LI‘{CQ LHCb-INT-2013-006

A RCHY March 4, 2013

A New Nightly Build System for
LHCb

M. Clemencic! and B. Couturier!.

YCERN, Geneva, Switzerland

Abstract

The nightly build system used so far by LHCb has been implemented as an extension
on system developed by LCG Application Area [1]. Although this version basically
works, it has several limitations in terms of extensibility, management and ease of
use, so that the SFT group decided to develop a new version based on a commercial
continuous integration system.

Since we cannot adopt the new planned SFT nightly build system because of
technical reasons, we decided to investigate the possibility of a custom version based
on the open source continuous integration system Jenkins [2].

In this note we describe the implementation of a working prototype of the new
nightly build system.

1 Introduction

We have been using the Nightly Build System based the the LCG Application Area one for
several years [1]. The system works, but it has got limitations that make it very difficult
to extend and manage. A couple of years ago, the SF'T group had planned a rewrite
of their code base, to overcome the limitations, still allowing extensions like the ones
needed by LHCb. We decided to wait their new implementation before reviewing our code.
Only recently the SFT group opted for an completely different implementation based on
a commercial continuous integration solution. We will not be able to extend their new
system for our use case without a complete rewrite of our code (and expensive license
costs), so we decided to investigate the possibility of a new implementation of the Nightly
Build System based on the the open source continuous integration system Jenkins [2].
The outcome of the investigation is the working prototype described in this note.

1.1 LHCDb Software in the Nightly Builds

To better understand the following sections, it is useful to get acquainted with some
concepts and terms used in the context of the LHCb Software.

LHCb Software is divided in projects (releasable entities) with dependencies between
them, meaning that a project uses libraries produced in another project. So, changes in a
software project do not only affect the project itself, but also the projects depending on it.
To validate the software, then, we need to build a consistent stack (dependency chain) of
projects, which, in the Nightly Build terminology, we call a slot.

As part of our Quality Assurance policies and for portability, we can build our software
on a few Linux OS flavors, using different compilers and different options (mainly optimized
and debug). We call the combination of CPU architecture, OS, compiler and flags a
platform.

To validate the changes of the software in the widest possible range of cases, in our
Nightly Builds we build several slots (with different configurations) on several platform.
In some cases, we also need to prepare ad-hoc slot configurations for special temporary
validation tests.

2 Requirements

For the paste experience we collected a minimal set of functionalities that a Nightly Build
System must provide. It must provide the same functionalities of the old one, such as

build and test several slots on several platforms

easy configuration of the content of the slots

separate the builds of different platforms

allow customized checkouts (i.e. non default versions of the packages)

run the tests of a project while building the following one on the stack

configurable parsing of the build logs (ignore some warnings and errors)

distribute efficiently the load on a pool of build machines

a dashboard updated incrementally with accessible links to problems and an overview
on all the slots

but, wherever possible, improved and with a simpler and more maintainable implementa-
tion.
In additions we want to have some long awaited new features:

e monitoring of the status of the builds
e casy restart at different levels: everything, one slot, one platform of one slot

e produce archives of the checkout and of the builds

easy creation of new slots (both production and testing)

manageable procedure for the development of the system itself

3 Design

The new Nightly Build System is divided in three main parts to address the concerns: the
configuration of Jenkins jobs (for the coordination and distribution of the tasks), the core
tools (for the actual checkout and build tasks), the dashboard (summarized presentation
of the results of the builds).

Although Jenkins allows arbitrary complex scripts in the build steps, it is suggested in
the documentation to keep the build steps simple, wrapping the complexity of the build in
tools that are distributed and developed together with the project. The main reasons are
that the web interface provides only a minimal text field (not suitable for development)
and that it is not possible to keep track of the evolution of the code of a configuration
with a version control system.

In our case, the scripts used for the heavy-lifting part of the builds are hosted on a
dedicated GIT [3] repository, instead of living withing the software projects, because they
are generic and apply to whole software stacks, i.e. interdependent sets of projects.

An important difference in the design of the new system with respect to the old one
is that the various actions required in the nightly builds (checkout, build, test, etc.) are
performed by dedicated independent scripts instead of being phases of a monolithic script.
Thus it is possible to develop and test a single action without having to restart the whole
process from scratch. Moreover, the core tools are meant to work and produce files in any
directory, instead of using fixed locations as in the old system, simplifying furthermore
the development. Of course, whenever feasible, common code is factored out and shared
between all the scripts.

The configuration of Jenkins required the installation of several plug-ins on top of
a vanilla installation of the application. The jobs, in Jenkins terms, configured are of
two main categories: jobs representing the nightly build slots and generic jobs for the
individual steps.

The dashboard is still under investigation. The two main options investigated are
CDash [4] and the dashboard of the old system. It is also possible to use something
integrated with Jenkins or a completely new custom dashboard. The details will be
discussed in a dedicated section.

4 Implementation

4.1 Core Tools
The core tools are hosted on the GIT repositoryf]

http://cern.ch/lhcbproject/GIT/LHCbNightlies2.git

In the following sections we describe in some details the main components of the Core
Tools and their implementations.

4.1.1 Configuration

The old nightly build system uses an XML-based configuration describing in one file
the slots to be built, their content, the platforms they should be built for etc. While
prototyping the new system it seems reasonable to review the layout and the details of
the old configuration file to see what could be simplified or removed.

Because the new system is more modular than the old one and the management part
is separated from the build part, we started from a minimal configuration file describing a
single slot. To simplify the prototyping phase, we have chosen the JSON format (semi-
structured) instead of XML (structured), and, because of the way JSON objects are
converted in Python, inside the code we used simple nested Python dictionaries. The
format and the internal representation of the configuration are still under discussion and
they will probably change in a production version of the system to include, for example, a
validation mechanism.

The configuration of a slot consists of a JSON object with the following format:

slot name of the slot (mandatory)

projects list of objects describing the projects in the slot, with each object containing
the fields:

'LHCDb Core Software Team set up a minimal GIT hosting service described in a TWiki page:
https://twiki.cern.ch/twiki/bin/view/LHCb/GitRepositories

It must be noted that these repositories will be migrated to the CERN-IT GIT hosting service as soon as
available.

https://twiki.cern.ch/twiki/bin/view/LHCb/GitRepositories

name name of the project (mandatory)
version baseline version of the project (mandatory)

dependencies list of project names within the slot that the project depends on
(mandatory)

overrides object containing a simple mapping between package name and required
version as a string or null if the package should be removed (optional)

checkout name of the checkout function (optional)

warning_exceptions list of regular expressions matching warnings that should be ignored
(optional)

error_exceptions list of regular expressions matching errors that should be ignored
(optional)

env list of definitions of environment variables as strings in the format “<name>=<value>”
(optional)

preconditions list of objects describing a function call as the function name and the
arguments of the call (optional)

USE_CMT boolean telling of the slot should be build with CMT rather than the default
CMake (optional)

cmake_cache mapping key—value defining variables to pre-load in the CMake cache to
tune the build (optional)

Fields declared as mandatory in the above list are required in at least one step of the
nightly build system and cannot have a default value, but some of them are not used in
all the steps, so can be considered optional when testing only one step of the system. The
various sections of the configuration file are described in the following sections, including
which field are actually used by the step.

For people used to the old configuration, it might seem that the new configuration is
more limited than the old one, but it is mainly an impression due to the simplifications
introduced. For example, the old option file used different XML tags to add a package
to a project or to change the required version, but in this simplified configuration it is
enough to declare the version of a package to add it or to change it.

It should be noted that the list of platforms, the declaration of special directories or
URLs is not included in this option format. The reason is that those informations are not
needed to checkout and build a slot, but are part of the management of the nightly build
system, which is responsibility of the Jenkins part of the new system.

The field env is used by some of the steps to set environment variables before performing
the actual tasks. It is meant to replace the XML tags cmtprojectpath and cmtextratags of
the old configuration with a simpler an more generic option. It must be noted that the
placeholders %DAY?Y, %YESTERDAYY, and %PLATFORMY in the old configuration are replaced in

the new configuration by the environment variables, respectively, ${TODAY}, ${YESTERDAY}
(set internally) and ${CMTCONFIG} (taken from the inherited environment).

To allow for a smooth transition from the old system to the new one and for testing
the new system in parallel with the old one, we introduced a simple layer that extracts
the configuration of a slot from the XML configuration and produces a dictionary with
the same format than the one obtained from the new JSON format.

In order to simplify the development and testing in the new system, the configuration
file must be passed as command line argument to each script. The translation layer than
converts from XML is automatically triggered when the file name passed on the command
line contains the suffix #slotname which specifies the name of the slot that should be
extracted from the XMIP

4.1.2 Checkout

The new system features a dedicated script (StackCheckout.py) for the checkout of all
the projects in a slot. It uses only the fields slot and projects from the configuration file,
and for each project only name, version, overrides and checkout.

The aim of the script is to check out all the projects to be built in the slot, applying
the required overrides and fixing the interdependency declarations.

For each project it is possible to choose a checkout function passing its namd’| as the
value of the field checkout. Few basic checkout functions are already provided:

defaultCheckout (default choice, if not specified) use the getpack command
noCheckout do not checkout the project

specialGaudiCheckout test checkout function used to test the build of Gaudi from the
GIT repository

The default checkout function (defaultCheckout) is equivalent to the code used in the
old system, but simpler. If an explicit version is specified for a project, it is the version
that is checked out, while the special version HEAD triggers the checkout of the head
version of the project, meaning the head version of each package in the project. The old
system required also the special flag headofeverything to achieve the same result. It is not
possible, in the new system, to perform a checkout of the head meant as a checkout of the
head version of the container package of a project and the versions there declared of the
other packages, but this feature was never really used. After the straight forward checkout
of the project, the overrides field is used to fine tune the sources: for each package declared
in the list of overrides, getpack is called to change the already checked out version of the
package or to add it if not present, while when the requested version is null the directory
of the package is removed (if present).

2Remember that the new configuration requires one file per slot.
3Tt is enough to use the function name for functions in the module implementing the checkout script,
while functions accessible from other modules require the fully qualified name (i.e. module.function).

The noCheckout function is useful to just declared the version of a project to be used in
the build of the other projects, but not to build it. The same functionality was achieved in
the old system by either declaring an alternative dependency for a project or by declaring
the project as disabled. In the new system, then, it is only possible to implicitly disable
the build of a project by not checking it out.

The specialGaudiCheckout function has been used for testing the checkout of the Gaudi
project from its GIT repository instead of using getpack. Because of its test nature,
this function does not support the overrides of the packages. It must be noted that the
old system did not provide a way to change the checkout procedure of a project without
deep changes in the implementation the system, so the use of this simple test function
demonstrates the flexibility of the new system.

When invoked, the script checks out all the projects in the directory builds under
the current working directory, then it modifies the configuration files of the projects to
synchronize the interdependencies with what is declared in the configuration. In particular,
for the CMake configuration it modifies the top CMakeLists.txt file changing the version
of the project and of the dependencies, while for the CMT configuration it modifies the
file project.cmt for the dependencies and the file requirements of the container package
to remove the explicit versions of the packages, which, anyway, are not needed after the
checkout. Every modification applied to a file is recorded in patch file in the directory
sources under the current working directory.

After having patched the configuration, the sources of each project are packed in
individually in the sources directory.

The patch file and the archives of the sources have in the name a build id that can be
specified on the command line (by default <slot>.<YYYY-MM-DD>).

Together with the improvements and simplifications, there a few known limitations
with the new checkout procedure.

When a package is added or removed from a project, the requirements file of the
container package is not correctly modified, but the common use cases are such that this
correction is very rarely needed. In case of the addition, the build procedure visits the
extra packages even if they are not declared in the container, causing problems only if the
runtime requires some special environment variable defined in the requirements files of
the new package (of course, it is not a problem if the extra package is used by another
package in the project). The only valid use case for the removal of a package is when the
the package was overridden from a used project and we need to build using the original
version of the package, because a “real” removal of a package will probably need non
trivial corrections in other packages.

Another limitation of the new system is that it is not possible to build in the same slot
two different versions of a project, but, even if theoretically possible in the old system,
this feature was never used or needed.

4.1.3 Preconditions Check

In the old system it was possible to wait for a special file to appear before starting the
build. This feature was meant to allow chaining of nightly builds, so that we can have a
slot that is built on the products of a slot in the LCG AA nightly builds.

To achieve the same result in the new system, a more generic and flexible mechanism
has been devised: we can use the configuration field preconditions (the only one used in
this step) to declare functions to be called before building the slot.

The old “wait for” functionality is obtained via the precondition function waitForFile,
which accepts the arguments:

path the path to the file we have to wait for
timeout time before giving up waiting (datetime.timedelta, optional)
maxAge a file older than this are ignored (datetime.timedelta, optional)

For example:

"preconditions": [

{"name": "waitForFile",
"args" . {
"path": "${LCGNIGHTLIES}/dev3/${TODAY}/isDone-${CMTCONFIG}"
i3

1,

This function waits until the requested file appears before returning successfully (True),
but if the file does not appear within the timeout (by default 20 hours), the function
returns a failure (False) and the build is not started.

In the future we can have other precondition functions with more complex logic, either
returning immediately (e.g. if there is not enough disk space) or waiting.

4.1.4 Build and Test

Building and testing actions are bundled in one script because they are tightly connected:
the tests of a project in the slot are run while other projects are built. The behavior of
the build script can be tuned with documented command line options to allow easy and
effective testing of the build system.

The configuration fields used in this step are slot, projects (only name, version and
dependencies), warning_exceptions, error_exceptions, USE_CMT and cmake_cache.

To ensure a clean build, we first remove the content of the directory builds under the
current working directory, then we unpack all the archives present in the sources directory
(those produced during the checkout step). For each project found in the configuration
and for which the sources are found (i.e. we ignore the projects that were not checked

7

out) we create, from templates, a few configuration files and a script to be run via the
CTest [5] (ctest) command (the build and test tool distributed with CMake), and, for
the whole slot, we create a special file used to describe the structure of the slot to CDash.

The generated CTest script is the core of the build procedure. It is written such that
it can build either CMake-based projects or CMT-based [6] ones (actually via the special
Makefile that getpack adds to the project). With this script we can build and test a
projects and submit the result to a CDash instance. The submission is optional, and we
can also just build or just test.

Once the configuration is ready, the build wrapper script triggers CTest to build each
project (optionally with a number of parallel processes, fixed with a command line option),
one after the other in order of dependencies (as declared in the conﬁgurationﬁ). Once a
project is built, we first scan the build log recorded by CTest to produce summary files
equivalent to those produced by the old Nightly Build System (see [5.2)), then we pack the
content of its InstallArea directory in an archive (dereferencing symbolic links) in the
builds directory named after the project name, its version, a build id (like the one used in
the checkout) and the platform ($CMTCONFIG). At this point we start a new subprocess in
background to run the tests of the project while the next project in the slot is being built.

The the way the tests of a project are started depends on the type of the build (CMake
or CMT), but in both cases we produce the same kind of summaries that were used by
the old system. For CMake builds, the results of the tests are submitted to the CDash
instance, but the details about all the QMTest tests are not visible there. In the near
future we will implement an extension for QMTest to report the results in the XML format
understood by CDash, so that we will have more meaningful details accessible through
the CDash instance.

After all the builds are completed, the main script waits until the spawned subprocesses
complete before exiting.

It is important to note that the archive of the build does not contain any artifact that
has not been installed (copied or linked) to the InstallArea directory. This behavior
is different from what is done when creating the standard LHCb distribution packages,
and these new archives may be faulty. Of course, we can change the packaging to create
archives strictly identical to those prepared in the release procedure, but the long term
plan is to fix the rare cases where the artifacts are not installed?]

4.1.5 Project Layout

As already mentioned, the Core Tools are hosted in a GIT repository. The projects features
the following directories:

python contains the main Python module LHCbNightlies2 with submodules for the
shared code, the task specific functions and the tests, plus some templates

4The dependencies are not declared in the old configuration, but the order of appearance is used instead,
so the automatic translation of the configuration introduces fake dependencies between the projects to
preserve the expected order of build.

5A test to spot these cases is not available yet.

scripts contains the executable scripts, which are simply forwarding the calls to the main
functions in the Python modules

docs documentation

In the top level directory there are two setup shell scripts (sh and csh variants) than can
be sources to add the two main directories to PYTHONPATH and to PATH.
The tests are based on the nose testing framework [7] and can be run with:

cd python
nosetests -v —-—-with-doctest

or with the simple wrapper test.sh.

The repository features two main branches: master and dev. The first one is the one
used in production (automatically checked out by the Jenkins jobs), while the second is
used for testing new features without interfering with the production jobs.

4.2 Jenkins Configuration

Jenkins is a very flexible and extensible application used to manage automated build and
test jobs. Its features span from regular, on demand or commit triggered builds to complex
build work-flows or just monitoring of tasks. Its plugin system allows to add functionalities
like integration with different tools (e.g. Coverity or JIRA) and more reports from the
builds.

Unfortunately our use case is so special that there is no plugin already available to
support it, but, even if it could be implemented, we could achieve a good approximation
with the right combination of some of the already existing plug-ins (the full list is reported
in appendix |Al).

We shall not describe the installation and set up of the Jenkins server or the configu-
ration of access and privileges because it is not relevant to the operation of the nightly
builds. What is relevant, though, is the way we configure the cluster of build machines
at our disposal. In the old system the build machines were configured to start routinely
the builds (via cron jobs); in the new system it is the Jenkins instance that is aware
of each build node (slave) and connects to them via ssh (using the ssh Launch method
provided by the Jenkins SSH Slaves Plugin) with the credentials of the service account
lhcbsoft. Each slave is configured with Labels set to the short OS id (for example slc6
for Scientific Linux CERN 6.z). To avoid problems with the AFS token, we change the
default Awailability to take the node off line if idle (/dle delay: 20 minutes) and to connect
if needed (In demand delay: 1 minute). Because of the particular configuration of the
build machines, we have to set the Remote FS root to point to a directory on the dedicated
disk (/build/jenkins). During the tests we did not have Java installed on the slaves
(or the version was too old), so we installed the J REﬂ by hand on each node in the jre
directory under the configured Remote FS root and declared it in the configuration (field

6Java Runtime Environment [8].

JavaPath in the advanced section of Launch method). The number of executors (# of
ezecutors) is usually set to the number of CPUs of the slave, but our builds and tests use
on average two CPUs per job|Z|, so we set it to half the number of CPUs, except for the
master node, that we use only for jobs that almost do not use CPU, where we use ~ 200
executorﬂ In the global configuration page (Configure System) the checkbox Allow token
macro processing, under Groovy, must be ticked.

The jobs we configured for the nightly builds are divided in two categories: the workers
and the slots. For a simpler monitoring the jobs of the two categories are grouped in two
views.

4.2.1 The Workers

The workers are generic jobs that take care of the actual checkouts and builds of the slots.

Part of the configuration is common to all worker jobs. They, via the configuration
Discard Old Builds, keep the details of the builds for 15 days and the artifacts for one
week, which could be changed increasing the available disk space; of course the retention
periods must be identical for all the jobs for consistency. Two parameters are common to
all the workers:

slot string parameter defining the name of the slot

slot_build_id a numeric id (in a string parameter) common to all the jobs connected to
the same build of a slot

In all cases we allow concurrent builds via the flag Fxecute concurrent builds if necessary.
Using the Jenkins GIT Plugin we check out the Nightly Builds Core Tools from the URL
mentioned in to use the latest production version for their tasks, and we tick the Clean
after checkout checkbox in the advanced section. Since each worker job will be used several
times concurrently to work on different slots and platforms, to more easily identify the
builds referring to a specific slot we use the Build Name Setter Plugin to change the name
of the build from the default (a number) to the more useful <slot>. <slot_build_id>ﬂ.

In order to reduce the load on the software repositories, the checkout of the code to be
compiled is performed only once per slot by the job called nightly-slot-checkout. To ensure
that the checkout is run on a slave that has the correct environment, we use the Label
Ezpression field, under the section Restrict where this project can be run, with a value
like !'master. The builder section of the checkout job consists of a single shell script that,

"The average number of CPUs per job is not really predictable because we launch parallel builds using
distcc [94/10] and we run the tests in background, so we used the Unix command time to monitor the
real time (world clock time) spent for a build versus the user time (CPU time).

8Some special Jenkins jobs do not occupy executors, like the parent job of a multi-configuration job,
but it is not (jet) possible to configure a regular job as “flyweight” (the term used for the special jobs).
When we will have a plugin to configure flyweight jobs, we can change that weird number of executors to
a more reasonable value.

9Since the parameters cannot be use directly in the Build Name field, we use the fact that they are used to
set environment variables, so the Build Name used is ${ENV,var="slot"}.${ENV,var="slot_build_id"}.

10

essentially, calls the checkout script from the Core Tools (see after having prepared
the standard LHCb environment and, for testing, downloaded the old XML configuration
into the directory sources. For the post-build actions we use Archive the artifacts to keep
a copy of the content of the directory sources and we trigger a delete of the workspace
after the build (Jenkins Workspace Cleanup Plugin) to save disk space.

Since each slot needs to be build on several platforms, but, possibly, only when
some preconditions are met, we use a simple multi-configuration (or matriz) job called
nightly-slot-build-trigger with two extra parameters:

platform a string parameter for a space-separated list of platform the slot must be built
on

node a node parameter (provided by the Node and Label Parameter Plugin) used just to
force the execution of the matrix sub-jobs on a specific node, the master

In the Configuration Matriz section we declare one Dynamic Axis (from the Dynamic Axis
Plugin) named platform with the value takes from the environment variable platforms
(automatically defined from the parameter with the same name). In the Build Environment
section, we use the Matriz Tie Parent Plugin to ensure that not only the sub-jobs are run
on the master, but the parent job is run there too. The build steps section is more complex
then the one used for the checkout. First we copy the old XML configuration file from the
artifacts of the checkout job that was started with the same slot name and slot build id, using
the Copy Artifact Plugin and choosing the latest successful build of the project identified by
the string nightly-slot-checkout/slot=$slot,slot_build_id=$slot_build_id. The
second build step is a shell script that prepares the environment and calls the precondition
check script from the Core Tools (see . The last step is to trigger the actual build jobs
via the Jenkins Parameterized Trigger Plugin, so that the jobs nightly-slot-build (described
later) are started with a NodeLabel parameter called os_label set to (as a single lindT_UD

${GROOVY,script="import hudson.model.* ;
def thr = Thread.currentThread() ;
def build = thr.executable ;
return build.getEnvironment().get(’platform’).split(’-’) [1]"}

and with Predefined parameters used to propagate the values of the parameters slot,
slot_build_id and platform['T] then we Block until the triggered projects finish their builds
and we, essentially, inherit the status of the triggered jobs. We do not need any special
post-build action in this job.

The job triggered by nightly-slot-build-trigger is nightly-slot-build and it runs the
heaviest part: the actual build and the tests. In addition to the common parameters it

OThe Groovy Plugin allows execution of Groovy scripts |11] like in this case, and the EnvInject Plugin
ensures that the environment variable platform is set from the axis.

"' The os_label parameter is not passed in the same way as the others because the only way to trigger
a job so that it is executed on a node different from the originating job is to use the special NodeLabel
parameter type.

11

Build History (trend)

& Ihch-prerelease.20.1686-slc5-goc43-opt Jan 23, 2013 9:38:44 AM E
& Ihch-prerelease.20.x86_64-slc5-gcc46-opt Jan 23, 2013 9:38:43 AM E
) Ihch-cmake.26.x86_64-slc5-gecdb-dbg Jan 23, 2013 9:38:42 AM E
& Ihch-cmake.26.x86_64-slc5-gocdb-opt Jan 23, 2013 9:38:41 AM E
& Ihcb-cmake.26.x86_64-slcb-gocdb-dbg Jan 23, 2013 9:37:14 AM E
& Ihcb-cmake.26.x86_64-slcb-gocdb-opt Jan 23, 2013 9:37:13 AM E
& Ihcb-cmake.26.i686-slc5-gccd3-opt Jan 23, 2013 9:37:12 AM E
& Ihcb-gaudi-head.50.xB6_64-slcb-gocdb-opt Jan 23, 2013 9:36:41 AM E
@ Ihcb-gaudi-head.50.x86_64-slcS-gocd6-opt Jan 23, 2013 9:36:40 AM E

L E§¥]
) Ihcb-gaudi-head.50.i686-slc5-goccd3-opt Jan 23, 2013 9:36:39 AM
L E§¥]

2

W Ihcb-head.31.x86_64-slc5-gcocdB-opt Jan 23, 2013 9:01:48 AM E
I

W Ihcb-head.31.i686-slc5-goc43-opt Jan 23, 2013 9:01:29 AM E
I

& Ihch-head.30.1686-slc5-gcc43-opt Jan 22, 2013 12:36:32 PM ERJIMB

& Ihcb-head.30.x86_64-slc5-gcc46-opt Jan 22, 2013 12:34:37 PM

& Ihcb-cmake.25.i686-slc5-gccd3-opt Jan 22, 2013 9:48:42 AM

& Ihcb-cmake.25.x86_64-slc5-gocdb-opt Jan 22, 2013 9:48:41 AM

& Ihcb-cmake.25.x86_64-slc5-gocdb-dbg Jan 22, 2013 9:48:40 AM

& Ihcb-gaudi-head.49.i686-slc5-gcc43-opt Jan 22, 2013 9:48:32 AM

@ Ihcb-prerelease.19.i686-slc5-gocd3-opt Jan 22, 2013 9:48:31 AM

& Ihcb-prerelease.19.xB6_64-slc5-gecd6-opt Jan 22, 2013 9:48:30 AM =)

@ Ihcb-gaudi-head.49.x86_64-slc5-gccd6-opt Jan 22, 2013 9:48:39 AM ERIEE'MB

@ Ihcb-cmake.25.x86_64-slc6-gccd6-dbg Jan 22, 2013 9:46:31 AM E?'iE'MB

& Ihch-cmake.25.x86_64-slc6-gocdb-opt Jan 22, 2013 9:46:30 AM EL MB|

& Ihch-gaudi-head.49.x86_64-slc6-gocd6-opt Jan 22, 2013 9:46:16 AM E—'I'HEMB

& Ihch-cmake.24.x86_64-5|c5-gecd6-dbg Jan 21, 2013 9:40:44 AM E‘,IR\'IMB

) Ihch-cmake.24.x86_64-slc5-gocdb-opt Jan 21, 2013 9:40:31 AM #220MB|

) Ihch-cmake.24.1686-slc5-gcc43-opt Jan 21, 2013 9:40:30 AM ®234MB

Figure 1: Jenkins: List of running and recently completed nightly-slot-build jobs.

accepts the string parameter platform declaring the platform id and a Label parameter called
os,labelEl Since this job will build the same slot on several different platforms, we appended
.${ENV,var="platform"} to the Build Name used in the other jobs (Figure . In the
build steps we copy all the artifacts from the latest successful build of the corresponding
build of nightly-slot-checkout (selected as in the build trigger job), then we use a shell
script to prepare the build environment and call the build script from Core Tools)El (see
.14 In the post-build actions we archive the artifacts, in particular the archive files and
the summaries found in the build directory.

The worker jobs are grouped and displayed in the view Nightly Builds (workers)
(Figure [2)), so that they can be easily monitored and not be confused with the slot jobs.

12A Label parameter is used by Jenkins to choose on which slave the job has to be run.
13To test the possible integration of the new nightly build system with the old summary page, we also
copy to AFS summary files equivalent to the old ones that we generate during the build (see .

12

Jenkins R seare

Jenkins Nightly Builds (workers) ENABLE AUTO REFRESH
Parametrized jobs used internally by the Nightly builds configuration.

& New Job [edit description
" Peaple Al | Nightly Builds = Nightly Builds (workers) | Profiling | Project View | +
“> Build Historv s W Name | Last Success Last Failure Last Duration
Edit View g nightly-slot-build 6 hr 43 min (lhcb-prerelease.20.i686-slc5-gccd3-opt) 10 days (lhcb-cmake.11.x86 64-sic6-gccdt-opt) 5 hr 6 min 59
g rigger 6 hr 45 min (Ihcb-prerelease 7 days 23 hr (Ihcb-gaudi-head.42) 5 hr 8 min ;\?)
u 7 hr 27 min (Ihcb-prerelease 1 day 8 hr (#123) 31 min ;?)
Manage Jenkins Icon: S ML
& Legend [GJ RSS forall [[J RSS for failures [RSS for just atest builds

& 1y Views

Figure 2: Jenkins: View of the worker jobs.

4.2.2 The Slots

To define and build the various slots we use dummy parameterized jobs, one per slot,
named after the slot itself and where the only difference between them is the name and
the default value of the single string parameter platformﬁ, defining the list of platforms
the slot is to be built on.

The configuration of these jobs is relatively simpleEl The build details and artifacts
retention policies are the same as the one used in the configuration of the workers (see
, for consistency. The single string parameter platforms has already been mentioned
and is used to define the list of platforms to build when manually triggering the build, but
its default value is what is used for the regular builds, so, while in the old system the list
of platforms to be built was stored in the configuration file, in the new system is part of
the configuration of the slot job. Since these are dummy jobs not using CPU, we restrict
their execution to the master node (Restrict where this project can be run). For these jobs
we do not need any source code management.

The build of a slot is triggered via the Build periodically configuration box, which is set
to start the builds between 00:00 and 01:00, using the special schedule H 0 * * *, similar
to the specification of the Unix cron command with the special extension H that tells
Jenkins to distribute the builds. The scheduling can be tuned to build only on some days
as it was possible with some special (and less flexible) settings in the old configuration.

The build steps for the slots are two simple build triggers, the first one on nightly-
slot-checkout and the second one on nightly-slot-build-trigger. In both cases we pass the
following predefined parameters:

slot=${JOB_NAME}
slot_build_id=${BUILD_NUMBER}

and we wait for the completion of the triggered job, inheriting the status of the build.

1A string parameter is not very handy to specify the list of platforms and the | Extended Choice
Parameter Plugin could be used to improve usability, but it has not been tested yet.

2Tt could be further simplified by adding one more level of indirection (i.e. another parameterized
worker job), but for the time being it doesn’t seem necessary.

13

 http://wiki.jenkins-ci.org/display/JENKINS/Extended+Choice+Parameter+plugin
 http://wiki.jenkins-ci.org/display/JENKINS/Extended+Choice+Parameter+plugin

Jenkins R seare

Jenkins ~ Nightly Builds ENABLE AUTO REFRESH
&= MNew Job LHCh Nightly Build Slots.

“> Build History The results ofthe builds are reported on CDash.

[#edit description

Edit View

Ihch-head 1 day 5 hr (#30) 1 day 8 hr (£29) 12 hr

& Delete View All| Nightly Builds | Nightly Builds (workers) | Profiling | Project View | +
s w Name L Last Success Last Failure Last Duration
‘J Ihch-cmake 7 hr 32 min (£26) 12 days (£6) 3 hr 52 min @
#. Manaqe Jenkins Ihch-gaudi-head 1 day 7 hr (#43) 8 days 0 hr (£42) 11 hr @
& v views &

L)
“® pisk usage -
()] status Monitor (*]

=

7 hr 26 min (#20) 9 days 20 hr (£5) 5 hr 49 min

Legend [JRSS forall) RSS for failures [RSS for just Iatest builds

B shelved Projects

Figure 3: Jenkins: View of the jobs representing the slots.

As for the workers, for easier monitoring, the slot jobs are grouped in a view called
Nightly Builds (Figure 3)).

4.2.3 Management Plugins

Not strictly needed to run the nightly builds, some plugins have been found very useful
for the simplification of management tasks.

Bulk Builder start several jobs in one go, for example selecting all the jobs in a view, so
that we can re-start all the slots with a few clicks

Jenkins Disk Usage Plugin show statistics on the disk space used by the various builds

Rebuilder restart a parameterized build reusing the same parameters, allowing us to
restart the build of a single slot or platform without a new checkout

Recipe Plugin used to store in a file the configuration of a complex Jenkins setup (jobs,
views, plugins) as a recipe and import it in another Jenkins instance, with it we can
store the complete configuration of the nightly build system described in this note

Shelve Project Plugin archive projects for possible later use, instead of deleting them,
which is useful to keep a back up copy of some old or temporary slots

5 Dashboard

It is extremely important for our developers and project managers to have a quick overview
on the status of the nightly builds, and this view should be tunable so that each user can
see only the informations relevant to her.

For the prototype of the new nightly builds system we considered two possibilities:
CDash and the summary web page of the old system.

14

CDash projects

Dashboards
Project Description Last activity
Ihch-cmake Test build using CMake. 3 hours ago al
Ihcb-gaudi-head |head of everything against GAUDI_HEAD and LCGCMT_64-patches from LCG dev3 slot 8 minutes ago al
lhcb-head head of everything against GAUDI_v23r5 and LCGCMT_64b 1 hour ago al
Ihcb-prerelease |Release validation of LHCB_v35r3 stack on top of GAUDI_v23r5 and LCG_64b 1 hour ago al

Show all 4 projects

‘\‘W KftWare ° ([:Jash 2.0.2 @ Kitware | Report problems |
264.2M

Figure 4: CDash: Initial page with the list of slots.

5.1 CDash

CDash is the dashboard solution developed for integration with the CTest tool bundled
with CMake.

CTest can be used to build and test projects based on CMake as well as on custom
tools. Of course, CMake projects are easier to handle than the others, but it has not been
too difficult to develop a working script for CMT-based projects, as described in [4.1.4]

To try to reproduce a structure similar to the one we need, we declared each slot as a
project in CDash and all the software projects in the slot as sub-projects , (using the
combination of name and version as CDash sub-project names). The platform id string
translates to the build name and we use the build slave hostname as site. In order to
display enough informations, the CDash projects representing the slots must be configured
to be public and display labels (special meta-data fields used to identify the builds of the
sub-projects).

With this configuration, the first page we get when connecting to our CDash instance
(currently https://1lbtestbuild.cern.ch/CDash) contains the list of the declared slots
(if a slot is not declared to CDash, it will not appear even if it has been built and the
result pushed to the server) with a description, but without any information on the status
of the build (Figure {4)).

Clicking on one of the slots, we can access the overview page for that slot, where the
number of successful or problematic builds is reported (Figure [5)).

We can go deeper and see the details of the builds of project in the slot (Figure |§[) or a
summary for a platform (Figure [7).

It must be noted that the tests we run in our nightly builds use QMTest (as
mentioned in [4.1.4). When using CTest, we start a collection of QMTest tests as a single
CTest test, so the numbers in the CDash views (Figure @ are not correct, while, when we
use CMT, we cannot even publish the results of the tests to CDash, so those fields are
empty. The plan is to extend the output format of QMTest to produce result files in a
format understood by CDash, so that we can publish the correct informations. In the long
term we will also replace QMTest with CTest, but the extension of the output format is

15

https://lbtestbuild.cern.ch/CDash

Lhcbh-Cmake

Dashboard Calendar Previous Current Project

Project

Test

Last submission

Project

Warning Not Run Fail Pass

26 2013-01-23 12:31:20

Ihcb-cmake 7
SubProjects

Configure Build Test ..
Last submission

Fr= Warning Warning Not Run Fail Pass
Gaudi HEAD 1 1 2013-01-23 09:21:14
LHCb HEAD 2013-01-23 10:10:00
Rec HEAD 2013-01-23 10:40:43
Phys HEAD 2013-01-23 10:57:42
Analysis HEAD 2013-01-23 11:13:20
Lbcom HEAD 2013-01-23 11:24:49

2013-01-23 11:27:45
2013-01-23 11:30:34
2013-01-23 11:31:20

Stripping HEAD
DaVinci HEAD
Brunel HEAD

[View Subproject Dependencies]

WKitWare ° CDash 2.0.2 @ Kitware | Report problems |
0.118s

Figure 5: CDash: Overview of one slot.

Lhcb-Cmake gaudi head

Dashboard Calendar Previous Current Project

No update data as of Wednesday, January 23 2013 - 00:00 CET Show Filters Advanced Auto-refresh Help
View

Update Configure

Site Build Name Build Time Labels
Files

Ixbuild163.cern.ch & i686-slc5-gcca3-opt @ 5 hours age Gaudi
g P HEAD
. - Gaudi
Ixbuild171.cern.ch D x86_64-slc5-gccab-dbg @ SIS EER HEAD
. B Gaudi
Ixbuild171.cern.ch A x86_64-slc5-gcc46-opt & 5 hours ago HEAD
q n Gaudi
Ixbuild159.cern.ch D x86_64-slc6-gccas-dbg & Blremmaee HEAD
. __ Gaudi
Ixbuild159.cern.ch a x86_64-slc6-gccdb-opt & 6 hours ago HEAD

«WKftWare o CDash 2.0.2 @ Kitware | Report problems |

0.412s

Figure 6: CDash: Detailed view of a project in one slot.

the only possibility in the short term.

The informations stored in the CDash database are enough for out purposes (apart
from the results of the tests), but the layout is not optimal for our purposes. Since we
build the same version of a project in several contexts, it is useful to see all its builds
across the slots, but this is impossible with CDash. Moreover, the view in Figure [7] puts
the accent on the wrong information (the site), while we give more importance to the

16

Lhcbh-Cmake

Dashboard Calendar Previous Current Project

No update data as of Wednesday, January 23 2013 - 00:00 CET Hide Filters Advanced Auto-refresh Help
View

Match all ~ | of the following rules:

Build Name v | lis v | x86_64-slc6-gcc46-opt 8 &
Site v lis ~ | Ixbuild159.cern.ch g
Build Stamp v | lis v | 120130122-2300-Nightly el &)
Limitresultsto 0 rows (0 for unlimited)

Apply Clear Create Hyperlink

Update Configure

Site Build Name — Build Time Labels
Ixbuild159.cern.ch O x86_64-sic6-gced6-opt @ 6 hours ago ﬁEK‘.’J
Ixbuild159.cern.ch D x86_64-sic6-gcc46-opt Eliali=l00 II:E?I}J
Ixbuild159.cern.ch A x86_64-slc6-gcc46-opt 5 hours ago :EE:;D
Ixbuild159.cern.ch O x86_64-sic6-gcca-opt 5 hours ago E"Efn
Ixbuild159.cern.ch D x86_64-slc6-gcc46-opt 5 hours ago ﬁ'&:‘fis
Ixbuild159.cern.ch D x86_64-slc6-gcca6-opt & Ela=s0 :l:;‘i)[r)n
Ixbuild159.cern.ch A x86_64-slc6-gccd6-opt 4 hours ago atErE[[):ing
Ixbuild159.cern.ch A x86_64-slc6-gccd6-opt glal=F00 szgmi
Ixbuild159.cern.ch 0 86 _64-slc6-gcca6-opt 4 hours ago 22:\”;'

wafWare o CDash 2.0.2 @ Kitware | Report prablems |
0.107s

Figure 7: CDash: Overview of a platform in one slot.

project (label). We also observed some annoying bugs which might be fixed in a future
version (the latest release is one year old). Anyway, since CDash is open source, we could
extend it, more or less easily, to extract from the database the details we need and display
them the way we like.

5.2 Old Summary Web Page

The summary web page of the old system was designed to convey all the needed informations
in a single view (Figure , so its layout and infrastructure could be reuses. To evaluate
the feasibility of this approach, we produce with the new system partial summary files for
the build and tests that are compatible with the expectations of the old system.

Although possible, there are several downsides in this approach.

The parsing of the build and test log files is partially integrated in the build step of the
old system and partially in the regular job that generates the full version of the summary
page. To produce the data required by the regular job we need to rewrite from scratch the
parsing code to extract it from the old build step.

The technology used for the summary page is obsolete: a static HTML file produced

17

Wednesday Slot : Incb-prerelease - Release valldation of LHCB_v35r3 stack on top of GAUDI_v23r5 and LCG_64b

[64-slcS-ice11-opt [xB6_64-sic5-icc1i-dbg

86 ¢ B6_ | [
[Project _ |Version F‘Wed Jan 23 16:02 majﬁ‘wmanza 08:372013)___notready | rnotready rwananza 03452“13]”"!\/50 “Jan 23 08:51 2013)|(Wed Jan 23 09:52 2013){(Wod Jan 23 08:05 2013)

[onine [ONLINE_HEAD

| vuo | oo GRS [owe e
[LHCb [LHCB_w35r3 ‘ ‘ | |
B pooue v _—_—_-—-—-—-—-—
[Rec [REC_vidr3
ot e[ot [o [N oo [oo R e | e [oo RN o N - NS

Phys PHYS_vi6r3

analysis [ANALYSIS_v10r3
[Stripping [STRIPPING_6r3

prvne e vuo | oo [v | oo G| voo [N oo RGN oo RGN oo [ESEN

IHit HLT_HEAD

[Bender [BENDER_HEAD

T e [e o e e] e e | o [
e | e R R o R o R o W o W] o W o W
WPANOPTES_HEAD‘ buid (1) fests |m(1) tests mew-—-—
oo O | N | - W =
o e i e [e (e [e [e [T e B - NN

[auss [GAUSS_v43ra

[Erasmus [ERASMUS_var0 buid (3) fests buid (3) tests buld (38) fests | buid(38) tests | Dl (30) tests | buKI(T6) fesis

Platforms not ready: (66 6-51c5-gcc43-0pt. 1686-5Ic5-gecd3-dbg

Wednesday Slot : Inch-head - head of everything against GAUDI_v23r5 and LCGCMT_64b

[Project Version I"“f

I [f i [T-opEx86. 1-dbg xB6_ &6,
not ready |(Wed Jan 23 13:28 2013 Wed Jan 23 11:37 2013)| ot ready not ready |(Wed Jan 23 08:33 2013)| ot ready r[‘Wed Jan 23 15:10 2013)”[‘Wed Jan 23 06; sazmajﬁ‘v\mdjanza 07:17 2013)

[onine [ONLINE_HEAD

fLHCh |LHCB_HEAD

[tbcom |LBCOM_HEAD

[Boole [BOOLE_HEAD

[Rec IREC_HEAD

[Brunel [BRUNEL_HEAD
Phys PHYS_HEAD
janalysis |ANALYSIS_HEAD

IHit HLT_HEAD
[Btripping |STRIPPING_HEAD
[PaVinei [DAVINGI_HEAD

RAMIX_HEAD

Figure 8: Old Summary Web Page: Part of the summary tables.

by a job run every 15 minutes, which is then filtered by a CGI script. A more modern
approach would involve dynamic content (currently achieved by forcing a reload of the full
page) and an independent exchange format, such as XML, with the possibility of a layout
usable on small screens (smart phones).

The amount of work required to reproduce completely the old summary files will be
probably spent better in the extension of CDash or Jenkins, or in the development of a
completely new dashboard.

6 Conclusions

We produced a working prototype of a new Nightly Build System based on already available
tools reducing the customization to the minimum. The new build system demonstrated to
be quite stable and reliable.

The current prototype is still missing a dashboard and the integration of QMTest with
CTest (which is anyway needed as part of the migration our build system to CMake). We
evaluated two possibilities for the implementation of the dashboard, but further studies
and developments are needed to have a final version.

18

Appendix

A List of Required Jenkins Plug-Ins

Here is summarized the list of plug-ins that are required to configure Jenkins to run the
nightly builds

e Build Name Setter Plugin

e Copy Artifact Plugin

e Dynamic Axis Plugin

e EnvInject Plugin

e Groovy Plugin

e Jenkins GIT Plugin

e Jenkins Parameterized Trigger Plugin
e Jenkins SSH Slaves Plugin

e Jenkins Workspace Cleanup Plugin
e Matrix Tie Parent Plugin

e Node and Label Parameter Plugin

The following list contains the plug-ins not needed for the jobs configuration, but useful
for management tasks

e Bulk Builder
e Jenkins Disk Usage Plugin
Rebuilder

Recipe Plugin

Shelve Project Plugin

19

http://wiki.jenkins-ci.org/display/JENKINS/Build+Name+Setter+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Copy+Artifact+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/DynamicAxis+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/EnvInject+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Groovy+plugin
http://wiki.jenkins-ci.org/display/JENKINS/Git+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Parameterized+Trigger+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/SSH+Slaves+plugin
http://wiki.jenkins-ci.org/display/JENKINS/Workspace+Cleanup+Plugin
http://wiki.hudson-ci.org/display/HUDSON/Matrix+Tie+Parent+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/NodeLabel+Parameter+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Bulk+Builder+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Disk+Usage+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Rebuild+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Recipe+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Shelve+Project+Plugin

References

1]

Karol Kruzelecki, Stefan Roiser, and Hubert Degaudenzi. The nightly build and
test system for LCG AA and LHCb software. J.Phys.Conf.Ser., 219:042042, 2010.
doi:10.1088/1742-6596/219/4/042042.

Jenkins CI [online]. URL: http://jenkins-ci.org/.
GIT Distributed Version Control System [online]. URL: http://git-scm.com/.

CDash - an open source, web-based software testing server [online]. URL: http:
//www.cdash.org/.

CMake - Cross Platform Make [online]. URL: http://www.cmake.org/.

CMT Home Page [online]. URL: http://www.cmtsite.org/.

nose, a Python testing framework [online]. URL: https://nose.readthedocs.org.
Java [online]. URL: http://java.com.

distce: a fast, free distributed C/C++ compiler [online]. URL: http://code.google.
com/p/distcc/.

CERN distcc Pilot Service [online]. URL: https://twiki.cern.ch/twiki/bin/
view/LinuxSupport/DistccPilotService.

Groovy scripting language [online]. URL: http://groovy.codehaus.org/.
Bill Hoffman Ken Martin. Mastering CMake. Kitware, Inc., 2010.

CDash Subprojects [online]. URL: http://www.kitware.com/media/html/
CDashSubprojects.html.

Jeffrey Oldham Mark Mitchell and Greg Wilson. QMTest: A Software Testing Tool.
In Tenth International Python Conference, 2002. URL: http://www.python.org/
workshops/2002-02/papers/01/index.htm.

20

http://dx.doi.org/10.1088/1742-6596/219/4/042042
http://jenkins-ci.org/
http://git-scm.com/
http://www.cdash.org/
http://www.cdash.org/
http://www.cmake.org/
http://www.cmtsite.org/
https://nose.readthedocs.org
http://java.com
http://code.google.com/p/distcc/
http://code.google.com/p/distcc/
https://twiki.cern.ch/twiki/bin/view/LinuxSupport/DistccPilotService
https://twiki.cern.ch/twiki/bin/view/LinuxSupport/DistccPilotService
http://groovy.codehaus.org/
http://www.kitware.com/media/html/CDashSubprojects.html
http://www.kitware.com/media/html/CDashSubprojects.html
http://www.python.org/workshops/2002-02/papers/01/index.htm
http://www.python.org/workshops/2002-02/papers/01/index.htm

	Introduction
	LHCb Software in the Nightly Builds

	Requirements
	Design
	Implementation
	Core Tools
	Configuration
	Checkout
	Preconditions Check
	Build and Test
	Project Layout

	Jenkins Configuration
	The Workers
	The Slots
	Management Plugins

	Dashboard
	CDash
	Old Summary Web Page

	Conclusions
	List of Required Jenkins Plug-Ins
	References

