Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

 

# -*- coding: utf-8 -*- 

 

u'''(INTERNAL) Private, ellipsoidal Direct/Inverse geodesy base 

class C{LatLonEllipsoidalBaseDI} and functions. 

''' 

# make sure int/int division yields float quotient, see .basics 

from __future__ import division as _; del _ # PYCHOK semicolon 

 

from pygeodesy.basics import isscalar, issubclassof 

from pygeodesy.constants import EPS, PI, PI2, PI_4, isnear0, isnear1, \ 

_0_0, _0_5, _1_5, _3_0 

from pygeodesy.ellipsoidalBase import LatLonEllipsoidalBase, Property_RO, \ 

property_RO, _TOL_M 

from pygeodesy.errors import _AssertionError, IntersectionError, _IsnotError, \ 

_or, _ValueError, _xellipsoidal, _xError, _xkwds_not 

from pygeodesy.fmath import favg, fmean_ 

from pygeodesy.fsums import Fmt, fsum_ 

from pygeodesy.formy import opposing, _radical2 

from pygeodesy.interns import _antipodal_, _concentric_, _exceed_PI_radians_, \ 

_near_, _SPACE_, _too_ 

from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _ALL_MODS as _MODS 

from pygeodesy.namedTuples import Bearing2Tuple, Destination2Tuple, \ 

Intersection3Tuple, NearestOn2Tuple, \ 

NearestOn8Tuple, _LL4Tuple 

# from pygeodesy.props import Property_RO, property_RO # from .ellipsoidalBase 

# from pygeodesy.streprs import Fmt # from .fsums 

from pygeodesy.units import _fi_j2, Height, Radius_, Scalar 

from pygeodesy.utily import m2km, unroll180, _unrollon, wrap90, wrap180, wrap360 

 

from math import degrees, radians 

 

__all__ = _ALL_LAZY.ellipsoidalBaseDI 

__version__ = '22.09.14' 

 

_polar__ = 'polar?' 

_too_low_ = _too_('low') 

_B2END = _1_5 # _intersect3 bearing to pseudo-end point factor 

_TRIPS = 33 # _intersect3, _intersects2, _nearestOn interations, 6..9 sufficient? 

 

 

class LatLonEllipsoidalBaseDI(LatLonEllipsoidalBase): 

'''(INTERNAL) Base class for C{ellipsoidal*.LatLon} classes 

with I{overloaded} C{Direct} and C{Inverse} methods. 

''' 

 

def bearingTo2(self, other, wrap=False): 

'''Compute the initial and final bearing (forward and reverse 

azimuth) from this to an other point, using this C{Inverse} 

method. See methods L{initialBearingTo} and L{finalBearingTo} 

for more details. 

 

@arg other: The other point (C{LatLon}). 

@kwarg wrap: Wrap and unroll longitudes (C{bool}). 

 

@return: A L{Bearing2Tuple}C{(initial, final)}. 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@raise ValueError: If this and the B{C{other}} point's L{Datum} 

ellipsoids are not compatible. 

''' 

r = self._Inverse(other, wrap) 

return Bearing2Tuple(r.initial, r.final, name=self.name) 

 

def destination(self, distance, bearing, height=None): 

'''Compute the destination point after having travelled for 

the given distance from this point along a geodesic given 

by an initial bearing, using this C{Direct} method. See 

method L{destination2} for more details. 

 

@arg distance: Distance (C{meter}). 

@arg bearing: Initial bearing in (compass C{degrees360}). 

@kwarg height: Optional height, overriding the default 

height (C{meter}, same units as C{distance}). 

 

@return: The destination point (C{LatLon}). 

''' 

return self._Direct(distance, bearing, self.classof, height).destination 

 

def destination2(self, distance, bearing, height=None): 

'''Compute the destination point and the final bearing (reverse 

azimuth) after having travelled for the given distance from 

this point along a geodesic given by an initial bearing, 

using this C{Direct} method. 

 

The distance must be in the same units as this point's datum 

axes, conventionally C{meter}. The distance is measured on 

the surface of the ellipsoid, ignoring this point's height. 

 

The initial and final bearing (forward and reverse azimuth) 

are in compass C{degrees360}. 

 

The destination point's height and datum are set to this 

point's height and datum, unless the former is overridden. 

 

@arg distance: Distance (C{meter}). 

@arg bearing: Initial bearing (compass C{degrees360}). 

@kwarg height: Optional height, overriding the default 

height (C{meter}, same units as C{distance}). 

 

@return: A L{Destination2Tuple}C{(destination, final)}. 

''' 

r = self._Direct(distance, bearing, self.classof, height) 

return self._xnamed(r) 

 

def _Direct(self, distance, bearing, LL, height): # overloaded by I{Vincenty} 

'''(INTERNAL) I{Karney}'s C{Direct} method. 

 

@return: A L{Destination2Tuple}C{(destination, final)} or 

a L{Destination3Tuple}C{(lat, lon, final)} if 

B{C{LL}} is C{None}. 

''' 

g = self.geodesic 

r = g.Direct3(self.lat, self.lon, bearing, distance) 

if LL: 

r = self._Direct2Tuple(LL, height, r) 

return r 

 

def _Direct2Tuple(self, LL, height, r): 

'''(INTERNAL) Helper for C{._Direct} result L{Destination2Tuple}. 

''' 

h = self.height if height is None else height 

d = LL(wrap90(r.lat), wrap180(r.lon), height=h, datum=self.datum, name=self.name, 

**_xkwds_not(None, epoch=self.epoch, reframe=self.reframe)) 

return Destination2Tuple(d, wrap360(r.final)) 

 

def distanceTo(self, other, wrap=False, **unused): # ignore radius=R_M 

'''Compute the distance between this and an other point 

along a geodesic, using this C{Inverse} method. See method 

L{distanceTo3} for more details. 

 

@arg other: The other point (C{LatLon}). 

@kwarg wrap: Wrap and unroll longitudes (C{bool}). 

 

@return: Distance (C{meter}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@raise ValueError: If this and the B{C{other}} point's L{Datum} 

ellipsoids are not compatible. 

''' 

return self._Inverse(other, wrap, azis=False).distance 

 

def distanceTo3(self, other, wrap=False): 

'''Compute the distance, the initial and final bearing along 

a geodesic between this and an other point, using this 

C{Inverse} method. 

 

The distance is in the same units as this point's datum axes, 

conventionally meter. The distance is measured on the surface 

of the ellipsoid, ignoring this point's height. 

 

The initial and final bearing (forward and reverse azimuth) 

are in compass C{degrees360} from North. 

 

@arg other: Destination point (C{LatLon}). 

@kwarg wrap: Wrap and unroll longitudes (C{bool}). 

 

@return: A L{Distance3Tuple}C{(distance, initial, final)}. 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@raise ValueError: If this and the B{C{other}} point's L{Datum} 

ellipsoids are not compatible. 

''' 

return self._xnamed(self._Inverse(other, wrap)) 

 

def finalBearingOn(self, distance, bearing): 

'''Compute the final bearing (reverse azimuth) after having 

travelled for the given distance along a geodesic given by 

an initial bearing from this point, using this C{Direct} 

method. See method L{destination2} for more details. 

 

@arg distance: Distance (C{meter}). 

@arg bearing: Initial bearing (compass C{degrees360}). 

 

@return: Final bearing (compass C{degrees360}). 

''' 

return self._Direct(distance, bearing, None, None).final 

 

def finalBearingTo(self, other, wrap=False): 

'''Compute the final bearing (reverse azimuth) after having 

travelled along a geodesic from this point to an other 

point, using this C{Inverse} method. See method 

L{distanceTo3} for more details. 

 

@arg other: The other point (C{LatLon}). 

@kwarg wrap: Wrap and unroll longitudes (C{bool}). 

 

@return: Final bearing (compass C{degrees360}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@raise ValueError: If this and the B{C{other}} point's L{Datum} 

ellipsoids are not compatible. 

''' 

return self._Inverse(other, wrap).final 

 

@Property_RO 

def geodesic(self): # overloaded by I{Karney}'s, N/A for I{Vincenty} 

'''N/A, invalid (C{None} I{always}). 

''' 

return None # PYCHOK no cover 

 

def initialBearingTo(self, other, wrap=False): 

'''Compute the initial bearing (forward azimuth) to travel 

along a geodesic from this point to an other point, 

using this C{Inverse} method. See method L{distanceTo3} 

for more details. 

 

@arg other: The other point (C{LatLon}). 

@kwarg wrap: Wrap and unroll longitudes (C{bool}). 

 

@return: Initial bearing (compass C{degrees360}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@raise ValueError: If this and the B{C{other}} point's L{Datum} 

ellipsoids are not compatible. 

''' 

return self._Inverse(other, wrap).initial 

 

def intermediateTo(self, other, fraction, height=None, wrap=False): 

'''Return the point at given fraction along the geodesic between 

this and an other point, using this C{Direct} and C{Inverse} 

methods. 

 

@arg other: The other point (C{LatLon}). 

@arg fraction: Fraction between both points (C{scalar}, 

0.0 at this and 1.0 at the other point. 

@kwarg height: Optional height, overriding the fractional 

height (C{meter}). 

@kwarg wrap: Wrap and unroll longitudes (C{bool}). 

 

@return: Intermediate point (C{LatLon}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@raise UnitError: Invalid B{C{fraction}} or B{C{height}}. 

 

@raise ValueError: If this and the B{C{other}} point's L{Datum} 

ellipsoids are not compatible. 

 

@see: Methods L{distanceTo3}, L{destination}, C{midpointTo} and 

C{rhumbMidpointTo}. 

''' 

f = Scalar(fraction=fraction) 

if isnear0(f): 

r = self 

elif isnear1(f) and not wrap: 

r = self.others(other) 

else: # negative fraction OK 

t = self.distanceTo3(other, wrap=wrap) 

h = self._havg(other, f=f) if height is None else Height(height) 

r = self.destination(t.distance * f, t.initial, height=h) 

return r 

 

def _Inverse(self, other, wrap, **unused): # azis=False, overloaded by I{Vincenty} 

'''(INTERNAL) I{Karney}'s C{Inverse} method. 

 

@return: A L{Distance3Tuple}C{(distance, initial, final)}. 

 

@raise TypeError: The B{C{other}} point is not L{LatLon}. 

 

@raise ValueError: If this and the B{C{other}} point's 

L{Datum} ellipsoids are not compatible. 

''' 

_ = self.ellipsoids(other) 

g = self.geodesic 

_, lon = unroll180(self.lon, other.lon, wrap=wrap) 

return g.Inverse3(self.lat, self.lon, other.lat, lon) 

 

def nearestOn8(self, points, closed=False, height=None, wrap=False, 

equidistant=None, tol=_TOL_M): 

'''Iteratively locate the point on a path or polygon closest 

to this point. 

 

@arg points: The path or polygon points (C{LatLon}[]). 

@kwarg closed: Optionally, close the polygon (C{bool}). 

@kwarg height: Optional height, overriding the height of this and 

all other points (C{meter}, conventionally). If 

B{C{height}} is C{None}, the height of each point 

is taken into account for distances. 

 

@return: A L{NearestOn8Tuple}C{(closest, distance, fi, j, start, 

end, initial, final)} with C{distance} in C{meter}, 

conventionally and with the C{closest}, the C{start} 

the C{end} point each an instance of this C{LatLon}. 

 

@raise PointsError: Insufficient number of B{C{points}}. 

 

@raise TypeError: Some B{C{points}} or B{C{equidistant}} invalid. 

 

@raise ValueError: Some B{C{points}}' datum or ellipsoid incompatible 

or no convergence for the given B{C{tol}}. 

 

@see: Function L{pygeodesy.nearestOn6} and method C{nearestOn6}. 

''' 

D3 = self.distanceTo3 # Distance3Tuple 

 

try: 

Ps = self.PointsIter(points, loop=1) 

p1 = c = s = e = Ps[0] 

_ = self.ellipsoids(p1) 

c3 = D3(c, wrap=wrap) # XXX wrap=False? 

 

except (TypeError, ValueError) as x: 

raise _xError(x, Fmt.SQUARE(points=0), p1, this=self, tol=tol, 

closed=closed, height=height, wrap=wrap) 

 

# get the azimuthal equidistant projection, once 

A = _Equidistant00(equidistant, c) 

b = _Box(c, c3.distance) 

m = f = i = 0 # p1..p2 == points[i]..[j] 

 

kwds = dict(within=True, height=height, tol=tol, 

LatLon=self.classof, # this LatLon 

datum=self.datum, epoch=self.epoch, reframe=self.reframe) 

try: 

for j, p2 in Ps.enumerate(closed=closed): 

if wrap and j != 0: 

p2 = _unrollon(p1, p2) 

# skip edge if no overlap with box around closest 

if j < 4 or b.overlaps(p1.lat, p1.lon, p2.lat, p2.lon): 

p, t, _ = _nearestOn3_(self, p1, p2, A, **kwds) 

d3 = D3(p, wrap=False) # already unrolled 

if d3.distance < c3.distance: 

c3, c, s, e, f = d3, p, p1, p2, (i + t) 

b = _Box(c, c3.distance) 

m = max(m, c.iteration) 

p1, i = p2, j 

 

except (TypeError, ValueError) as x: 

raise _xError(x, Fmt.SQUARE(points=i), p1, 

Fmt.SQUARE(points=j), p2, this=self, tol=tol, 

closed=closed, height=height, wrap=wrap) 

 

f, j = _fi_j2(f, len(Ps)) # like .vector3d.nearestOn6 

 

n = self.nearestOn8.__name__ 

c.rename(n) 

if s is not c: 

s = s.copy(name=n) 

if e is not c: 

e = e.copy(name=n) 

return NearestOn8Tuple(c, c3.distance, f, j, s, e, c3.initial, c3.final, 

iteration=m) # ._iteration for tests 

 

 

class _Box(object): 

'''Bounding box around a C{LatLon} point. 

 

@see: Function C{_box4} in .clipy.py. 

''' 

def __init__(self, center, distance): 

'''New L{_Box} around point. 

 

@arg center: The center point (C{LatLon}). 

@arg distance: Radius, half-size of the box 

(C{meter}, conventionally) 

''' 

E = center.ellipsoid() 

d = degrees(distance / max(E.a, E.b)) + _0_5 # some margin 

self._N = center.lat + d 

self._S = center.lat - d 

self._E = center.lon + d 

self._W = center.lon - d 

 

def overlaps(self, lat1, lon1, lat2, lon2): 

'''Check whether this box overlaps a line between 2 points. 

 

@arg lat1: Latitude of first point (C{degrees}). 

@arg lon1: Longitude of first point (C{degrees}). 

@arg lat2: Latitude of second point (C{degrees}). 

@arg lon2: Longitude of second point (C{degrees}). 

 

@return: C{False} if there is certainly no overlap, 

C{True} otherwise (C{bool}). 

''' 

non_ = ((lat1 > self._N or lat2 < self._S) if lat1 < lat2 else 

(lat2 > self._N or lat1 < self._S)) or \ 

((lon1 > self._E or lon2 < self._W) if lon1 < lon2 else 

(lon2 > self._E or lon1 < self._W)) 

return not non_ 

 

 

class _Tol(object): 

'''Handle a tolerance in C{meter} as C{degrees} and C{meter}. 

''' 

_deg = 0 

_lat = 0 

_m = 0 

_r = 0 

 

def __init__(self, tol_m, E, lat, *lats): 

'''New L{_Tol}. 

 

@arg tol_m: Tolerance (C{meter}, only). 

@arg E: Earth ellipsoid (L{Ellipsoid}). 

@arg lat: Latitude (C{degrees}). 

@arg lats: Additional latitudes (C{degrees}). 

''' 

if lats: 

lat = fmean_(lat, *lats) 

self._lat = lat 

self._r = max(EPS, E.rocMean(lat)) 

self._m = max(EPS, tol_m) 

self._deg = max(EPS, degrees(self._m / self._r)) # avoid m2degrees! 

 

@property_RO 

def degrees(self): 

'''Get this tolerance in C{degrees}. 

''' 

return self._deg 

 

def degrees2m(self, deg): 

'''Convert B{C{deg}} to meter at the same C{lat} and earth radius. 

''' 

return self.radius * radians(deg) / PI2 # avoid degrees2m! 

 

def degError(self, deg, Error=_ValueError): 

'''Compose an error with C{deg}rees minimum. 

''' 

return self.mError(self.degrees2m(deg), Error=Error) 

 

@property_RO 

def lat(self): 

'''Get the mean latitude in C{degrees}. 

''' 

return self._lat 

 

def mError(self, m, Error=_ValueError): 

'''Compose an error with B{C{m}}eter minimum. 

''' 

t = _SPACE_(Fmt.tolerance(self.meter), _too_low_) 

if m2km(m) > self.meter: 

t = _or(t, _antipodal_, _near_(_polar__)) 

return Error(Fmt.no_convergence(m), txt=t) 

 

@property_RO 

def meter(self): 

'''Get this tolerance in C{meter}. 

''' 

return self._m 

 

@property_RO 

def radius(self): 

'''Get the earth radius in C{meter}. 

''' 

return self._r 

 

 

def _Equidistant00(equidistant, p1): 

'''(INTERNAL) Get an C{Equidistant*(0, 0, ...)} instance. 

''' 

if equidistant is None or not callable(equidistant): 

equidistant = p1.Equidistant 

elif not issubclassof(equidistant, *_MODS.azimuthal._Equidistants): # PYCHOK no cover 

t = tuple(_.__name__ for _ in _MODS.azimuthal._Equidistants) 

raise _IsnotError(*t, equidistant=equidistant) 

return equidistant(0, 0, p1.datum) 

 

 

def _intersect3(s1, end1, s2, end2, height=None, wrap=True, # MCCABE 16 

equidistant=None, tol=_TOL_M, LatLon=None, **LatLon_kwds): 

'''(INTERNAL) Intersect two (ellipsoidal) path, see ellipsoidal method 

L{intersection3}, separated to allow callers to embellish any exceptions. 

''' 

_LLS = _MODS.sphericalTrigonometry.LatLon 

_si = _MODS.sphericalTrigonometry._intersect 

_vi3 = _MODS.vector3d._intersect3d3 

 

def _b_d(s, e, w, t, h=_0_0): 

# compute opposing and distance 

t = s.classof(t.lat, t.lon, height=h, name=t.name) 

t = s.distanceTo3(t, wrap=w) # Distance3Tuple 

b = opposing(e, t.initial) # "before" start 

return b, t.distance 

 

def _b_e(s, e, w, t): 

# compute an end point along the initial bearing 

# about 1.5 times the distance to the gu-/estimate, at 

# least 1/8 and at most 3/8 of the earth perimeter like 

# radians in .sphericalTrigonometry._int3d2 and bearing 

# comparison in .sphericalTrigonometry._intb 

b, d = _b_d(s, e, w, t, h=t.height) 

m = s.ellipsoid().R2x * PI_4 # authalic exact 

d = min(max(d * _B2END, m), m * _3_0) 

e = s.destination(d, e) 

return b, (_unrollon(s, e) if w else e) 

 

def _e_ll(s, e, w, **end): 

# return 2-tuple (end, False if bearing else True) 

ll = not isscalar(e) 

if ll: 

e = s.others(**end) 

if w: # unroll180 == .karney._unroll2 

e = _unrollon(s, e) 

return e, ll 

 

def _o(o, b, n, s, t, e): 

# determine C{o}utside before, on or after start point 

if not o: # intersection may be on start 

if _MODS.latlonBase._isequalTo(s, t, eps=e.degrees): 

return o 

return -n if b else n 

 

E = s1.ellipsoids(s2) 

 

e1, ll1 = _e_ll(s1, end1, wrap, end1=end1) 

e2, ll2 = _e_ll(s2, end2, wrap, end2=end2) 

 

e = _Tol(tol, E, s1.lat, (e1.lat if ll1 else s1.lat), 

s2.lat, (e2.lat if ll2 else s2.lat)) 

 

# get the azimuthal equidistant projection 

A = _Equidistant00(equidistant, s1) 

 

# gu-/estimate initial intersection, spherically ... 

t = _si(_LLS(s1.lat, s1.lon, height=s1.height), 

(_LLS(e1.lat, e1.lon, height=e1.height) if ll1 else e1), 

_LLS(s2.lat, s2.lon, height=s2.height), 

(_LLS(e2.lat, e2.lon, height=e2.height) if ll2 else e2), 

height=height, wrap=False, LatLon=_LLS) # unrolled already 

h, n = t.height, t.name 

 

if not ll1: 

b1, e1 = _b_e(s1, e1, wrap, t) 

if not ll2: 

b2, e2 = _b_e(s2, e2, wrap, t) 

 

# ... and iterate as Karney describes, @see: 

# LatLonEllipsoidalBase.LatLon.intersections2 

c = m = None # force first d == c to False 

for i in range(1, _TRIPS): 

A.reset(t.lat, t.lon) # gu-/estimate as origin 

# convert start and end points to projection 

# space and compute an intersection there 

v, o1, o2 = _vi3(A.forward(s1.lat, s1.lon), 

A.forward(e1.lat, e1.lon), 

A.forward(s2.lat, s2.lon), 

A.forward(e2.lat, e2.lon), 

eps=e.meter, useZ=False) 

# convert intersection back to geodetic 

t, d = A._reverse2(v.x, v.y) 

# break if below tolerance or if unchanged 

if d < e.degrees or d == c: 

t._iteration = i 

break 

if m is None or m > d: 

m = d # min tol in degrees 

c = d 

else: 

raise e.degError(m, Error=IntersectionError) 

 

# like .sphericalTrigonometry._intersect, if this intersection 

# is "before" the first point, use the antipodal intersection 

if not (ll1 or ll2): # end1 and end2 are an initial bearing 

b1, _ = _b_d(s1, end1, wrap, t) 

if b1: 

t = t.antipodal() 

b1 = not b1 

b2, _ = _b_d(s2, end2, wrap, t) 

 

r = _LL4Tuple(t.lat, t.lon, h, t.datum, LatLon, LatLon_kwds, inst=s1, 

iteration=t._iteration, name=n) 

return Intersection3Tuple(r, (o1 if ll1 else _o(o1, b1, 1, s1, t, e)), 

(o2 if ll2 else _o(o2, b2, 2, s2, t, e))) 

 

 

def _intersection3(start1, end1, start2, end2, height=None, wrap=True, 

equidistant=None, tol=_TOL_M, LatLon=None, **LatLon_kwds): 

'''(INTERNAL) Iteratively compute the intersection point of two paths, 

each defined by two (ellipsoidal) points or an (ellipsoidal) start 

point and an initial bearing from North. 

''' 

s1 = _xellipsoidal(start1=start1) 

s2 = s1.others(start2=start2) 

try: 

return _intersect3(s1, end1, s2, end2, height=height, wrap=wrap, 

equidistant=equidistant, tol=tol, 

LatLon=LatLon, **LatLon_kwds) 

except (TypeError, ValueError) as x: 

raise _xError(x, start1=start1, end1=end1, start2=start2, end2=end2) 

 

 

def _intersections2(center1, radius1, center2, radius2, height=None, wrap=True, 

equidistant=None, tol=_TOL_M, LatLon=None, **LatLon_kwds): 

'''(INTERNAL) Iteratively compute the intersection points of two circles, 

each defined by an (ellipsoidal) center point and a radius. 

''' 

c1 = _xellipsoidal(center1=center1) 

c2 = c1.others(center2=center2) 

try: 

return _intersects2(c1, radius1, c2, radius2, height=height, wrap=wrap, 

equidistant=equidistant, tol=tol, 

LatLon=LatLon, **LatLon_kwds) 

except (TypeError, ValueError) as x: 

raise _xError(x, center1=center1, radius1=radius1, 

center2=center2, radius2=radius2) 

 

 

def _intersects2(c1, radius1, c2, radius2, height=None, wrap=True, # MCCABE 16 

equidistant=None, tol=_TOL_M, LatLon=None, **LatLon_kwds): 

'''(INTERNAL) Intersect two (ellipsoidal) circles, see L{_intersections2} 

above, separated to allow callers to embellish any exceptions. 

''' 

_LLS = _MODS.sphericalTrigonometry.LatLon 

_si2 = _MODS.sphericalTrigonometry._intersects2 

_vi2 = _MODS.vector3d._intersects2 

 

def _latlon4(t, h, n, c): 

return _LL4Tuple(t.lat, t.lon, h, t.datum, LatLon, LatLon_kwds, inst=c, 

iteration=t.iteration, name=n) 

 

r1 = Radius_(radius1=radius1) 

r2 = Radius_(radius2=radius2) 

 

E = c1.ellipsoids(c2) 

# get the azimuthal equidistant projection 

A = _Equidistant00(equidistant, c1) 

 

if r1 < r2: 

c1, c2 = c2, c1 

r1, r2 = r2, r1 

 

if r1 > (min(E.b, E.a) * PI): 

raise _ValueError(_exceed_PI_radians_) 

 

if wrap: # unroll180 == .karney._unroll2 

c2 = _unrollon(c1, c2) 

 

# distance between centers and radii are 

# measured along the ellipsoid's surface 

m = c1.distanceTo(c2, wrap=False) # meter 

if m < max(r1 - r2, EPS): 

raise IntersectionError(_near_(_concentric_)) 

if fsum_(r1, r2, -m) < 0: 

raise IntersectionError(_too_(Fmt.distant(m))) 

 

f = _radical2(m, r1, r2).ratio # "radical fraction" 

e = _Tol(tol, E, favg(c1.lat, c2.lat, f=f)) 

 

# gu-/estimate initial intersections, spherically ... 

t1, t2 = _si2(_LLS(c1.lat, c1.lon, height=c1.height), r1, 

_LLS(c2.lat, c2.lon, height=c2.height), r2, 

radius=e.radius, height=height, wrap=False, too_d=m) # unrolled already 

h, n = t1.height, t1.name 

 

# ... and iterate as Karney describes, @see: 

# LatLonEllipsoidalBase.LatLon.intersections2 

ts, ta = [], None 

for t in ((t1,) if t1 is t2 else (t1, t2)): 

c = m = None # force first d == c to False 

for i in range(1, _TRIPS): 

A.reset(t.lat, t.lon) # gu-/estimate as origin 

# convert centers to projection space 

t1 = A.forward(c1.lat, c1.lon) 

t2 = A.forward(c2.lat, c2.lon) 

# compute intersections in projection space 

v1, v2 = _vi2(t1, r1, # XXX * t1.scale?, 

t2, r2, # XXX * t2.scale?, 

sphere=False, too_d=m) 

# convert intersections back to geodetic 

t1, d1 = A._reverse2(v1.x, v1.y) 

if v1 is v2: # abutting 

t, d = t1, d1 # PYCHOK no cover 

else: 

t2, d2 = A._reverse2(v2.x, v2.y) 

# consider only the closer intersection 

t, d = (t1, d1) if d1 < d2 else (t2, d2) 

# break if below tolerance or if unchanged 

if d < e.degrees or d == c: 

t._iteration = i # _NamedTuple._iteration 

ts.append(t) 

if v1 is v2: # abutting 

ta = t # PYCHOK no coves 

break 

c = d 

if m is None or m > d: 

m = d # min tol in degrees 

else: 

raise e.degError(m, Error=IntersectionError) 

 

if ta: # abutting circles 

pass # PYCHOK no cover 

elif len(ts) == 2: 

return (_latlon4(ts[0], h, n, c1), 

_latlon4(ts[1], h, n, c2)) 

elif len(ts) == 1: # PYCHOK no cover 

ta = ts[0] # assume abutting 

else: # PYCHOK no cover 

raise _AssertionError(ts=ts) 

r = _latlon4(ta, h, n, c1) 

return r, r 

 

 

def _nearestOn2(p, point1, point2, within=True, height=None, wrap=True, 

equidistant=None, tol=_TOL_M, **LatLon_and_kwds): 

'''(INTERNAL) Closest point and fraction, like L{_intersects2} above, 

separated to allow callers to embellish any exceptions. 

''' 

p1 = p.others(point1=point1) 

p2 = p.others(point2=point2) 

 

_ = p.ellipsoids(p1) 

# E = p.ellipsoids(p2) # done in __nearestOn2__ 

 

# get the azimuthal equidistant projection 

A = _Equidistant00(equidistant, p) 

 

if wrap: 

p1 = _unrollon(p, p1) # XXX do not unroll? 

p2 = _unrollon(p, p2) # XXX do not unroll? 

p2 = _unrollon(p1, p2) 

 

r, f, e = _nearestOn3_(p, p1, p2, A, within=within, height=height, 

tol=tol, **LatLon_and_kwds) 

return NearestOn2Tuple(r, f) 

 

 

def _nearestOn3_(p, p1, p2, A, within=True, height=None, tol=_TOL_M, 

LatLon=None, **LatLon_kwds): 

# Only function C{_nearestOn2} and method C{nearestOn8} above 

_LLS = _MODS.sphericalNvector.LatLon 

_vnOn2 = _MODS.vector3d._nearestOn2 

_V3d = _MODS.vector3d.Vector3d 

 

def _v3d(t, h): 

return _V3d(t.x, t.y, h) 

 

E = p.ellipsoids(p2) 

e = _Tol(tol, E, p.lat, p1.lat, p2.lat) 

 

# gu-/estimate initial nearestOn, spherically ... wrap=False, only! 

# using sphericalNvector.LatLon.nearestOn for within=False support 

t = _LLS(p.lat, p.lon, height=p.height).nearestOn( 

_LLS(p1.lat, p1.lon, height=p1.height), 

_LLS(p2.lat, p2.lon, height=p2.height), within=within, height=height) 

n, h = t.name, t.height 

if height is None: 

h1 = p1.height # use heights as pseudo-Z in projection space 

h2 = p2.height # to be included in the closest function 

h0 = favg(h1, h2) 

else: # ignore heights in distances, Z=0 

h0 = h1 = h2 = _0_0 

 

# ... and iterate as Karney describes, @see: 

# LatLonEllipsoidalBase.LatLon.intersections2 

c = m = f = None # force first d == c to False 

# closest to origin, .z to interpolate height 

vp = _V3d(_0_0, _0_0, h0) 

for i in range(1, _TRIPS): 

A.reset(t.lat, t.lon) # gu-/estimate as origin 

# convert points to projection space 

# and compute the nearest one there 

v, f = _vnOn2(vp, _v3d(A.forward(p1.lat, p1.lon), h1), 

_v3d(A.forward(p2.lat, p2.lon), h2), 

within=within) 

# convert nearest one back to geodetic 

t, d = A._reverse2(v.x, v.y) 

# break if below tolerance or if unchanged 

if d < e.degrees or d == c: 

t._iteration = i # _NamedTuple._iteration 

break 

c = d 

if m is None or m > d: 

m = d # min tol in degrees 

else: 

raise e.degError(m) 

 

if height is None: 

h = v.z # nearest 

elif isscalar(height): 

h = height 

r = _LL4Tuple(t.lat, t.lon, h, t.datum, LatLon, LatLon_kwds, inst=p, 

iteration=t.iteration, name=n) 

return r, f, e # fraction or None 

 

 

__all__ += _ALL_DOCS(LatLonEllipsoidalBaseDI) 

 

# **) MIT License 

# 

# Copyright (C) 2016-2022 -- mrJean1 at Gmail -- All Rights Reserved. 

# 

# Permission is hereby granted, free of charge, to any person obtaining a 

# copy of this software and associated documentation files (the "Software"), 

# to deal in the Software without restriction, including without limitation 

# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

# and/or sell copies of the Software, and to permit persons to whom the 

# Software is furnished to do so, subject to the following conditions: 

# 

# The above copyright notice and this permission notice shall be included 

# in all copies or substantial portions of the Software. 

# 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

# OTHER DEALINGS IN THE SOFTWARE.