimate of the covariance matrix of the function to deter-
mine the current search direction, since this is the optimal strategy for quadratic
functions and “physical” functions should be quadratic in the neighbourhood of the
minimum at least. The search directions determined by MIGRAD are guaranteed to
be downhill only if the covariance matrix is positive–definite, so in case this is not
true, it makes a positive–definite approximation by adding an appropriate constant
along the diagonal as determined by the eigenvalues of the matrix. Theoretically,
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the covariance matrix for a “physical” function must be positive–definite at the min-
imum, although it may not be so for all points far away from the minimum, even for
a well–determined physical problem. Therefore, if MIGRAD reports that it has found
a non-positive–definite covariance matrix, this may be a sign of one or more of the
following:

• A non–physical region. On its way to the minimum, MIGRAD may have
traversed a region which has unphysical behaviour, which is of course not a
serious problem as long as it recovers and leaves such a region.

• An underdetermined problem. If the matrix is not positive–definite even
at the minimum, this may mean that the solution is not well–defined, for ex-
ample that there are more unknowns than there are data points, or that the
parametrization of the fit contains a linear dependence. If this is the case, then
MINUIT (or any other program) cannot solve your problem uniquely, and the
error matrix will necessarily be largely meaningless, so the user must remove
the underdeterminedness by reformulating the parametrization. MINUIT can-
not do this itself, but it can provide some hints (contours, global correlation
coefficients, eigenvalues) which can help the clever user to find out what is
wrong.

• Numerical inaccuracies. It is possible that the apparent lack of positive–
definiteness is in fact only due to excessive roundoff errors in numerical calcu-
lations, either in FCN or in MINUIT . This is unlikely in general, but becomes
more likely if the number of free parameters is very large, or if the parameters
are badly scaled (not all of the same order of magnitude), and correlations
are also large. In any case, whether the non–positive–definiteness is real or
only numerical is largely irrelevant, since in both cases the error matrix will be
unreliable and the minimum suspicious.

5.7 Additional trouble–shooting

When MINUIT just doesn’t work, some of the more common causes are:

• Precision mismatch. Make sure your FCN uses internally the same precision
as MINUIT .

If the problem is only one of precision, and not of word length mismatch, an
appropriate MnMachinePrecision::setPrecision() may fix it.

• Trivial bugs in FCN. The possibilities for C++ bugs are numerous. Probably
the most common among physicists inexperienced in is the confusion between
double and int types, which you can sometimes get away with, but not always. 3

3For example, if a and b are double precision variables, the C++ statement a = 2*b is not
good programming, but happens to do what the user probably intended, whereas the statement
a = b + 2/3 almost certainly will not do what the user intended.
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MINUIT can spot some trivial bugs itself, and issues a warning when it detects
an unusual FCN behaviour. Such a warning should be taken seriously.

MINUIT also offers some tools (especially SCAN) which can help the user to find
trivial bugs.

• An ill–posed problem. For questions of parameter dependence, see the dis-
cussion above on postive–definiteness. Other mathematical problems which
can arise are: excessive numerical roundoff — be especially careful of ex-
ponential and factorial functions which get big very quickly and lose accuracy;
starting too far from the solution — the function may have unphysical lo-
cal minima, especially at infinity in some variables; incorrect normalization
— in likelihood functions, the probability distributions must be normalized or
at least have an integral which is independent of the values of the variable
parameters.

• A bug in MINUIT . This is unlikely, but it happens. If a bug is suspected,
and all other possible causes can be eliminated, please try to save a copy of
the input and output files, listing of FCN, and other information that may be
relevant, and send them to fred.james@cern.ch.
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6 A complete example

Here a full example of a fit is presented, following the example DemoGaussSim.cpp.

6.1 The user’s FCN

The implementation of FCNBase by the user’s GaussFcn is shown here.

6.1.1 GaussFunction.h

The user’s model function is a Gaussian.

#ifndef MN_GaussFunction_H_

#define MN_GaussFunction_H_

#include <math.h>

class GaussFunction {

public:

GaussFunction(double mean, double sig, double constant) :

theMean(mean), theSigma(sig), theConstant(constant) {}

~GaussFunction() {}

double m() const {return theMean;}

double s() const {return theSigma;}

double c() const {return theConstant;}

double operator()(double x) const {

return

c()*exp(-0.5*(x-m())*(x-m())/(s()*s()))/(sqrt(2.*M_PI)*s());

}

private:

double theMean;

double theSigma;

double theConstant;

};

#endif // MN_GaussFunction_H_
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6.1.2 GaussFcn.h

The user’s FCN (GaussFcn) to calculate the χ2 (combining the user’s data with the
user’s model).

#ifndef MN_GaussFcn_H_

#define MN_GaussFcn_H_

#include "Minuit/FCNBase.h"

#include <vector>

class GaussFcn : public FCNBase {

public:

GaussFcn(const std::vector<double>& meas,

const std::vector<double>& pos,

const std::vector<double>& mvar) : theMeasurements(meas),

thePositions(pos),

theMVariances(mvar),

theErrorDef(1.) {}

~GaussFcn() {}

virtual double up() const {return theErrorDef;}

virtual double operator()(const std::vector<double>&) const;

std::vector<double> measurements() const {return theMeasurements;}

std::vector<double> positions() const {return thePositions;}

std::vector<double> variances() const {return theMVariances;}

void setErrorDef(double def) {theErrorDef = def;}

private:

std::vector<double> theMeasurements;

std::vector<double> thePositions;

std::vector<double> theMVariances;

double theErrorDef;

};

#endif //MN_GaussFcn_H_
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6.1.3 GaussFcn.cpp

The actual implementation of the FCNBase::operator() (called by Minuit):

#include "GaussFcn.h"

#include "GaussFunction.h"

#include <cassert>

double GaussFcn::operator()(const std::vector<double>& par) const {

assert(par.size() == 3);

GaussFunction gauss(par[0], par[1], par[2]);

double chi2 = 0.;

for(unsigned int n = 0; n < theMeasurements.size(); n++) {

chi2 += ((gauss(thePositions[n]) - theMeasurements[n]) *

(gauss(thePositions[n]) - theMeasurements[n]) /

theMVariances[n]);

}

return chi2;

}

6.2 The user’s main program

This is the main program DemoGaussSim.cpp:

#include "GaussFcn.h"

#include "GaussDataGen.h"

#include "Minuit/FunctionMinimum.h"

#include "Minuit/MnUserParameterState.h"

#include "Minuit/MinimumPrint.h"

#include "Minuit/MnMigrad.h"

#include "Minuit/MnMinos.h"

#include "Minuit/MnContours.h"

#include "Minuit/MnPlot.h"
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#include <iostream>

int main() {

// generate the data (100 data points)

GaussDataGen gdg(100);

std::vector<double> pos = gdg.positions();

std::vector<double> meas = gdg.measurements();

std::vector<double> var = gdg.variances();

// create FCN function

GaussFcn theFCN(meas, pos, var);

// create initial starting values for parameters

double x = 0.;

double x2 = 0.;

double norm = 0.;

double dx = pos[1]-pos[0];

double area = 0.;

for(unsigned int i = 0; i < meas.size(); i++) {

norm += meas[i];

x += (meas[i]*pos[i]);

x2 += (meas[i]*pos[i]*pos[i]);

area += dx*meas[i];

}

double mean = x/norm;

double rms2 = x2/norm - mean*mean;

double rms = rms2 > 0. ? sqrt(rms2) : 1.;

{

// demonstrate minimal required interface for minimization

// create Minuit parameters without names

// starting values for parameters

std::vector<double> init_par;

init_par.push_back(mean);

init_par.push_back(rms);

init_par.push_back(area);

// starting values for initial uncertainties

std::vector<double> init_err;

init_err.push_back(0.1);
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init_err.push_back(0.1);

init_err.push_back(0.1);

// create minimizer (default constructor)

VariableMetricMinimizer theMinimizer;

// minimize

FunctionMinimum min =

theMinimizer.minimize(theFCN, init_par, init_err);

// output

std::cout<<"minimum: "<<min<<std::endl;

}

{

// demonstrate standard minimization using MIGRAD

// create Minuit parameters with names

MnUserParameters upar;

upar.add("mean", mean, 0.1);

upar.add("sigma", rms, 0.1);

upar.add("area", area, 0.1);

// create MIGRAD minimizer

MnMigrad migrad(theFCN, upar);

// minimize

FunctionMinimum min = migrad();

// output

std::cout<<"minimum: "<<min<<std::endl;

}

{

// demonstrate full interaction with parameters over subsequent

// minimizations

// create Minuit parameters with names

MnUserParameters upar;

upar.add("mean", mean, 0.1);

upar.add("sigma", rms, 0.1);

upar.add("area", area, 0.1);

// access parameter by name to set limits...

upar.setLimits("mean", mean-0.01, mean+0.01);
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// ... or access parameter by index

upar.setLimits(1, rms-0.1, rms+0.1);

// create Migrad minimizer

MnMigrad migrad(theFCN, upar);

// fix a parameter...

migrad.fix("mean");

// ... and minimize

FunctionMinimum min = migrad();

// output

std::cout<<"minimum: "<<min<<std::endl;

// release a parameter...

migrad.release("mean");

// ... and fix another one

migrad.fix(1);

// and minimize again

FunctionMinimum min1 = migrad();

// output

std::cout<<"minimum1: "<<min1<<std::endl;

// release the parameter...

migrad.release(1);

// ... and minimize with all three parameters

// (still with limits!)

FunctionMinimum min2 = migrad();

// output

std::cout<<"minimum2: "<<min2<<std::endl;

// remove all limits on parameters...

migrad.removeLimits("mean");

migrad.removeLimits("sigma");

// ... and minimize again with all three parameters

// (now without limits!)
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FunctionMinimum min3 = migrad();

// output

std::cout<<"minimum3: "<<min3<<std::endl;

}

{

// demonstrate MINOS error analysis

// create Minuit parameters with names

MnUserParameters upar;

upar.add("mean", mean, 0.1);

upar.add("sigma", rms, 0.1);

upar.add("area", area, 0.1);

// create Migrad minimizer

MnMigrad migrad(theFCN, upar);

// minimize

FunctionMinimum min = migrad();

// create MINOS error factory

MnMinos minos(theFCN, min);

{

// 1-sigma MINOS errors

std::pair<double,double> e0 = minos(0);

std::pair<double,double> e1 = minos(1);

std::pair<double,double> e2 = minos(2);

// output

std::cout<<"1-sigma minos errors: "<<std::endl;

std::cout<<"par0: "

<<min.userState().value("mean")<<" "

<<e0.first<<" "<<e0.second<<std::endl;

std::cout<<"par1: "

<<min.userState().value(1)<<" "

<<e1.first<<" "<<e1.second<<std::endl;

std::cout<<"par2: "<<min.userState().value("area")

<<" "<<e2.first<<" "

<<e2.second<<std::endl;

}

{
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// 2-sigma MINOS errors

theFCN.setErrorDef(4.);

std::pair<double,double> e0 = minos(0);

std::pair<double,double> e1 = minos(1);

std::pair<double,double> e2 = minos(2);

// output

std::cout<<"2-sigma minos errors: "<<std::endl;

std::cout<<"par0: "

<<min.userState().value("mean")

<<" "<<e0.first<<" "<<e0.second<<std::endl;

std::cout<<"par1: "

<<min.userState().value(1)

<<" "<<e1.first<<" "<<e1.second<<std::endl;

std::cout<<"par2: "

<<min.userState().value("area")

<<" "<<e2.first<<" "<<e2.second<<std::endl;

}

}

{

// demonstrate how to use the CONTOURs

// create Minuit parameters with names

MnUserParameters upar;

upar.add("mean", mean, 0.1);

upar.add("sigma", rms, 0.1);

upar.add("area", area, 0.1);

// create Migrad minimizer

MnMigrad migrad(theFCN, upar);

// minimize

FunctionMinimum min = migrad();

// create contours factory with FCN and minimum

MnContours contours(theFCN, min);

// 70% confidence level for 2 parameters contour

// around the minimum

theFCN.setErrorDef(2.41);

std::vector<std::pair<double,double> > cont =

contours(0, 1, 20);
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// 95% confidence level for 2 parameters contour

theFCN.setErrorDef(5.99);

std::vector<std::pair<double,double> > cont4 =

contours(0, 1, 20);

// plot the contours

MnPlot plot;

cont4.insert(cont4.end(), cont.begin(), cont.end());

plot(min.userState().value("mean"),

min.userState().value("sigma"),

cont4);

}

return 0;

};
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