Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

 

# -*- coding: utf-8 -*- 

 

u'''Spherical, C{N-vector}-based geodesy. 

 

N-vector-based classes geodetic (lat-/longitude) L{LatLon}, geocentric 

(ECEF) L{Cartesian} and L{Nvector} and functions L{areaOf}, L{intersection}, 

L{meanOf}, L{nearestOn3}, L{perimeterOf}, L{sumOf}, L{triangulate} and 

L{trilaterate}, I{all spherical}. 

 

Pure Python implementation of n-vector-based spherical geodetic (lat-/longitude) 

methods, transcoded from JavaScript originals by I{(C) Chris Veness 2011-2016}, 

published under the same MIT Licence**. See U{Vector-based geodesy 

<https://www.Movable-Type.co.UK/scripts/latlong-vectors.html>} and 

U{Module latlon-nvector-spherical 

<https://www.Movable-Type.co.UK/scripts/geodesy/docs/module-latlon-nvector-spherical.html>}. 

 

Tools for working with points and paths on (a spherical model of) the 

earth’s surface using using n-vectors rather than the more common 

spherical trigonometry. N-vectors make many calculations much simpler, 

and easier to follow, compared with the trigonometric equivalents. 

 

Based on Kenneth Gade’s U{‘Non-singular Horizontal Position Representation’ 

<https://www.NavLab.net/Publications/A_Nonsingular_Horizontal_Position_Representation.pdf>}, 

The Journal of Navigation (2010), vol 63, nr 3, pp 395-417. 

 

Note that the formulations below take x => 0°N,0°E, y => 0°N,90°E and 

z => 90°N while Gade uses x => 90°N, y => 0°N,90°E, z => 0°N,0°E. 

 

Also note that on a spherical earth model, an n-vector is equivalent 

to a normalised version of an (ECEF) cartesian coordinate. 

''' 

# make sure int/int division yields float quosient, see .basics 

from __future__ import division as _; del _ # PYCHOK semicolon 

 

from pygeodesy.basics import isscalar, _xinstanceof 

from pygeodesy.constants import EPS, EPS0, PI, PI2, PI_2, R_M, \ 

_0_0, _0_5, _1_0 

# from pygeodesy.datums import Datums # from .sphericalBase 

# from pygeodesy.errors import _xkwds # from .named 

from pygeodesy.fmath import fmean, fsum 

# from pygeodesy.fsums import fsum # from .fmath 

from pygeodesy.interns import _end_, _Nv00_, _other_, _point_, \ 

_points_, _pole_ 

from pygeodesy.lazily import _ALL_LAZY, _ALL_OTHER 

from pygeodesy.named import notImplemented, _xkwds 

# from pygeodesy.namedTuples import NearestOn3Tuple # from .points 

from pygeodesy.nvectorBase import NvectorBase, NorthPole, LatLonNvectorBase, \ 

sumOf as _sumOf, _triangulate, _trilaterate 

from pygeodesy.points import NearestOn3Tuple, ispolar # PYCHOK exported 

from pygeodesy.props import deprecated_function, deprecated_method 

from pygeodesy.sphericalBase import _angular, CartesianSphericalBase, \ 

Datums, LatLonSphericalBase 

from pygeodesy.units import Bearing, Bearing_, Height, Radius, Scalar 

from pygeodesy.utily import degrees360, sincos2, sincos2_, sincos2d 

 

from math import atan2 

 

__all__ = _ALL_LAZY.sphericalNvector 

__version__ = '22.09.12' 

 

_paths_ = 'paths' 

 

 

class Cartesian(CartesianSphericalBase): 

'''Extended to convert geocentric, L{Cartesian} points to 

L{Nvector} and n-vector-based, spherical L{LatLon}. 

''' 

 

def toLatLon(self, **LatLon_and_kwds): # PYCHOK LatLon=LatLon 

'''Convert this cartesian to an C{Nvector}-based geodetic point. 

 

@kwarg LatLon_and_kwds: Optional L{LatLon} and L{LatLon} keyword 

arguments, like C{datum}. Use C{B{LatLon}=...} 

to override this L{LatLon} class or specify 

C{B{LatLon}=None}. 

 

@return: The geodetic point (L{LatLon}) or if B{C{LatLon}} is set 

to C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, 

C, M, datum)} with C{C} and C{M} if available. 

 

@raise TypeError: Invalid B{C{LatLon_and_kwds}} argument. 

''' 

kwds = _xkwds(LatLon_and_kwds, LatLon=LatLon, datum=self.datum) 

return CartesianSphericalBase.toLatLon(self, **kwds) 

 

def toNvector(self, **Nvector_and_kwds): # PYCHOK Datums.WGS84 

'''Convert this cartesian to L{Nvector} components, I{including height}. 

 

@kwarg Nvector_and_kwds: Optional L{Nvector} and L{Nvector} keyword 

arguments, like C{datum}. Use C{B{Nvector}=...} 

to override this L{Nvector} class or specify 

C{B{Nvector}=None}. 

 

@return: The C{n-vector} components (L{Nvector}) or if B{C{Nvector}} 

is set to C{None}, a L{Vector4Tuple}C{(x, y, z, h)} 

 

@raise TypeError: Invalid B{C{Nvector_and_kwds}} argument. 

''' 

# ll = CartesianBase.toLatLon(self, LatLon=LatLon, 

# datum=datum or self.datum) 

# kwds = _xkwds(kwds, Nvector=Nvector) 

# return ll.toNvector(**kwds) 

kwds = _xkwds(Nvector_and_kwds, Nvector=Nvector, datum=self.datum) 

return CartesianSphericalBase.toNvector(self, **kwds) 

 

 

class LatLon(LatLonNvectorBase, LatLonSphericalBase): 

'''New n-vector based point on a spherical earth model. 

 

Tools for working with points and paths on (a spherical 

model of) the earth's surface using vector-based methods. 

 

@example: 

 

>>> from sphericalNvector import LatLon 

>>> p = LatLon(52.205, 0.119) 

''' 

_Nv = None # cached_toNvector L{Nvector}) 

 

def _update(self, updated, *attrs): # PYCHOK args 

'''(INTERNAL) Zap cached attributes if updated. 

''' 

if updated: # reset caches 

LatLonNvectorBase._update(self, updated, _Nv=self._Nv) # special case 

LatLonSphericalBase._update(self, updated, *attrs) 

 

def alongTrackDistanceTo(self, start, end, radius=R_M): 

'''Compute the (signed) distance from the start to the closest 

point on the great circle path defined by a start and an 

end point. 

 

That is, if a perpendicular is drawn from this point to the 

great circle path, the along-track distance is the distance 

from the start point to the point where the perpendicular 

crosses the path. 

 

@arg start: Start point of great circle path (L{LatLon}). 

@arg end: End point of great circle path (L{LatLon}) or 

initial bearing from start point (compass 

C{degrees360}). 

@kwarg radius: Mean earth radius (C{meter}). 

 

@return: Distance along the great circle path (positive if 

after the start toward the end point of the path 

or negative if before the start point). 

 

@raise TypeError: If B{C{start}} or B{C{end}} point is not L{LatLon}. 

 

@raise Valuerror: Some points coincide. 

 

@example: 

 

>>> p = LatLon(53.2611, -0.7972) 

 

>>> s = LatLon(53.3206, -1.7297) 

>>> e = LatLon(53.1887, 0.1334) 

>>> d = p.alongTrackDistanceTo(s, e) # 62331.58 

''' 

self.others(start=start) 

gc, _, _ = self._gc3(start, end, _end_) 

 

p = self.toNvector() 

a = gc.cross(p).cross(gc) # along-track point gc × p × gc 

return start.toNvector().angleTo(a, vSign=gc) * radius 

 

@deprecated_method 

def bearingTo(self, other, **unused): # PYCHOK no cover 

'''DEPRECATED, use method L{initialBearingTo}. 

''' 

return self.initialBearingTo(other) 

 

def crossTrackDistanceTo(self, start, end, radius=R_M): 

'''Compute the (signed) distance from this point to great circle 

defined by a start and end point. 

 

@arg start: Start point of great circle path (L{LatLon}). 

@arg end: End point of great circle path (L{LatLon}) or 

initial bearing from start point (compass 

C{degrees360}). 

@kwarg radius: Mean earth radius (C{meter}). 

 

@return: Distance to great circle (negative if to the 

left or positive if to the right of the path). 

 

@raise TypeError: If B{C{start}} or B{C{end}} point is not L{LatLon}. 

 

@raise Valuerror: Some points coincide. 

 

@example: 

 

>>> p = LatLon(53.2611, -0.7972) 

 

>>> s = LatLon(53.3206, -1.7297) 

>>> d = p.crossTrackDistanceTo(s, 96) # -305.7 

 

>>> e = LatLon(53.1887, 0.1334) 

>>> d = p.crossTrackDistanceTo(s, e) # -307.5 

''' 

self.others(start=start) 

gc, _, _ = self._gc3(start, end, _end_) 

 

p = self.toNvector() 

return (gc.angleTo(p) - PI_2) * radius 

 

def destination(self, distance, bearing, radius=R_M, height=None): 

'''Locate the destination from this point after having 

travelled the given distance on the given bearing. 

 

@arg distance: Distance travelled (C{meter}, same units 

as B{C{radius}}). 

@arg bearing: Bearing from this point (compass C{degrees360}). 

@kwarg radius: Mean earth radius (C{meter}). 

@kwarg height: Optional height at destination, overriding the 

default height (C{meter}, same units as B{C{radius}}). 

 

@return: Destination point (L{LatLon}). 

 

@raise Valuerror: Polar coincidence or invalid B{C{distance}}, 

B{C{bearing}}, B{C{radius}} or B{C{height}}. 

 

@example: 

 

>>> p = LatLon(51.4778, -0.0015) 

>>> q = p.destination(7794, 300.7) 

>>> q.toStr() # 51.513546°N, 000.098345°W 

''' 

a = _angular(distance, radius) 

sa, ca, sb, cb = sincos2_(a, Bearing_(bearing)) 

 

p = self.toNvector() 

e = NorthPole.cross(p, raiser=_pole_).unit() # east vector at p 

n = p.cross(e) # north vector at p 

q = n.times(cb).plus(e.times(sb)) # direction vector @ p 

n = p.times(ca).plus(q.times(sa)) 

return n.toLatLon(height=height, LatLon=self.classof) # Nvector(n.x, n.y, n.z).toLatLon(...) 

 

def distanceTo(self, other, radius=R_M, wrap=False): 

'''Compute the distance from this to an other point. 

 

@arg other: The other point (L{LatLon}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None}. 

@kwarg wrap: Wrap/unroll the angular distance (C{bool}). 

 

@return: Distance between this and the B{C{other}} point 

(C{meter}, same units as B{C{radius}} or C{radians} 

if B{C{radius}} is C{None}). 

 

@raise TypeError: Invalid B{C{other}} point. 

 

@example: 

 

>>> p = LatLon(52.205, 0.119) 

>>> q = LatLon(48.857, 2.351); 

>>> d = p.distanceTo(q) # 404.3 km 

''' 

self.others(other) 

 

r = abs(self.toNvector().angleTo(other.toNvector(), wrap=wrap)) 

return r if radius is None else (Radius(radius) * r) 

 

# @Property_RO 

# def Ecef(self): 

# '''Get the ECEF I{class} (L{EcefVeness}), I{lazily}. 

# ''' 

# return _ALL_MODS.ecef.EcefKarney 

 

def _gc3(self, start, end, namend, raiser=_points_): 

'''(INTERNAL) Return great circle, start and end Nvectors. 

''' 

s = start.toNvector() 

if isscalar(end): # bearing 

gc = s.greatCircle(end) 

e = None 

else: 

self.others(end, name=namend) 

e = end.toNvector() 

gc = s.cross(e, raiser=raiser) # XXX .unit()? 

return gc, s, e 

 

def greatCircle(self, bearing): 

'''Compute the vector normal to great circle obtained by 

heading on the given bearing from this point. 

 

Direction of vector is such that initial bearing vector 

b = c × n, where n is an n-vector representing this point. 

 

@arg bearing: Bearing from this point (compass C{degrees360}). 

 

@return: N-vector representing the great circle (L{Nvector}). 

''' 

a, b = self.philam 

t = Bearing_(bearing) 

 

sa, ca, sb, cb, st, ct = sincos2_(a, b, t) 

return Nvector(sb * ct - sa * cb * st, 

-cb * ct - sa * sb * st, 

ca * st, name=self.name) # XXX .unit() 

 

def greatCircleTo(self, other): 

'''Compute the vector normal to great circle obtained by 

heading from this to an other point or on a given bearing. 

 

Direction of vector is such that initial bearing vector 

b = c × n, where n is an n-vector representing this point. 

 

@arg other: The other point (L{LatLon}) or the bearing from 

this point (compass C{degrees360}). 

 

@return: N-vector representing the great circle (L{Nvector}). 

 

@raise TypeError: The B{C{other}} point is not L{LatLon}. 

 

@raise Valuerror: Points coincide. 

 

@example: 

 

>>> p = LatLon(53.3206, -1.7297) 

>>> gc = p.greatCircle(96.0) 

>>> gc.toStr() # (-0.79408, 0.12856, 0.59406) 

 

>>> q = LatLon(53.1887, 0.1334) 

>>> g = p.greatCircleTo(q) 

>>> g.toStr() # (-0.79408, 0.12859, 0.59406) 

''' 

gc, _, _ = self._gc3(self, other, _other_) 

return gc.unit() 

 

def initialBearingTo(self, other, **unused): 

'''Compute the initial bearing (forward azimuth) from this 

to an other point. 

 

@arg other: The other point (L{LatLon}). 

@arg unused: Optional keyword argument B{C{wrap}} ignored. 

 

@return: Initial bearing (compass C{degrees360}). 

 

@raise Crosserror: This point coincides with the B{C{other}} 

point or the C{NorthPole}, provided 

L{pygeodesy.crosserrors} is C{True}. 

 

@raise TypeError: The B{C{other}} point is not L{LatLon}. 

 

@example: 

 

>>> p1 = LatLon(52.205, 0.119) 

>>> p2 = LatLon(48.857, 2.351) 

>>> b = p1.initialBearingTo(p2) # 156.2 

''' 

self.others(other) 

# see <https://MathForum.org/library/drmath/view/55417.html> 

n = self.toNvector() 

# gc1 = self.greatCircleTo(other) 

gc1 = n.cross(other.toNvector(), raiser=_points_) # .unit() 

# gc2 = self.greatCircleTo(NorthPole) 

gc2 = n.cross(NorthPole, raiser=_pole_) # .unit() 

return degrees360(gc1.angleTo(gc2, vSign=n)) 

 

def intermediateChordTo(self, other, fraction, height=None): 

'''Locate the point projected from the point at given fraction 

on a straight line (chord) between this and an other point. 

 

@arg other: The other point (L{LatLon}). 

@arg fraction: Fraction between both points (float, between 

0.0 for this and 1.0 for the other point). 

@kwarg height: Optional height at the intermediate point, 

overriding the fractional height (C{meter}). 

 

@return: Intermediate point (L{LatLon}). 

 

@raise TypeError: The B{C{other}} point is not L{LatLon}. 

 

@example: 

 

>>> p = LatLon(52.205, 0.119) 

>>> q = LatLon(48.857, 2.351) 

>>> i = p.intermediateChordTo(q, 0.25) # 51.3723°N, 000.7072°E 

''' 

self.others(other) 

 

f = Scalar(fraction=fraction) 

i = other.toNvector().times(f).plus( 

self.toNvector().times(1 - f)) 

# i = other.toNvector() * f + \ 

# self.toNvector() * (1 - f)) 

 

h = self._havg(other, f=f) if height is None else Height(height) 

return i.toLatLon(height=h, LatLon=self.classof) # Nvector(i.x, i.y, i.z).toLatLon(...) 

 

def intermediateTo(self, other, fraction, height=None, **unused): # wrap=False 

'''Locate the point at a given fraction between this and an 

other point. 

 

@arg other: The other point (L{LatLon}). 

@arg fraction: Fraction between both points (C{float}, between 

0.0 for this and 1.0 for the other point). 

@kwarg height: Optional height at the intermediate point, 

overriding the fractional height (C{meter}). 

 

@return: Intermediate point (L{LatLon}). 

 

@raise TypeError: The B{C{other}} point is not L{LatLon}. 

 

@raise Valuerror: Points coincide or invalid B{C{height}}. 

 

@see: Methods C{midpointTo} and C{rhumbMidpointTo}. 

 

@example: 

 

>>> p = LatLon(52.205, 0.119) 

>>> q = LatLon(48.857, 2.351) 

>>> i = p.intermediateTo(q, 0.25) # 51.3721°N, 000.7074°E 

''' 

q = self.others(other).toNvector() 

p = self.toNvector() 

f = Scalar(fraction=fraction) 

 

x = p.cross(q, raiser=_points_) 

d = x.unit().cross(p) # unit(p × q) × p 

# angular distance α, tan(α) = |p × q| / p ⋅ q 

s, c = sincos2(atan2(x.length, p.dot(q)) * f) # interpolated 

i = p.times(c).plus(d.times(s)) # p * cosα + d * sinα 

 

h = self._havg(other, f=f) if height is None else Height(height) 

return i.toLatLon(height=h, LatLon=self.classof) # Nvector(i.x, i.y, i.z).toLatLon(...) 

 

def intersection(self, end1, start2, end2, height=None): 

'''Locate the intersection point of two paths each defined 

by two points or a start point and bearing from North. 

 

@arg end1: End point of the first path (L{LatLon}) or the 

initial bearing at this point (compass C{degrees360}). 

@arg start2: Start point of the second path (L{LatLon}). 

@arg end2: End point of the second path (L{LatLon}) or the 

initial bearing at the second point (compass 

C{degrees}). 

@kwarg height: Optional height at the intersection point, 

overriding the mean height (C{meter}). 

 

@return: The intersection point (L{LatLon}) or C{None} 

if no unique intersection exists. 

 

@raise TypeError: If B{C{start2}}, B{C{end1}} or B{C{end2}} point 

is not L{LatLon}. 

 

@raise ValueError: Intersection is ambiguous or infinite or 

the paths are parallel, coincident or null. 

 

@example: 

 

>>> s = LatLon(51.8853, 0.2545) 

>>> e = LatLon(49.0034, 2.5735) 

>>> i = s.intersection(108.55, e, 32.44) # 50.9076°N, 004.5086°E 

''' 

return intersection(self, end1, start2, end2, 

height=height, LatLon=self.classof) 

 

def isenclosedBy(self, points): 

'''Check whether this point is enclosed by a (convex) polygon. 

 

@arg points: The polygon points (L{LatLon}[]). 

 

@return: C{True} if the polygon encloses this point, 

C{False} otherwise. 

 

@raise PointsError: Insufficient number of B{C{points}}. 

 

@raise TypeError: Some B{C{points}} are not L{LatLon}. 

 

@see: Functions L{pygeodesy.isconvex}, L{pygeodesy.isenclosedBy} 

and L{pygeodesy.ispolar} especially if the B{C{points}} may 

enclose a pole or wrap around the earth longitudinally. 

 

@example: 

 

>>> b = LatLon(45,1), LatLon(45,2), LatLon(46,2), LatLon(46,1) 

>>> p = LatLon(45.1, 1.1) 

>>> inside = p.isenclosedBy(b) # True 

''' 

# sum subtended angles of each edge (using n0, the 

# normal vector to this point for sign of α) 

def _subtangles(Ps, n0): 

vs1 = n0.minus(Ps[0].toNvector()) 

for p in Ps.iterate(closed=True): 

vs2 = n0.minus(p.toNvector()) 

yield vs1.angleTo(vs2, vSign=n0) # PYCHOK false 

vs1 = vs2 

 

# Note, this method uses angle summation test: on a plane, 

# angles for an enclosed point will sum to 360°, angles for 

# an exterior point will sum to 0°. On a sphere, enclosed 

# point angles will sum to less than 360° (due to spherical 

# excess), exterior point angles will be small but non-zero. 

s = fsum(_subtangles(self.PointsIter(points, loop=1), 

self.toNvector()), floats=True) # normal vector 

# XXX are winding number optimisations equally applicable to 

# spherical surface? 

return abs(s) > PI 

 

@deprecated_method 

def isEnclosedBy(self, points): # PYCHOK no cover 

'''DEPRECATED, use method C{isenclosedBy}.''' 

return self.isenclosedBy(points) 

 

def iswithin(self, point1, point2): 

'''Check whether this point is between two other points. 

 

If this point is not on the great circle arc defined by 

both points, return whether it is within the area bound 

by perpendiculars to the great circle at each point (in 

the same hemispere). 

 

@arg point1: Start point of the arc (L{LatLon}). 

@arg point2: End point of the arc (L{LatLon}). 

 

@return: C{True} if this point is within the arc, 

C{False} otherwise. 

 

@raise TypeError: If B{C{point1}} or B{C{point2}} is not L{LatLon}. 

''' 

n0 = self.toNvector() 

n1 = self.others(point1=point1).toNvector() 

n2 = self.others(point2=point2).toNvector() 

 

# corner case, null arc 

if n1.isequalTo(n2): 

return n0.isequalTo(n1) or n0.isequalTo(n2) # PYCHOK returns 

 

if n0.dot(n1) < 0 or n0.dot(n2) < 0: # different hemisphere 

return False # PYCHOK returns 

 

# get vectors representing d0=p0->p1 and d2=p2->p1 and the 

# dot product d0⋅d2 tells us if p0 is on the p2 side of p1 or 

# on the other side (similarly for d0=p0->p2 and d1=p1->p2 

# and dot product d0⋅d1 and p0 on the p1 side of p2 or not) 

return n0.minus(n1).dot(n2.minus(n1)) >= 0 and \ 

n0.minus(n2).dot(n1.minus(n2)) >= 0 

 

@deprecated_method 

def isWithin(self, point1, point2): # PYCHOK no cover 

'''DEPRECATED, use method C{iswithin}.''' 

return self.iswithin(point1, point2) 

 

def midpointTo(self, other, height=None, fraction=_0_5): 

'''Find the midpoint between this and an other point. 

 

@arg other: The other point (L{LatLon}). 

@kwarg height: Optional height at the midpoint, overriding 

the mean height (C{meter}). 

@kwarg fraction: Midpoint location from this point (C{scalar}), 

may be negative or greater than 1.0. 

 

@return: Midpoint (L{LatLon}). 

 

@raise TypeError: The B{C{other}} point is not L{LatLon}. 

 

@see: Methods C{intermediateTo} and C{rhumbMidpointTo}. 

 

@example: 

 

>>> p1 = LatLon(52.205, 0.119) 

>>> p2 = LatLon(48.857, 2.351) 

>>> m = p1.midpointTo(p2) # '50.5363°N, 001.2746°E' 

''' 

if fraction is _0_5: 

self.others(other) 

 

m = self.toNvector().plus(other.toNvector()) 

h = self._havg(other) if height is None else height 

r = m.toLatLon(height=h, LatLon=self.classof) 

else: 

r = self.intermediateTo(other, fraction, height=height) 

return r 

 

def nearestOn(self, point1, point2, height=None, within=True, wrap=False): 

'''Locate the point on the great circle arc between two 

points closest to this point. 

 

@arg point1: Start point of the arc (L{LatLon}). 

@arg point2: End point of the arc (L{LatLon}). 

@kwarg height: Optional height, overriding the mean height 

for the point within the arc (C{meter}), or 

C{None} to interpolate the height. 

@kwarg within: If C{True} return the closest point between 

both given points, otherwise the closest 

point elsewhere on the arc (C{bool}). 

@kwarg wrap: Wrap and unroll longitudes (C{bool}). 

 

@return: Closest point on the arc (L{LatLon}). 

 

@raise NotImplementedError: Keyword argument C{B{wrap}=True} 

not supported. 

 

@raise TypeError: Invalid B{C{point1}} or B{C{point2}}. 

 

@example: 

 

>>> s1 = LatLon(51.0, 1.0) 

>>> s2 = LatLon(51.0, 2.0) 

 

>>> s = LatLon(51.0, 1.9) 

>>> p = s.nearestOn(s1, s2) # 51.0004°N, 001.9000°E 

 

>>> d = p.distanceTo(s) # 42.71 m 

 

>>> s = LatLon(51.0, 2.1) 

>>> p = s.nearestOn(s1, s2) # 51.0000°N, 002.0000°E 

''' 

if wrap: # wrap=True throws C{NotImplementedError} always. 

notImplemented(self, wrap=wrap) 

 

if self.iswithin(point1, point2) and not point1.isequalTo(point2, EPS): 

# closer to arc than to its endpoints, 

# find the closest point on the arc 

gc1 = point1.toNvector().cross(point2.toNvector()) 

gc2 = self.toNvector().cross(gc1) 

n = gc1.cross(gc2) 

 

elif within: # for backward compatibility 

return point1 if self.distanceTo(point1) < self.distanceTo(point2) else point2 

 

else: # handle beyond arc extent by .vector3d.nearestOn 

n1 = point1.toNvector() 

n2 = point2.toNvector() 

n = self.toNvector().nearestOn(n1, n2, within=False) 

if n is n1: 

return point1 

elif n is n2: 

return point2 

 

p = n.toLatLon(height=height or 0, LatLon=self.classof) 

if height in (None, False): # interpolate height within extent 

d = point1.distanceTo(point2) 

f = (point1.distanceTo(p) / d) if d > EPS0 else _0_5 

p.height = point1._havg(point2, f=max(_0_0, min(f, _1_0))) 

return p 

 

# @deprecated_method 

def nearestOn2(self, points, **closed_radius_height): # PYCHOK no cover 

'''DEPRECATED, use method L{sphericalNvector.LatLon.nearestOn3}. 

 

@return: ... 2-Tuple C{(closest, distance)} of the C{closest} 

point (L{LatLon}) on the polygon and the C{distance} 

to that point from this point ... 

''' 

r = self.nearestOn3(points, **closed_radius_height) 

return r.closest, r.distance 

 

def nearestOn3(self, points, closed=False, radius=R_M, height=None): 

'''Locate the point on a path or polygon (with great circle 

arcs joining consecutive points) closest to this point. 

 

The closest point is either on within the extent of any great 

circle arc or the nearest of the arc's end points. 

 

@arg points: The path or polygon points (L{LatLon}[]). 

@kwarg closed: Optionally, close the polygon (C{bool}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None}. 

@kwarg height: Optional height, overriding the mean height 

for a point within the arc (C{meter}). 

 

@return: A L{NearestOn3Tuple}C{(closest, distance, angle)} of 

the C{closest} point (L{LatLon}), the C{distance} 

between this and the C{closest} point in C{meter}, 

same units as B{C{radius}} or in C{radians} if 

B{C{radius}} is C{None} and the C{angle} from this 

to the C{closest} point in compass C{degrees360}. 

 

@raise TypeError: Some B{C{points}} are not C{LatLon}. 

 

@raise ValueError: No B{C{points}}. 

''' 

Ps = self.PointsIter(points, loop=1) 

 

R = self.distanceTo 

N = self.nearestOn 

 

c = p1 = Ps[0] 

r = R(c, radius=None) # radians 

for p2 in Ps.iterate(closed=closed): 

p = N(p1, p2, height=height) 

d = R(p, radius=None) # radians 

if d < r: 

c, r = p, d 

p1 = p2 

d = r if radius is None else (Radius(radius) * r) 

return NearestOn3Tuple(c, d, degrees360(r)) 

 

def toCartesian(self, **Cartesian_and_kwds): # PYCHOK Cartesian=Cartesian, datum=None 

'''Convert this point to C{Nvector}-based cartesian (ECEF) coordinates. 

 

@kwarg Cartesian_and_kwds: Optional L{Cartesian} and L{Cartesian} keyword 

arguments, like C{datum}. Use C{B{Cartesian}=...} 

to override this L{Cartesian} class or specify 

C{B{Cartesian}=None}. 

 

@return: The cartesian point (L{Cartesian}) or if B{C{Cartesian}} is 

set to C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, 

C, M, datum)} with C{C} and C{M} if available. 

 

@raise TypeError: Invalid B{C{Cartesian_and_kwds}} argument. 

''' 

kwds = _xkwds(Cartesian_and_kwds, Cartesian=Cartesian, datum=self.datum) 

return LatLonSphericalBase.toCartesian(self, **kwds) 

 

def toNvector(self, **Nvector_and_kwds): # PYCHOK signature 

'''Convert this point to L{Nvector} components, I{including height}. 

 

@kwarg Nvector_and_kwds: Optional L{Nvector} and L{Nvector} keyword 

arguments. Use C{B{Nvector}=...} to override 

this L{Nvector} class or specify 

C{B{Nvector}=None}. 

 

@return: The C{n-vector} components (L{Nvector}) or if B{C{Nvector}} is 

set to C{None}, a L{Vector4Tuple}C{(x, y, z, h)} if B{C{Nvector}}. 

 

@raise TypeError: Invalid B{C{Nvector_and_kwds}} argument. 

 

@example: 

 

>>> p = LatLon(45, 45) 

>>> n = p.toNvector() 

>>> n.toStr() # [0.50, 0.50, 0.70710] 

''' 

kwds = _xkwds(Nvector_and_kwds, Nvector=Nvector) 

return LatLonNvectorBase.toNvector(self, **kwds) 

 

 

class Nvector(NvectorBase): 

'''An n-vector is a position representation using a (unit) vector 

normal to the earth's surface. Unlike lat-/longitude points, 

n-vectors have no singularities or discontinuities. 

 

For many applications, n-vectors are more convenient to work 

with than other position representations like lat-/longitude, 

earth-centred earth-fixed (ECEF) vectors, UTM coordinates, etc. 

 

On a spherical model earth, an n-vector is equivalent to an 

earth-centred earth-fixed (ECEF) vector. 

 

Note commonality with L{ellipsoidalNvector.Nvector}. 

''' 

_datum = Datums.Sphere # default datum (L{Datum}) 

 

def toCartesian(self, **Cartesian_and_kwds): # PYCHOK Cartesian=Cartesian 

'''Convert this n-vector to C{Nvector}-based cartesian 

(ECEF) coordinates. 

 

@kwarg Cartesian_and_kwds: Optional L{Cartesian} and L{Cartesian} keyword 

arguments, like C{h}. Use C{B{Cartesian}=...} 

to override this L{Cartesian} class or specify 

C{B{Cartesian}=None}. 

 

@return: The cartesian point (L{Cartesian}) or if B{C{Cartesian}} is 

set to C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, 

C, M, datum)} with C{C} and C{M} if available. 

 

@raise TypeError: Invalid B{C{Cartesian_and_kwds}} argument. 

''' 

kwds = _xkwds(Cartesian_and_kwds, h=self.h, Cartesian=Cartesian) 

return NvectorBase.toCartesian(self, **kwds) # class or .classof 

 

def toLatLon(self, **LatLon_and_kwds): # PYCHOK height=None, LatLon=LatLon 

'''Convert this n-vector to an C{Nvector}-based geodetic point. 

 

@kwarg LatLon_and_kwds: Optional L{LatLon} and L{LatLon} keyword 

arguments, like C{height}. Use C{B{LatLon}=...} 

to override this L{LatLon} class or specify 

C{B{LatLon}=None}. 

 

@return: The geodetic point (L{LatLon}) or if B{C{LatLon}} is set 

to C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, 

C, M, datum)} with C{C} and C{M} if available. 

 

@raise TypeError: Invalid B{C{LatLon_and_kwds}} argument. 

 

@raise ValueError: Invalid B{C{height}}. 

''' 

kwds = _xkwds(LatLon_and_kwds, height=self.h, LatLon=LatLon) 

return NvectorBase.toLatLon(self, **kwds) # class or .classof 

 

def greatCircle(self, bearing): 

'''Compute the n-vector normal to great circle obtained by 

heading on given compass bearing from this point as its 

n-vector. 

 

Direction of vector is such that initial bearing vector 

b = c × p. 

 

@arg bearing: Initial compass bearing (C{degrees}). 

 

@return: N-vector representing great circle (L{Nvector}). 

 

@raise Valuerror: Polar coincidence. 

 

@example: 

 

>>> n = LatLon(53.3206, -1.7297).toNvector() 

>>> gc = n.greatCircle(96.0) # [-0.794, 0.129, 0.594] 

''' 

s, c = sincos2d(Bearing(bearing)) 

 

e = NorthPole.cross(self, raiser=_pole_) # easting 

n = self.cross(e, raiser=_point_) # northing 

 

e = e.times(c / e.length) 

n = n.times(s / n.length) 

return n.minus(e) 

 

 

_Nvll = LatLon(_0_0, _0_0, name=_Nv00_) # reference instance (L{LatLon}) 

 

 

def areaOf(points, radius=R_M): 

'''Calculate the area of a (spherical) polygon (with great circle 

arcs joining consecutive points). 

 

@arg points: The polygon points (L{LatLon}[]). 

@kwarg radius: Mean earth radius (C{meter}) or C{None}. 

 

@return: Polygon area (C{meter} I{squared} , same units as 

B{C{radius}}, or C{radians} if B{C{radius}} is C{None}). 

 

@raise PointsError: Insufficient number of B{C{points}}. 

 

@raise TypeError: Some B{C{points}} are not L{LatLon}. 

 

@see: Functions L{pygeodesy.areaOf}, L{sphericalTrigonometry.areaOf} 

and L{ellipsoidalKarney.areaOf}. 

 

@example: 

 

>>> b = LatLon(45, 1), LatLon(45, 2), LatLon(46, 2), LatLon(46, 1) 

>>> areaOf(b) # 8666058750.718977 

''' 

def _interangles(Ps): 

# use vector to 1st point as plane normal for sign of α 

n0 = Ps[0].toNvector() 

 

v2 = Ps[0]._N_vector # XXX v2 == no? 

v1 = Ps[1]._N_vector 

gc = v2.cross(v1) 

for p in Ps.iterate(closed=True): 

v2 = p._N_vector 

gc1 = v1.cross(v2) 

v1 = v2 

yield gc.angleTo(gc1, vSign=n0) 

gc = gc1 

 

# sum interior angles: depending on whether polygon is cw or ccw, 

# angle between edges is π−α or π+α, where α is angle between 

# great-circle vectors; so sum α, then take n·π − |Σα| (cannot 

# use Σ(π−|α|) as concave polygons would fail) 

s = fsum(_interangles(_Nvll.PointsIter(points, loop=2)), floats=True) 

# using Girard’s theorem: A = [Σθᵢ − (n−2)·π]·R² 

# (PI2 - abs(s) == (n*PI - abs(s)) - (n-2)*PI) 

r = abs(PI2 - abs(s)) 

return r if radius is None else (r * Radius(radius)**2) 

 

 

def intersection(start1, end1, start2, end2, 

height=None, LatLon=LatLon, **LatLon_kwds): 

'''Locate the intersection of two paths each defined by two 

points or by a start point and an initial bearing. 

 

@arg start1: Start point of the first path (L{LatLon}). 

@arg end1: End point of the first path (L{LatLon}) or the 

initial bearing at the first start point 

(compass C{degrees360}). 

@arg start2: Start point of the second path (L{LatLon}). 

@arg end2: End point of the second path (L{LatLon}) or the 

initial bearing at the second start point 

(compass C{degrees360}). 

@kwarg height: Optional height at the intersection point, 

overriding the mean height (C{meter}). 

@kwarg LatLon: Optional class to return the intersection 

point (L{LatLon}). 

@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword 

arguments, ignored if C{B{LatLon} is None}. 

 

@return: The intersection point (B{C{LatLon}}) or 3-tuple 

(C{degrees90}, C{degrees180}, height) if B{C{LatLon}} 

is C{None} or C{None} if no unique intersection 

exists. 

 

@raise TypeError: If B{C{start*}} or B{C{end*}} is not L{LatLon}. 

 

@raise ValueError: Intersection is ambiguous or infinite or 

the paths are parallel, coincident or null. 

 

@example: 

 

>>> p = LatLon(51.8853, 0.2545) 

>>> q = LatLon(49.0034, 2.5735) 

>>> i = intersection(p, 108.55, q, 32.44) # 50.9076°N, 004.5086°E 

''' 

_Nvll.others(start1=start1) 

_Nvll.others(start2=start2) 

 

# If gc1 and gc2 are great circles through start and end points 

# (or defined by start point and bearing), then the candidate 

# intersections are simply gc1 × gc2 and gc2 × gc1. Most of the 

# work is deciding the correct intersection point to select! If 

# bearing is given, that determines the intersection, but if both 

# paths are defined by start/end points, take closer intersection. 

gc1, s1, e1 = _Nvll._gc3(start1, end1, 'end1') 

gc2, s2, e2 = _Nvll._gc3(start2, end2, 'end2') 

 

hs = start1.height, start2.height 

# there are two (antipodal) candidate intersection 

# points ... we have to choose the one to return 

i1 = gc1.cross(gc2, raiser=_paths_) 

# postpone computing i2 until needed 

# i2 = gc2.cross(gc1, raiser=_paths_) 

 

# selection of intersection point depends on how 

# paths are defined (by bearings or endpoints) 

if e1 and e2: # endpoint+endpoint 

d = sumOf((s1, s2, e1, e2)).dot(i1) 

hs += end1.height, end2.height 

elif e1 and not e2: # endpoint+bearing 

# gc2 x v2 . i1 +ve means v2 bearing points to i1 

d = gc2.cross(s2).dot(i1) 

hs += end1.height, 

elif e2 and not e1: # bearing+endpoint 

# gc1 x v1 . i1 +ve means v1 bearing points to i1 

d = gc1.cross(s1).dot(i1) 

hs += end2.height, 

else: # bearing+bearing 

# if gc x v . i1 is +ve, initial bearing is 

# towards i1, otherwise towards antipodal i2 

d1 = gc1.cross(s1).dot(i1) # +ve means p1 bearing points to i1 

d2 = gc2.cross(s2).dot(i1) # +ve means p2 bearing points to i1 

if d1 > 0 and d2 > 0: 

d = 1 # both point to i1 

elif d1 < 0 and d2 < 0: 

d = -1 # both point to i2 

else: # d1, d2 opposite signs 

# intersection is at further-away intersection point, 

# take opposite intersection from mid- point of v1 

# and v2 [is this always true?] XXX changed to always 

# get intersection p1 bearing points to, aka being 

# located "after" p1 along the bearing at p1, like 

# function .sphericalTrigonometry._intersect and 

# .ellipsoidalBaseDI._intersect3 

d = d1 # neg(s1.plus(s2).dot(i1)) 

 

i = i1 if d > 0 else gc2.cross(gc1, raiser=_paths_) 

 

h = fmean(hs) if height is None else height 

kwds = _xkwds(LatLon_kwds, height=h, LatLon=LatLon) 

return i.toLatLon(**kwds) # Nvector(i.x, i.y, i.z).toLatLon(...) 

 

 

def meanOf(points, height=None, LatLon=LatLon, **LatLon_kwds): 

'''Compute the geographic mean of the supplied points. 

 

@arg points: Array of points to be averaged (L{LatLon}[]). 

@kwarg height: Optional height, overriding the mean height 

(C{meter}). 

@kwarg LatLon: Optional class to return the mean point 

(L{LatLon}). 

@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword 

arguments, ignored if C{B{LatLon} is None}. 

 

@return: Point at geographic mean and mean height (B{C{LatLon}}). 

 

@raise PointsError: Insufficient number of B{C{points}}. 

 

@raise TypeError: Some B{C{points}} are not C{LatLon}. 

''' 

Ps = _Nvll.PointsIter(points) 

# geographic mean 

m = sumOf(p._N_vector for p in Ps.iterate(closed=False)) 

kwds = _xkwds(LatLon_kwds, height=height, LatLon=LatLon, 

name=meanOf.__name__) 

return m.toLatLon(**kwds) 

 

 

@deprecated_function 

def nearestOn2(point, points, **closed_radius_height): # PYCHOK no cover 

'''DEPRECATED, use method L{sphericalNvector.nearestOn3}. 

 

@return: ... 2-Tuple C{(closest, distance)} of the C{closest} 

point (L{LatLon}) on the polygon and the C{distance} 

between the C{closest} and the given B{C{point}} ... 

''' 

r = nearestOn3(point, points, **closed_radius_height) 

return r.closest, r.distance 

 

 

def nearestOn3(point, points, closed=False, radius=R_M, height=None): 

'''Locate the point on a polygon (with great circle arcs 

joining consecutive points) closest to an other point. 

 

If the given point is within the extent of any great circle 

arc, the closest point is on that arc. Otherwise, the 

closest is the nearest of the arc's end points. 

 

@arg point: The other, reference point (L{LatLon}). 

@arg points: The polygon points (L{LatLon}[]). 

@kwarg closed: Optionally, close the polygon (C{bool}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None}. 

@kwarg height: Optional height, overriding the mean height 

for a point within the arc (C{meter}). 

 

@return: A L{NearestOn3Tuple}C{(closest, distance, angle)} of 

the C{closest} point (L{LatLon}) on the polygon, the 

C{distance} and the C{angle} between the C{closest} 

and the given B{C{point}}. The C{distance} is in 

C{meter}, same units as B{C{radius}} or in C{radians} 

if B{C{radius}} is C{None}, the C{angle} is in compass 

C{degrees360}. 

 

@raise PointsError: Insufficient number of B{C{points}}. 

 

@raise TypeError: Some B{C{points}} or B{C{point}} not C{LatLon}. 

''' 

_xinstanceof(LatLon, point=point) 

 

return point.nearestOn3(points, closed=closed, radius=radius, height=height) 

 

 

def perimeterOf(points, closed=False, radius=R_M): 

'''Compute the perimeter of a (spherical) polygon (with great circle 

arcs joining consecutive points). 

 

@arg points: The polygon points (L{LatLon}[]). 

@kwarg closed: Optionally, close the polygon (C{bool}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None}. 

 

@return: Polygon perimeter (C{meter}, same units as B{C{radius}} 

or C{radians} if B{C{radius}} is C{None}). 

 

@raise PointsError: Insufficient number of B{C{points}}. 

 

@raise TypeError: Some B{C{points}} are not L{LatLon}. 

 

@see: Functions L{pygeodesy.perimeterOf}, L{sphericalTrigonometry.perimeterOf} 

and L{ellipsoidalKarney.perimeterOf}. 

''' 

def _rads(Ps, closed): # angular edge lengths in radians 

v1 = Ps[0]._N_vector 

for p in Ps.iterate(closed=closed): 

v2 = p._N_vector 

yield v1.angleTo(v2) 

v1 = v2 

 

r = fsum(_rads(_Nvll.PointsIter(points, loop=1), closed), floats=True) 

return r if radius is None else (Radius(radius) * r) 

 

 

def sumOf(nvectors, Vector=Nvector, h=None, **Vector_kwds): 

'''Return the vectorial sum of two or more n-vectors. 

 

@arg nvectors: Vectors to be added (L{Nvector}[]). 

@kwarg Vector: Optional class for the vectorial sum (L{Nvector}). 

@kwarg h: Optional height, overriding the mean height (C{meter}). 

@kwarg Vector_kwds: Optional, additional B{C{Vector}} keyword arguments. 

 

@return: Vectorial sum (B{C{Vector}}). 

 

@raise VectorError: No B{C{nvectors}}. 

''' 

return _sumOf(nvectors, Vector=Vector, h=h, **Vector_kwds) 

 

 

def triangulate(point1, bearing1, point2, bearing2, 

height=None, LatLon=LatLon, **LatLon_kwds): 

'''Locate a point given two known points and the initial bearings 

from those points. 

 

@arg point1: First reference point (L{LatLon}). 

@arg bearing1: Bearing at the first point (compass C{degrees360}). 

@arg point2: Second reference point (L{LatLon}). 

@arg bearing2: Bearing at the second point (compass C{degrees360}). 

@kwarg height: Optional height at the triangulated point, overriding 

the mean height (C{meter}). 

@kwarg LatLon: Optional class to return the triangulated point 

(L{LatLon}). 

@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword 

arguments, ignored if C{B{LatLon} is None}. 

 

@return: Triangulated point (B{C{LatLon}}). 

 

@raise TypeError: If B{C{point1}} or B{C{point2}} is not L{LatLon}. 

 

@raise Valuerror: Points coincide. 

 

@example: 

 

>>> p = LatLon("47°18.228'N","002°34.326'W") # Basse Castouillet 

>>> q = LatLon("47°18.664'N","002°31.717'W") # Basse Hergo 

>>> t = triangulate(p, 7, q, 295) # 47.323667°N, 002.568501°W' 

''' 

return _triangulate(_Nvll.others(point1=point1), bearing1, 

_Nvll.others(point2=point2), bearing2, 

height=height, LatLon=LatLon, **LatLon_kwds) 

 

 

def trilaterate(point1, distance1, point2, distance2, point3, distance3, # PYCHOK args 

radius=R_M, height=None, useZ=False, 

LatLon=LatLon, **LatLon_kwds): 

'''Locate a point at given distances from three other points. 

 

@arg point1: First point (L{LatLon}). 

@arg distance1: Distance to the first point (C{meter}, same units 

as B{C{radius}}). 

@arg point2: Second point (L{LatLon}). 

@arg distance2: Distance to the second point (C{meter}, same units 

as B{C{radius}}). 

@arg point3: Third point (L{LatLon}). 

@arg distance3: Distance to the third point (C{meter}, same units 

as B{C{radius}}). 

@kwarg radius: Mean earth radius (C{meter}). 

@kwarg height: Optional height at the trilaterated point, overriding 

the IDW height (C{meter}, same units as B{C{radius}}). 

@kwarg useZ: Include Z component iff non-NaN, non-zero (C{bool}). 

@kwarg LatLon: Optional class to return the trilaterated 

@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments, 

ignored if C{B{LatLon} is None}. 

 

@return: Trilaterated point (B{C{LatLon}}). 

 

@raise IntersectionError: No intersection, trilateration failed. 

 

@raise TypeError: Invalid B{C{point1}}, B{C{point2}} or B{C{point3}}. 

 

@raise ValueError: Coincident B{C{points}} or invalid B{C{distance1}}, 

B{C{distance2}}, B{C{distance3}} or B{C{radius}}. 

 

@see: U{Trilateration<https://WikiPedia.org/wiki/Trilateration>}. 

''' 

return _trilaterate(_Nvll.others(point1=point1), distance1, 

_Nvll.others(point2=point2), distance2, 

_Nvll.others(point3=point3), distance3, 

radius=radius, height=height, useZ=useZ, 

LatLon=LatLon, **LatLon_kwds) 

 

 

__all__ += _ALL_OTHER(Cartesian, LatLon, Nvector, # classes 

areaOf, # functions 

intersection, ispolar, 

meanOf, 

nearestOn2, nearestOn3, 

perimeterOf, 

sumOf, 

triangulate, trilaterate) 

 

# **) MIT License 

# 

# Copyright (C) 2016-2022 -- mrJean1 at Gmail -- All Rights Reserved. 

# 

# Permission is hereby granted, free of charge, to any person obtaining a 

# copy of this software and associated documentation files (the "Software"), 

# to deal in the Software without restriction, including without limitation 

# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

# and/or sell copies of the Software, and to permit persons to whom the 

# Software is furnished to do so, subject to the following conditions: 

# 

# The above copyright notice and this permission notice shall be included 

# in all copies or substantial portions of the Software. 

# 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

# OTHER DEALINGS IN THE SOFTWARE.