
SMILE:  A Common Language for System Dynamics 
Information Systems SIG of the Systems Dynamics Society 

Language Subcommittee 
Karim Chichakly 

7 June 2013 

Background 

In the Spring 2003 System Dynamics Society newsletter, Jim Hines proposed that there 
be a common interchange format for system dynamics models.  Magne Myrtveit 
originally proposed such an idea at the 1995 ISDC, but Jim hoped to revive interest in the 
idea and chose the name SMILE (Simulation Model Interchange LanguagE) to keep 
people lighthearted.  The benefits Jim proposed at the time were: 

 Sharing of models can lead to greater increases of knowledge and sharing of 
ideas. 

 On-line repositories could be built to facilitate learning. 
 Open standards lead to better acceptance in larger corporations as it minimizes 

their risk with specific vendors. 
 It spurs innovation by allowing non-vendors to develop add-ons. 

To this formidable list, I would add: 

 It allows the creation of a historical record of important works that everyone has 
access to. 

 It allows vendors to expand their market base because suddenly their unique 
features (and let’s be honest – each of the three major players has unique 
competencies) are available to all system dynamics modelers. 

Vedat Diker and Robert Allen later presented a poster at the 2005 ISDC that proposed a 
working group be formed and that XML be the working language for the standard. 

At the first meeting of the Information Systems SIG at the 2006 ISDC1, I suggested 
breaking the problem into two pieces:  the language we intend to interchange and the 
interchange format.  This first document on SMILE (Systems ModelIng LanguagE) 
proposes to begin the process of documenting the base set of functionality that we want 
from a system dynamics modeling language.  A separate document on XMILE addresses 
the XML-based interchange format. 

1.0 Basic Functionality 

It is safe to say that the minimal useful language subset would include most of the 
capabilities of DYNAMO.  After all, it was the first system dynamics modeling language 
                                                 
1 As an aside, Len Malczynski presented a paper at the 2006 conference that explained why the software 
vendors may never adopt such a standard.  This paper is the start of an effort to prove him wrong. 



SMILE 2 K. Chichakly 

and many of the DYNAMO models that have been written represent some of the seminal 
work in the field.  Given this premise, we can begin with the basic building blocks 
available in DYNAMO:  stocks (“levels” in DYNAMO), flows (“rates” in DYNAMO), 
auxiliaries, and table functions. 

1.1 Stocks 

Stocks represent things that accumulate in the system.  Their value must be set at the start 
of the simulation with an initial value.  The initial value can be either a constant or an 
expression.  In the case of an expression, the value is evaluated only once, at the 
beginning of the simulation, to initialize the stock. 

During the course of the simulation, the value of a stock can only be changed by its 
inflows and outflows.  In general, a stock is evaluated by adding the sum of its inflows 
minus the sum of its outflows, all times DT, and adding that to the value of the stock 
during the previous DT. 2 

A sample DYNAMO stock specification appears below. 

L POP.K = POP.J + DT*(BIRTHS.JK – DEATHS.JK) 
N POP = 100 

The L line defines the stock equation in terms of its current value (.K), its previous value 
(.J), and the previous flow values (.JK).  The N line defines the stocks initial value. 

Stocks in SMILE are only constrained by their inflows and outflows.  Vendor-specific 
features such as non-negativity, which prevents a stock from taking on negative values, 
are not (directly) supported.  Likewise, stocks can only by modified by their inflows and 
outflows.  Therefore, the equation can always be inferred from the list of flows and is 
never explicitly written (as it is in DYNAMO).  The form of all stock equations (using 
DYNAMO syntax) is: 

L S.K = S.J + DT*(<sum of inflows> – <sum of outflows>) 

No other stock formulation is supported in SMILE. 

1.2 Flows 

Flows represent rates of change of the stocks.  They can be defined using any algebraic 
equation (including a constant value) or by using a table function. 

During the course of a simulation, a flow’s value is evaluated each DT based on the 
current state of the system.  A sample DYNAMO flow specification appears below. 

R BIRTHS.KL = BR*POP.K 

                                                 
2 DT stands for “delta time.”  Since these are time-based simulations, DT is the increment of time being 
used to advance through the model.  It needs to be small enough to achieve accurate calculation results. 



SMILE 3 K. Chichakly 

This equation defines the current value of births in terms of the birth rate (BR) and the 
current population. 

Flows in SMILE are only constrained by their equation3.  Vendor-specific features such 
as uniflows, which prevent a flow from taking on negative values, are not (directly) 
supported. 

1.3 Auxiliaries 

Auxiliaries allow the isolation of any algebraic function that is used.  They can both 
clarify a model and factor out important or repeated calculations.  They are defined using 
any algebraic expression (including a constant value4) or a table function. 

During the course of a simulation, an auxiliary’s value is evaluated each DT based on the 
current state of the system.  A sample DYNAMO auxiliary specification appears below. 

A BR.K = 0.1*FAM.K 

This equation defines the birth rate in terms of the base birth rate (0.1) and a food 
availability multiplier. 

1.4 Graphical Functions 

Graphical functions are alternately called lookup functions and table functions.  They 
represent a functional mapping between two variables.  The domain is consistently 
referred to as x and the range is consistently referred to as y. 

Since every modern program displays table functions as graphs, and most allow the users 
to edit the functions by drawing the graph, the terminology used here is “graphical 
functions.” 

A sample DYNAMO table function appears below. 

A FAM.K = TABLE(FAMT, FOOD.K, 0, 1, .1) 
T FAMT = 0/.3/.55/.7/.83/.9/.95/.98/.99/.995/1 

The table lookup function defines the y-values (FAMT), the input (or x) variable 
(FOOD.K), the bounds on x (0 to 1) and the x-increment (0.1).  Note that the supported 
functionality requires a fixed x-increment.  The graph of this function appears below. 

                                                 
3 Conveyors, an optional feature, can place additional constraints on a flow. 
4 DYNAMO explicitly separated the definition of a constant from that of an algebraic expression.  The 
distinction was necessary as auxiliaries required the .K suffix, while constants did not. 



SMILE 4 K. Chichakly 

0  
 0 1 

The above is a continuous graphical function.  There are three types of graphical 
functions supported by SMILE, with these names: 

Name Description 
continuous Intermediate values are calculated with linear interpolation between 

the intermediate points.  Out-of-range values are the same as the 
closest endpoint (i.e, no extrapolation is performed). 

extrapolate Intermediate values are calculated with linear interpolation between 
the intermediate points.  Out-of-range values are calculated with 
linear extrapolation from the last two values at either end. 

discrete Intermediate values take on the value associated with the next lower 
x-coordinate (also called a step-wise function).  The last two points 
of a discrete graphical function must have the same y-coordinate.  
Out-of-range values are the same as the closest endpoint (i.e, no 
extrapolation is performed). 

Graphical functions in SMILE can optionally be named (the name can then be used in an 
equation as described in section 3.2). 

Although some vendors support arbitrary sets of (x, y)-pairs, DYNAMO only supported a 
fixed increment for x.  This is what this base SMILE standard supports.  However, the 
SMILE language also includes table functions composed of arbitrary (x, y)-pairs as an 
optional feature (see section 6.1). 

The SMILE language also includes analytic table function definitions as an optional 
feature (parameters to be defined at a later date).  These table functions definitions must 
also include a representative set of points. 

1.5 Groups 

Groups (aka sectors) were not supported by DYNAMO.  However, they are an important 
feature for building large models.  Groups are useful for collecting related model entities 
in one place.  Some programs allow these separate pieces to be simulated separately. 



SMILE 5 K. Chichakly 

Every group has a unique name and documentation.  It may have other information 
related to its display, but that is not part of SMILE. 

2.0 General Conventions 

All statements and constants follow US English conventions.  So built-in functions are in 
English, operators are based on the Roman character set, and constants have US English 
delimiters (that is, a period is used for a decimal point). 

Variable names, comments, and embedded text may be localized. 

2.1 Constants 

As mentioned, constants follow US English conventions.  All constants are floating point 
numbers in decimal.  They can begin with either a digit or a decimal point.  There can be 
any number of digits before or after the decimal point, but a constant must contain at least 
one digit.  A decimal point is not required.  The number can be optionally followed by an 
“E” (or “e”) and a signed integer constant.  The “E” is used as shorthand for scientific 
notation and represents “times ten to the power of”. 

Although the number of digits is not explicitly restricted, a fixed number of digits of 
precision are retained by each vendor’s program.  However, numbers in all programs 
should have at least the precision of IEEE single-precision floating point numbers.  The 
same applies for the exponent. 

Constants, like variables, can be modified by operators, including unary plus and unary 
minus.  Thus, it is possible to enter negative constants also. 

In BNF,  

constant ::= { [digit]+[.[digit]*] | [digit]*.[digit]+ }[{E | e} [{+ | –}] [digit]* 
digit ::= { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 } 

Note the leading sign { + | – } is not explicitly included as expressions (section 3.0) 
handle this case. 

Sample constants: 0 –1 .375 14. 6e5 8.123e-10 

2.2 Identifiers 

Identifiers are used throughout a model to give variables, namespaces, units, subscripts, 
groups (or sectors), macros, and model names.  Most of these identifiers will appear in 
equations5, and as such need to follow certain rules to allow for well-formed expressions. 

                                                 
5 The group name is perhaps the only exception. 



SMILE 6 K. Chichakly 

Due to differences in different vendors’ products, it is challenging to find a set of rules 
that works for everyone.  The approach taken here is to define a basic set of rules and 
then allow escape conventions to handle other cases. 

2.2.1 Identifier Form 

Identifiers are formed by a sequence of one or more characters that include roman letters 
(A-Z or a-z), underscore (_), dollar sign ($), digits (0-9), and Unicode characters above 
127.  Identifiers cannot begin with a digit or a dollar sign, and cannot begin or end with 
an underscore. 

An identifier may be enclosed in quotation marks, which are not part of the identifier 
itself.  However, an identifier must be enclosed within quotation marks if it violates any 
of the above rules.  Within quotation marks, a few characters must be specified with an 
escape sequence that starts with a backslash.  All other characters are taken literally.  The 
valid escape sequences appear below.  If any character other than those specified below 
appears after a backslash, the identifier is invalid. 

Escape sequence Character 
\"   quotation mark (") 
\n   newline 
\t   tab 
\\   backslash 
\_   unbreakable underscore (whitespace) 

Sample identifiers: 
Cash_Balance draining2 "wom multiplier" "revenue\ngap" 

2.2.2 Identifier Equivalence 

Case-insensitive:  Identifiers may use any mixture of uppercase and lowercase letters, but 
identifiers that differ only by case will be considered the same.  Thus, Cash_Balance, 
cash_balance, and CASH_BALANCE are all the same identifier.  For Unicode 
characters, case-insensitivity is defined by the Unicode Collation Algorithm (UCA – 
http://www.unicode.org/unicode/reports/tr10/), which is compliant with ISO 14651.  For 
C, C++, and Java, this algorithm is implemented in the International Components for 
Unicode (ICU – http://site.icu-project.org/). 

Whitespace:  Whitespace characters include the space ( ), newline (\n), tab (\t), and 
underscore (_).  Within an identifier, whitespace characters are considered equivalent.  
Thus, wom_multiplier is the same identifier as "wom multiplier" and 
"wom\nmultiplier". 

Additionally, groups of whitespace characters are always treated as one whitespace 
character for the purposes of distinguishing between identifiers.  Thus, 
wom_multiplier is the same identifier as wom______multiplier. 



SMILE 7 K. Chichakly 

Finally, leading and trailing whitespace characters are ignored for the purposes of 
distinguishing between identifiers.  Thus, wom_multiplier is the same identifier as 
"___wom_multiplier___" (note the quotes are necessary for leading and trailing 
whitespace). 

These rules can be overridden if necessary by the explicit use of the \_ escape sequence.  
This is treated as a true underscore character rather than as a whitespace character, so it 
only compares to itself. 

2.2.3 Namespaces 

To avoid conflicts between identifiers in different libraries of functions, each library, 
whether vendor-specific or user-defined, should exist within its own namespace.  Note 
that identifiers within submodels, by definition, appear in their own named local 
namespace (see section 6.5). 

A namespace is an identifier like any other.  An identifier from a namespace other than 
the local one is only accessible by qualifying it with its namespace, a period (.), and the 
identifier itself, with no intervening spaces.  For example, the identifier find within the 
namespace funcs would be accessed as funcs.find (and not as funcs . find).  
Such a compound identifier is known as a qualified name (and those without the 
namespace are known as unqualified). 

Namespace identifiers must be unique across a model file and cannot conflict with any 
other identifier.  SMILE predefines its own namespace and a number of namespaces for 
vendors: 

Name Purpose 
std All SMILE statement and function identifiers 
isee All isee systems identifiers 
vensim All Ventana Systems identifiers 
powersim All Powersim Software identifiers 
anylogic All XJ Technology identifiers 
forio All Forio Simulations identifiers 
simile All Simulistics identifiers 

Namespaces can be nested within other namespaces.  For example, isee.utils.find 
would refer to a function named find in the utils namespace of the isee namespace. 

Unqualified names are normally only resolved within the containing model (or macro), 
i.e., they are assumed local to their model.  However, an entire SMILE file, or individual 
models within a SMILE file, can avoid the use of qualified names from other 
namespaces, especially for function names in equations, by specifying that the given file 
or model uses one or more namespaces.  In this case, unqualified names will first be 
resolved locally, within the containing model.  If no match is found, the specified 
namespaces are searched in order until a match is found.  By obeying the specified 



SMILE 8 K. Chichakly 

namespace order, SMILE allows user to control how conflicting identifiers are resolved.  
However, warnings should be generated for such conflicts. 

Note this namespace resolution capability is only available for explicitly defined 
namespaces and not for the implicit namespaces of submodels (see section 6.5).  Any 
identifiers that are accessed across models must be qualified. 

By default, all SMILE files are in the std namespace, but this can be overridden by 
explicitly setting one or more namespaces.  It is intended that most SMILE files will 
always specify that they use the std namespace, thus obviating the need to include std. 
in front of all SMILE identifiers. 

2.2.4 Identifier Conventions 

Identifiers defined by SMILE, including registered vendor namespaces (see section 
2.2.3), should be chosen so that they do not require quotation marks.  Note that the 
registered vendor names are all in lowercase; this is intentional.  It is also preferred that 
vendors also choose the identifiers within their namespaces such that they do not require 
quotation marks. 

2.2.5 Reserved Identifiers 

The operator names AND, OR, and NOT, the statement keywords IF, THEN, and ELSE, the 
names of all built-in functions, and the SMILE namespace std, are reserved identifiers 
and cannot be used for any other purpose. 

2.3 Data Types 

There is only one data type in SMILE:  real numbers.  Note that some parts of the 
language, for example array indices, require integer values.  These are, however, 
represented as real numbers. 

2.4 Containers 

All containers in SMILE are lists of numbers.  As much as possible, the syntax and 
operation of these containers are consistent.  Only one container is inherent to SMILE:  
graphical functions.  Three containers are optional in smile:  arrays, conveyors, and 
queues. 

Neither a graphical function nor an array can change its size during a simulation.  
However, the size of a conveyor (its length) can change and the size of a queue changes 
as a matter of course during a simulation. 

Since all four containers are lists of numbers we may wish to operate on (for example, 
find their mean or examine an element), they are uniformly accessed with square bracket 
notation as defined in section 6.4, Arrays.  There are also a number of built-in functions 
that apply to all of them.  These features are optional and are only guaranteed to be 
present if arrays are supported. 



SMILE 9 K. Chichakly 

3.0 Expressions 

Equations are defined using expressions.  The simplest expression is just a constant. 

Expressions are infix (e.g., algebraic), following the general rules of algebraic precedence 
(parenthesis, exponents, multiplication and division, and addition and subtraction – in 
that order).  Unfortunately, our set of operators is much richer than basic algebra, so we 
have to account for functions, unary operators, and relational operators.  In general, the 
rules for precedence and associativity (the order of computation when operators have the 
same precedence) follow the established rules of the C-derived languages. 

3.1 Operators 

The following table lists the supported operators in precedence order.  All but the unary 
operators have left-to-right associativity (right-to-left is the only thing that makes sense 
for unary operators). 

Operators  Precedence Group (in decreasing order) 
[ ]   Subscripts 
( )   Parentheses 
^   Exponentiation 
+ – NOT  Unary operators positive, negative, and logical not 
* / MOD  Multiplication, division, modulo 
+ –   Addition, subtraction 
< <= > >=  Relational operators 
= <>  Equality operators [in mathematics, <> is considered relational] 
AND  Logical and 
OR   Logical or 

Note the logical, relational, and equality operators are all defined to return zero (0) if the 
result is false and one (1) if the result is true. 

Modulo is defined to return the floored modulus proposed by Knuth.  In this form, the 
sign of the result always follows the sign of the divisor, as one would expect.6 

Sample expressions: a*b  (x < 5) and (y >= 3)  (–3)^x 

3.2 Function calls 

Parentheses are also used to provide parameters to function calls, e.g., ABS(x), and take 
precedence over all operators (as do the commas separating parameters).  Note that 
functions that do not take parameters do not include parentheses when used in an 
equation, e.g., TIME.  There are several cases where variable names can be (syntactically) 
used like a function in equations: 
                                                 
6 Note the standard C modulo operator uses the truncated modulus which gives a sign consistent with the 
dividend.  The choice of modulus method affects integer division, which does not exist in SMILE, as well 
as the INT function, which must return the floor of the number.  By definition, a = INT(a/b)*b + a MOD b. 



SMILE 10 K. Chichakly 

 Named graphical function:  The graphical function is evaluated at the passed 
valued, e.g., given the graphical function named cost, cost(2003) evaluates 
the graphical function at x = 2003. 

 Named model:  A model that has a name, defined submodel inputs, and one 
submodel output can be treated as a function in an equation, e.g., given the model 
named maximum with one submodel input and one submodel output that gives the 
maximum value of the input over this run, maximum(Balance) evaluates to the 
maximum value of Balance during this run.  When there is more than one 
submodel input, the order of the parameters must be defined as they are for a 
macro definition.  For more information, see sections 5.7 (macros) and 6.5 
(submodels). 

 Array name:  An array name can be passed the flat index (i.e., the linear row-
major index) of an element to access that element.  Since functions can only 
return one value, this can be useful when a function must identify an element 
across a multidimensional array (e.g., the RANK built-in).  For example, given the 
three-dimensional array A with bounds [2, 3, 4], A(10) refers to the tenth 
element in row-major order, i.e., A[1, 3, 2].  See section 6.4 for more 
information about arrays. 

3.3 Structured Statements 

One control structure statement is supported: 

 IF condition THEN expression ELSE expression 

where condition is an expression that evaluates to true or false (we follow the convention 
of C that all non-zero values are true, while zero is false).  Generally, this is an expression 
involving the logical, relational, and equality operators. 

Note that some vendors implement this in the DYNAMO (and original FORTRAN) 
fashion, i.e., as a built-in function: 

if_then_else(condition, then-expression, else-expression) 

This makes the language a little easier to parse and is a supported alternative (while the 
former is generally considered easier to comprehend).  Note DYNAMO implemented this 
functionality with the CLIP function. 

3.4 In-line Comments 

Comments are provided to include explanatory text that is ignored by the computer.  
Comment are delimited by braces { } and can be included anywhere within an 
expression.  This functionality allows the modeler to temporarily turn off parts of an 
equation or to comment the separate parts of a complex formulation. 

Sample comments:  a*b { take product of a and b } + c { and add c } 



SMILE 11 K. Chichakly 

3.5 Documentation 

Each variable has its own documentation, which is a block of unrestricted text unrelated 
to the equation.  Each vendor has their own way to enter documentation, some within 
expressions.  XMILE defines how documentation is stored. 

3.6 Units 

Each variable has its own set of units.  XMILE defines how units are stored. 

Each model has a defined unit of time.  The predefined time units are: 

ns  nanoseconds 
us  microseconds 
ms  milliseconds 
s  seconds 
min minutes 
hr  hours 
day days 
wk  weeks 
mo  months 
qtr quarters 
yr  years 
time unspecified time units 

In general, units should be abbreviated to their accepted forms, e.g., “mi” for miles, “lb” 
for pounds, “km” for kilometers, “kg” for kilograms, etc.  Units are specified with 
SMILE expressions (called the unit equation), restricted to the operators ^ 
(exponentiation), - or * (multiplication), and / (division) with parentheses as needed to 
group units in the numerator or denominator.7  Exponents must be integers. When there 
are no named units in the numerator (e.g., units of “per second”), the integer one must be 
used as a placeholder for the numerator (e.g., 1/s).  The integer one can be used at any 
time to represent dimensionless units. 

Units can optionally be given user-identifiable names (e.g., “per second”) to show the 
user in place of their equations.  This name cannot contain any operators, but is not 
recognized within equations.  If no name is given, the equation is always presented to the 
user. 

Alias names can also be assigned to units so that several different names can be treated 
equivalently both for unit checking and for defining unit equations.  For example, the unit 
with the user name “cubic centimenters” and equation “cm^3” can be given the alias “cc” 
which can then be used to define any derived unit, e.g., “g/cc” (density). 

                                                 
7 Note some packages do not allow multiple division operators nor parentheses except to group the 
multiplication in the denominator. 



SMILE 12 K. Chichakly 

4.0 Simulation Specifications 

Every SMILE model must specify the start time and the stop time of the simulation.  If 
DT is not specified, it defaults to one.  For DT <= 1, DT can be specified as an integer 
reciprocal (e.g., 7 for DT = 1/7).  If the units of time are not specified, they default to 
time.  Units of time are specified with the SMILE abbreviations (section 3.6). 

The language also supports an optional pause interval.  By default, a model runs to 
completion (from STARTTIME to STOPTIME).  However, if the pause interval is 
specified, the model will pause at all times that match STARTTIME + interval*N; N > 0.  
Products are free to ignore this specification if they do not support this mode of 
operation. 

The simulation specifications can specify the option to only run selected groups (each 
selected group is marked), only run selected submodels (each selected submodel is 
marked), or run the entire model (default). 

4.1 Integration Methods 

By default, the integration method is Euler’s, but other methods are supported as follows: 

SMILE Name Integration Method 
Euler  Euler’s method (default) 
RK2  Runge-Kutta 2 
RK4  Runge-Kutta 4 
RK45  Runge-Kutta mixed 4th- 5th-order (optional) 
RK_Var  Runge-Kutta Variable Step Size (optional) 
Gear  Gear algorithm (optional) 

The last three integration methods are optional.  In these cases, a supported fallback 
method should be also provided, for example, “Gear, RK4”.  This means that Gear should 
be used if the product supports it.  Otherwise, use RK4. 

Some vendors do not offer RK2, as it is less useful than it once was when computing 
power was expensive.  SMILE defines RK4 to always be the fallback for RK2, i.e., RK2 
implies “RK2, RK4.” 

4.2 Simulation Events 

Events based on entity values can be triggered while the model is being simulated.  Any 
implementation that does not support simulation events is free to ignore them. 

Within the simulation, these events are limited to pausing or stopping the simulation.  
Events are specified as a series of threshold values that, when exceeded, trigger the 
specified action: 



SMILE 13 K. Chichakly 

SMILE Name Action 
pause  Pause the simulation (default) 
stop  Stop the simulation 

For each value, thresholds can be exceeded in either of two directions: 

SMILE Name Action occurs when entity value becomes: 
increasing Larger than the threshold (default) 
decreasing Smaller than the threshold 

The number of times the event occurs during the simulation (its frequency) can also be 
controlled: 

SMILE Name Event occurs: 
each  Each time the threshold is exceeded (default) 
once  Only the first time the threshold is exceeded each run 
once_ever Only the first time the threshold is exceeded this session 

When the frequency is set to each, an optional repetition interval can also be specified 
which causes the event to be triggered again every so many unit times (at the specified 
interval) that the variable remains above the threshold. 

Each unique threshold value and direction can be given more than one event.  In this 
case, the events are triggered in order based on which instance the threshold has been 
exceeded since the start of the run.  For example, if there are three events assigned to a 
threshold of 5 (increasing), the first event will be triggered the first time the variable goes 
above 5, the second event will be triggered the second time it goes above 5, and the third 
will be triggered the third time it goes above 5.  If the variable goes above 5 after that, no 
further events will be triggered.  When multiple events are assigned in this way, the 
frequency can only be once or once_ever (i.e., it cannot be each). 

A range (minimum and maximum) that contains all events can also be specified to more 
readily allow the user to edit the thresholds in context.  By default, this range should be 
initialized to the variable’s known range at the time the events are first created (the user 
then has to modify them if they are no longer appropriate; they do not readjust if the 
variable’s range changes). 

5.0 Built-in Functions 

Certain built-in functions must be relied upon across all systems.  This section strives to 
define the minimum set of built-in functions that must be supported, along with their 
parameters.  The mechanism for defining vendor-specific built-ins is also described.   



SMILE 14 K. Chichakly 

5.1 Mathematical Functions 

ABS:  absolute value (magnitude) of a number 
Parameters: 1:  the number to take the absolute value of 
Range:  [0, ) 
Example: abs(Balance) 

ARCCOS: arccosine of a number 
Parameters: 1:  the number to take the arccosine of 
Range:  (0, ) 
Example: arccos(x) 

ARCSIN: arcsine of a number 
Parameters: 1:  the number to take the arcsine of 
Range:  (-/2, /2) 
Example: arcsin(x) 

ARCTAN: arctangent of a number 
Parameters: 1:  the number to take the arctangent of 
Range:  (-/2, /2) 
Example: arctan(x) 

COS:  cosine of an angle in radians 
Parameters: 1:  the number to take the cosine of 
Range:  [-1, 1] 
Example: cos(angle) 

EXP:  value of e raised to the given power 
Parameters: 1:  the power on e  
Range:  (-,) 
Example: exp(x) 

INF:  value of infinity 
Parameters: none 
Example: inf 

INT:  next integer less than or equal to the given number 
Parameters: 1:  the number to find next lowest integer of 
Range:  (-,); note negative fractional numbers increase in magnitude 
Example: int(x) 

LN:  natural (base-e) logarithm of the given number 
Parameters: 1:  the number to find the natural logarithm of 
Range:  [0,); note domain is (0,) 
Example: ln(x) 



SMILE 15 K. Chichakly 

LOG10: base-10 logarithm of the given number 
Parameters: 1:  the number to find the base-10 logarithm of 
Range:  [0,); note domain is (0,) 
Example: log10(x) 

MIN:  smaller of two numbers 
Parameters: 2:  the numbers to compare 
Example: min(x, y) 

MAX:  larger of two numbers 
Parameters: 2:  the numbers to compare 
Example: max(x, y) 

PI:  value of , the ratio of a circle’s circumference to its diameter 
Parameters: none 
Example: pi 

SIN:  sine of an angle in radians 
Parameters: 1:  the number to take the sine of 
Range:  [-1, 1] 
Example: sin(angle) 

SQRT:  square root of a positive number 
Parameters: 1:  the number to take the square root of 
Range:  [0, ); note domain is the same 
Example: sqrt(x) 

TAN:  tangent of an angle in radians 
Parameters: 1:  the number to take the tangent of 

undefined for odd multiples of /2 
Range:  (-,) 
Example: tan(angle) 

5.2 Statistical Functions 

EXPRND: Sample a value from an Exponential distribution 
Parameters: 1 or 2:  (mean[, seed]) 0 ≤ seed < 232 
  If seed is provided, the sequence of numbers will always be identical 
Example: exprnd(8) samples from an exponential distribution with mean 8 

LOGNORMAL:  Sample a value from a log-normal distribution 
Parameters: 2 or 3:  (mean, standard deviation[, seed]) 0 ≤ seed < 232 
  If seed is provided, the sequence of numbers will always be identical 
Example: lognormal(10, 1) samples from a lognormal distribution with mean 10 and 

standard deviation 1. 



SMILE 16 K. Chichakly 

NORMAL: Sample a value from a Normal distribution 
Parameters: 2 or 3:  (mean, standard deviation[, seed]) 0 ≤ seed < 232 
  If seed is provided, the sequence of numbers will always be identical 
Example: normal(100, 5) samples from N(100, 5) 

POISSON: Sample a value from a Poisson distribution 
Parameters: 2 or 3:  (mean[, seed]) 0 ≤ seed < 232 
  If seed is provided, the sequence of numbers will always be identical 
Example: poisson(3) samples from a Poisson distribution with a mean arrival rate of 

3 arrivals per unit time 

RANDOM: Sample a value from a uniform distribution 
Parameters: 2 or 3:  (minimum, maximum[, seed]) 0 ≤ seed < 232 
  If seed is provided, the sequence of numbers will always be identical 
Example: random(1, 100) picks a random number between 1 and 100 

5.3 Delay Functions 

DELAY: infinite-order material delay of the input for the requested fixed time 
Parameters: 2 or 3:  (input, delay time[, initial value]) 
  If initial value is not provided, the initial value of input will be used 
Example: delay(orders, 5) 

DELAY1: first-order material delay of the input for the requested fixed time 
Parameters: 2 or 3:  (input, delay time[, initial value]) 
  If initial value is not provided, the initial value of input will be used 
Example: delay1(orders, 5) 

DELAY3: third-order material delay of the input for the requested fixed time 
Parameters: 2 or 3:  (input, delay time[, initial value]) 
  If initial value is not provided, the initial value of input will be used 
Example: delay3(orders, 5) 

DELAYN: Nth-order material delay of the input for the requested fixed time 
Parameters: 3 or 4:  (input, delay time, n[, initial value]) 
  If initial value is not provided, the initial value of input will be used 
Example: delayn(orders, 5, 10) delays orders using a 10th order material delay 

FORCST: Perform a trend extrapolation over a time horizon 
Parameters: 3 or 4:  (input, averaging time, horizon, [, initial trend]) 
  If initial trend is not provided, zero will be used 
Example: forcst(Quality, 5, 10) calculates value of quality 10 time units in the future 

SMTH1: 1st-order exponential smooth of the input for the requested time 
Parameters: 2 or 3:  (input, averaging time[, initial value]) 
  If initial value is not provided, the initial value of input will be used 
Example: smth1(Quality, 5) 



SMILE 17 K. Chichakly 

SMTH3: 3rd-order exponential smooth of the input for the requested time 
Parameters: 2 or 3:  (input, averaging time[, initial value]) 
  If initial value is not provided, the initial value of input will be used 
Example: smth3(Quality, 5) 

SMTHN: Nth-order exponential smooth of the input for the requested time 
Parameters: 3 or 4:  (input, averaging time, n[, initial value]) 
  If initial value is not provided, the initial value of input will be used 
Example: smthn(Quality, 5, 10) performs a 10th order smooth 

TREND: Find trend in input over a given time frame 
Parameters: 2 or 3:  (input, averaging time, [, initial value]) 
  If initial value is not provided, zero will be used 
Example: trend(Quality, 5) calculates the fractional change in Quality per unit time 

5.4 Test Input Functions 

PULSE: Generate a one-DT wide pulse at the given time 
Parameters: 2 or 3:  (magnitude, first time[, interval]) 
  Without interval or when interval = 0, the PULSE is generated only once 
Example: pulse(20, 12, 5) generates a pulse value of 20/DT at time 12, 17, 22, etc. 

RAMP: Generate a linearly increasing value over time with the given slope 
Parameters: 2:  (slope, start time); begin in-/de-creasing at start time  
Example: ramp(2, 5) generates a ramp of slope 2 beginning at time 5 

STEP:  Generate a step increase (or decrease) at the given time 
Parameters: 2:  (height, start time); step up/down at start time  
Example: step(6, 3) steps from 0 to 6 at time 3 (and stays there) 

5.5 Time Functions 

DT:  value of DT, the integration step 
Parameters: none 
Example: dt 

STARTTIME: starting time of the simulation 
Parameters: none 
Example: starttime 

STOPTIME: ending time of the simulation 
Parameters: none 
Example: stoptime 

TIME:  current time of the simulation 
Parameters: none 
Example: time 



SMILE 18 K. Chichakly 

5.6 Miscellaneous Functions 

IF_THEN_ELSE: Select one of two values based on a condition 
Parameters: 3:  (condition, true value, false value) 
  If condition is non-zero, it is true; otherwise, it is false 
Example: if_then_else(x < 3, -4, 11) will be -4 is x < 3 and 11 otherwise 

INIT:  initial value (value at STARTTIME) of a variable 
Parameters: 1:  the number to get the initial value of 
Example: init(Balance) 

5.7 Defining Unsupported Built-ins 

SMILE provides a way for vendors to specify the operation of both their own functions 
and the functions of other vendors that their users wish to use.  In the latter case, these 
can map to either their own functions (if available) or to the SMILE functions.  As 
described in section 2.2.3, vendor-specific function names should appear in their own 
namespace, and thus be prefixed by a vendor identifier to avoid conflicting names 
between both different vendors and SMILE, e.g., isee.HISTORY. 

As a simple example, let us say that vendor A does not have a LOG10 built-in, but has a 
general (any base) LOG built-in.  That vendor should then be able to map any LOG10(x) 
function to LOG(x, 10) when the file is read-in.  Conversely, if the vendor wishes to 
use their general LOG function within SMILE, they should be able to provide a translation 
that maps LOG(x, y) to LN(x)/LN(y).8 

The first kind of translation, from SMILE functions to the vendor’s functions, could be 
handled either by the vendor as the file is read in, or through an XSLT translator.  The 
macro functionality described below could also handle this (by creating a macro for the 
SMILE function). 

The second kind of translation, mapping unsupported functions in the file to SMILE, is 
the main focus of this section.  Every unsupported built-in that a vendor wants to appear 
within a SMILE file needs to be defined in a SMILE macro.  The macros may appear in 
the same file as the model or in a separate file.  It is, however, more likely that each 
vendor will provide their own file of macros to use with their models. 

5.7.1 Macros Implementing Functions 

SMILE implementations must support macros.  Macros can use all of the syntax of 
SMILE to achieve their result.  The simplest kind of macro is simply an expression using 
existing functions (including macros) and operators.  In this regard, its value is specified 
in the same way as an auxiliary.  The change of base formula above is a good example: 

LOG(x, y): 
 LN(x)/LN(y) 

                                                 
8 Change of base formula – LOG10 works just as well as LN. 



SMILE 19 K. Chichakly 

Macros can be recursive, so a slightly more complicate macro would call itself: 

FACT(x): 
 IF x <= 1 THEN 1 ELSE x*FACT(x – 1) 

More complicated macros can use stocks, flows, and auxiliaries to define their behavior.  
This would be the approach, for example, to implement a smooth function if one did not 
already exist.  The factorial function, defined recursively above, can also be defined using 
stocks and flows (using DYNAMO syntax where FACT is the result): 

L FACT.K = FACT.J + DT*CHANGE.JK 
R CHANGE.KL = FACT.K*TIME 

This, of course, requires that the simulation specs for this macro be properly set to run 
from 1 to x, with the default DT of one.  A more complex macro is, in fact, just a model.  
However, for a model to be used as a function, it also needs to specify the expected 
parameters, their order, and the macro equation (i.e., the function return value).  The 
simulation specs also need to be specifiable in terms of the macro parameters. 

The name of the macro is the same as the name of the function.  Variable numbers of 
arguments are not supported, but the same macro can be defined multiple times with a 
different number of arguments.  Indeed, a macro can have the same name as a SMILE 
function, providing it uses a different number of parameters.  Default values for trailing 
function parameters are supported, giving limited support for variable numbers of 
arguments.  Finally, the names of any variables (including parameter identifiers) defined 
within a macro are local to that macro alone and will not conflict with any names within 
either the model or other macros. 

Macros can also include text showing their usage format and text to describe their 
purpose, both of which are helpful documentation for the user of the function. 

5.7.2 Macros Extending Building Block Behavior 

There are also some defined, but unsupported, options for building blocks (vendors can 
also add their own).  One way to handle these would be to define built-in macros that are 
used to envelope an object’s equation.  Non-negative flows (aka uniflows), for example, 
could have their equations wrapped in a built-in macro that implements 
MAX(<flow value>, 0). 

Ideally, macros would support these options without having to change the equations.  For 
the simple cases, such as non-negative flows, the format can mimic the built-in macros.  
However, more complicated options require greater support.  For example, non-negative 
stocks implement the non-negative logic in the stock’s outflows, not in the stock itself.  
Furthermore, each outflow needs not only its own value, but the stock’s value, and the 
sum of the values of every higher-priority flow (which the stock could find for it). 

SMILE therefore supports building block options with macro filters, also called option 
filters.  The filters run after the object’s value has been computed and allow the object’s 



SMILE 20 K. Chichakly 

value to be altered (filtered) based on the option setting.  If several filters are needed, they 
would run in the order they appear in the object’s list of options.  A basic filter would 
only affect the given object, and so is passed just the object itself and the value of the 
option setting.  More complicated filters affect inflows or outflows of the object and need 
to be invoked for those inflows or outflows and not for the object.  They then need to be 
passed the affected flow, the given stock, and the sum of the inflows or outflows already 
evaluated.  This is summarized in the table below. 

filter type applied to Parameters 
stock, flow, aux itself object value, option value 
stock its inflows flow value, option value, stock value, 

inflow sum 
stock its outflows flow value, option value, stock value, 

outflow sum 
flow upstream stock stock value, option value, flow value 
flow downstream stock stock value, option value, flow value 

The exact format of macros is left to the XMILE document. 

6.0 Optional Functionality 

It is expected that compliant products will implement the language thus far described in 
its entirety.  There are, however, a number of features that are left to each vendor’s 
discretion as to whether or not to support.  These are not intended to be vendor-specific 
features, but common features that lighter packages may either not support, or support in 
part.  These features include enhanced graphical functions, conveyors, queues, arrays, 
and submodels. 

6.1 Enhanced Graphical Functions 

For many applications based on real-world data streams, a fixed x-increment in the 
definition of a graphical function is too restrictive.  Sampling can be extremely irregular, 
making it difficult to both find a common x-increment to capture all points and also 
interpolate missing points.  This feature allows the use of arbitrary (x, y)-points to define 
a graphical function. 

There are also some canonical shapes for graphical functions that can be described with a 
few parameters (to be defined).  Support for editing these shapes is optional.  [Since such 
graphical functions are required to include a set of points conforming to the standard, 
every package should be able to use these graphical functions.] 

6.2 Conveyors 

A conveyor conceptually works like the real thing.  Objects get on at one end and some 
time later (the length of the conveyor), they fall off.  Some things can leak out (fall off!) 
of a conveyor partway, so one or more leakage flows can also be defined.  In addition, the 



SMILE 21 K. Chichakly 

conveyor has a variable speed control, so you can change the length of time something 
stays on it. 

Since the outflows have different purposes, it is necessary to be specific about which 
outflow does what.  While leakage flows can be explicitly marked, it is not required.  In 
this case, by convention, if there is only one outflow, it must be the stuff coming off the 
end of the conveyor.  If there are two or more outflows, the first is always the conveyor’s 
output, while the remaining outflows are the conveyor’s leakage. 

Besides the length of a conveyor (in time units), a conveyor has the following optional 
parameters (the first four are defined with SMILE expressions): 

 Capacity:  Maximum contents of a conveyor (default:  INF) 
 Inflow limit:  Maximum amount of material that can flow into the conveyor in 

each unit time (default:  INF) 
 Sample:  When provided, the transit time changes only when this expression is 

true.  (default:  1, i.e., the transit time is updated every DT) 
 Arrest:  When provided, the conveyor shuts down (stops moving, leaking, etc.) 

whenever this expression is true.  (default:  0, i.e., the conveyor never arrests) 
 Discrete:  Whether the conveyor is discrete (moving batches of material) or 

continuous (moving a constant stream, e.g., sand and gravel).  When discrete, the 
initial value is applied to the start of each unit time within the conveyor (rather 
than evenly distributed) and the inflow limit, while still per unit time, can be 
fulfilled within one DT (in the continuous case, the per DT limit is DT*inflow 
limit).  This is only meaningful when there is not a queue immediately upstream 
of the conveyor (when there is a queue, the conveyor must be discrete).  (default: 
false) 

 Batch integrity:  Whether batches from an upstream queue can be split into 
smaller units to meet the limits on the conveyor (they cannot when this is true).  
This is only meaningful when there is a queue immediately upstream of the 
conveyor.  (default: false) 

 Number of batches:  How many batches can be taken from the front of the 
upstream queue to meet the conveyor limits:  restricted to one or as many as 
possible.  This is only meaningful when there is a queue immediately upstream of 
the conveyor (otherwise, it always takes as much as possible).  (default:  one) 

 Exponential leakage:  True if the leakage should be an exponential decay across 
the conveyor (false if the leakage is linear, expressed as fraction of the inflowing 
amount to leak by the time it exits the conveyor).  This is only meaningful if the 
conveyor has one or more leakage outflows.  (default: false) 



SMILE 22 K. Chichakly 

Each leakage outflow of the conveyor should be marked as such (but does not have to be) 
and has the following options: 

 Leakage zone start:  Fraction, in [0, 1], of conveyor length that marks the start of 
the leakage zone (from the inflowing side), i.e., the fractional length that does not 
leak on the inflowing side (default:  0) 

 Leakage zone end:  Fraction, in [0, 1], of conveyor length that marks the end of 
the leakage zone  (from the inflowing side); note (1 – leakage zone end) is the 
fractional length that does not leak on the outflowing side (default:  1) 

 Leak integers:  True to leak only integers (default: false) 

6.3 Queues 

Queues are first-in, first-out objects that track individual batches that enter them 
(otherwise, they’d just be stocks).  The first batch to enter is the first batch to leave.  
Queues are important when it is necessary to track batches or when there are input 
constraints downstream that force the queue outflow to zero (e.g., a capacity limit on a 
conveyor). 

The value of a queue outflow is determined by the queue’s inflow, the queue’s contents 
and what is downstream of the queue.  A conveyor, in particular, can limit the outflow of 
a queue based on its inflow and capacity limits.  [Queues flowing to regular stocks and 
clouds are not limited in any way, so their outflows will always empty the queue.]  
Queues can have multiple outflows and some of these (other than the first one) can be 
designated overflows, i.e., flows that take excess capacity from the front of a queue when 
a higher priority queue outflow has been blocked due to capacity or inflow constraints. 

6.4 Arrays 

Arrays add depth to a model in up to N dimensions.  Products that support arrays offer 
different values of N. 

Arrays are defined using dimension names.  Each named dimension can either specify a 
name (a SMILE identifier) for each of its subscript indices, or consecutive numbers can 
be used, starting at one (the latter restriction may eventually be removed, allowing them 
to start at any integer).  For example, a two-dimensional array of location vs. product 
could have a dimension called Location with three indices Boston, Chicago, and LA, 
and another dimension called Product with four indices dresses, blouses, skirts, 
and pants.  If we are looking at sales, we might have a variable sales[Location, 
Product] which has elements sales[Boston, dresses], sales[Boston, 
blouses], etc. 

Dimension names are identifiers from the same namespace as variables.  As such, they 
need to be unique across an entire model (except macros).  Subscript index names, on the 
other hand, only need to be unique within a given dimension name as they are only valid 
when used as a subscript into an array that is defined with that dimension name. 



SMILE 23 K. Chichakly 

Within equations, subscripts are SMILE expressions that appear within square brackets 
with each index separated by a comma.  If a subscript expression results in an invalid 
subscript index (i.e., it is out of range), a zero (0) should be returned and, optionally, a 
warning should be given to the user.  The user should be allowed to treat all subscript 
indices – even named ones – as numbers (specifically integers, but SMILE only has real 
numbers).  Arrays are assumed to be stored in row-major order, which is important for 
initialization, in data sets, and when using flat indices (as described in section 3.2). 

Within the equations of arrays, dimension names can be used in subscripts.  A dimension 
name is a placeholder for the subscript index used by the element in which the equation 
appears.  For example, an array profit[Location, Product] could have the single 
equation: 

revenue – sales 

which, since when all indices are dimension names none need appear, is shorthand for: 

revenue[Location, Product] – sales[Location, Product] 

Each element of profit would have the dimension names bound to their indices.  For 
example, when profit[Boston, blouses] is evaluated, it gets bound to the above equation 
as follows: 

revenue[Boston, blouses] – sales[Boston, blouses] 

Clearly for dimension names to be used in this way, the array containing the equation 
must itself be sized using those dimension names, though not necessarily in the same 
order (e.g., profit[Product, Location] can use the same equation). 

This raises the issue of how an array’s equation is defined in SMILE.  There are two 
ways to do this: 

 One equation for the entire array (the “Apply to All” option in STELLA):  One 
equation is given for the array and can include dimension names.  No element 
equations appear. 

 One equation for each element of the array:  Each element of the array appears 
with its own equation.  No equation appears for the entire array. 

If the array is a graphical function, it must use the first option, i.e., one equation.  
However, there can be separate graphical functions defined for each element of the array. 

6.4.2 Array Operations 

As much as possible, arithmetic operators should behave in the expected linear algebra 
ways.  Operations with a scalars fall out using the dimension name syntax.  Addition and 
subtraction of same-sized arrays fall out in the same way.  However, for historical 



SMILE 24 K. Chichakly 

reasons, the remaining SMILE operators also perform element by element operations 
instead of linear algebra. 

Multiplication of arrays should be properly supported using some as yet undefined 
operator (maybe “.*” since it is the dot product, though this is the opposite of what 
MATLAB uses).  If array A has size M  N and array B has size N  P, then array C of 
size M  P can have the equation A[M, N].*B[N, P].  The result should follow linear 
algebra multiplication.  Likewise, a vector of size 1  M can be multiplied by another 
vector of size M  1 (using transpose – below) to get a scalar, the dot product. 

Note that division is only supported on an element-by-element basis, i.e., matrix 
inversions are not supported. 

Transposition of arrays is handled in three ways: 

 Transposition operator:  If reversing the dimensions is sufficient (i.e., turning a 1 
 M array into an M  1 array, transposing a square matrix, or turning an M  N  
P array into a P  N  M array), the transposition operator, ' (apostrophe), can be 
used after the array, e.g., A' or A[M, 1, N]'.  This unary operator has the 
highest arithmetic precedence (just above exponentiation) and right-to-left 
associativity. 

 Dimension names:  If the dimension names being transposed are unique, the 
dimension names can be used directly.  For example, if array A has dimensions M 
 N  P and array B has dimensions P  M, a slice of A can be assigned to B with 
the equation (in B):  A[M, 2, P].  If all the dimensions match, but are in a 
different order, just the variable name is needed, e.g., to assign an M  N  P 
array C to a N  P  M array D, just set D’s equation to:  C. 

 Dimension positions:  When dimension names are not unique and the desired 
order is not an exact reversal, neither of the two methods above will work.  In this 
case, the dimension position operator, @ (at-sign), must be used with an absolute 
dimension position of the dimension in the entity that contains the equation.  
Given an array A with dimensions M  N  N that we wish to assign to an N  N  
M array B with first N in A corresponding to the first N in B, the equation for B 
should be:  A[M, @1, @2].  Note that @1 resolves to the first dimension in B 
(i.e., the first N) while @2 resolves to the second dimension in B (i.e., the second 
N).  Note that the equation A[M, @2, @1] (or the more obscure but equivalent 
A[@3, @2, @1]) is the same as A', i.e., it just reverses the dimensions. 

6.4.3 Array Slicing 

An array can be sliced by using a “*” for a dimension name.  For example, A[1, *] 
extracts the first row of matrix A while A[*, 3] extracts the third column. 

More complex slicing can be done using ranges with the start and ending indices 
separated by : (colon).  For example, A[1:3] extracts the first three elements of A (even 
if that dimension has named indices) and SUM(A[1:3]) finds the sum of those elements. 



SMILE 25 K. Chichakly 

6.4.4 Array Builtins 

A few built-ins are necessary to support arrays fully.  Some are expansions of existing 
built-ins.  Others are unique to arrays. 

MIN:  smallest value in an array – extends MIN(x, y) 
Parameters: 1: the array to examine, e.g, min(A) 

2: any mix of arrays and scalars, e.g., min(A, 0) 

MAX:  largest value in an array – extends MAX(x, y) 
Parameters: 1: the array to examine, e.g., max(A) 

2: any mix of arrays and scalars, e.g., max(A, 0) 

SUM:  sum of values in an array 
Parameters: 1: the array to sum, e.g., sum(A[M, *]) sums all rows of A 

MEAN: mean of values in an array (just SUM/SIZE) 
Parameters: 1: the array to find the mean of, e.g., mean(A) 

STDDEV: standard deviation of values in an array 
Parameters: 1: the array to find the standard deviation of, e.g., stddev(A) 

RANK: index of element of given rank in 1D-array sorted in ascending order 
  or flat index of element of given rank in N-D-array in ascending order 
Parameters: 2: the array and the rank, e.g., rank(A, 1) gives index of MIN value 
  3: array, rank, secondary sort array; breaks ties using second array 

SIZE:  size of array 
Parameters: 1: the array, e.g., size(A[1, *]) gives the size of one row of A 

SELF:  refers to entity containing the equation (valid with SIZE and PREVIOUS) 
Parameters: none, e.g., size(self[1, *]) gives size of one row of ourselves, 

or previous(SELF, 0) retains our previous value in the next DT 

PREVIOUS: previous value of entity 
Parameters: 2: variable and initial value expression, e.g., previous(A, 0) 

All of these functions except SELF and PREVIOUS should work on all container objects.  
For example, MIN should be able to be applied to a graphical function to find the 
minimum y-value, to a queue to find the minimum value in the queue, or to a conveyor to 
find the minimum value in the conveyor.  Additionally, the [] notation used to access 
array elements should also work on all containers.  Thus, var[3] returns the y-value of 
the third data point in a graphical function or the third element (from the front) of a queue 
or a conveyor.  If any of these objects is arrayed, two sets of subscripts are used, the first 
for the array dimensions and the second for the element within that container.  For 
example, if the array A of size M x N is a queue, A[2, 3][1] accesses the front element 
of queue A[2, 3]. 



SMILE 26 K. Chichakly 

6.5 Submodels 

The features explained here are general enough for hierarchical models or models made 
up of separate unrelated pieces.  This section supports the idea of independent model 
pieces interacting with each other in some way (i.e., sharing model inputs and outputs).  
These pieces may or may not have separate simulation specifications, though having 
them usually only makes sense when the pieces are arranged hierarchically. 

The most relevant issue for SMILE is how these disparate model pieces communicate 
with each other.  It is necessary for each of these pieces to be uniquely named.  It is then 
possible to use the model name as the local namespace and refer to objects across model 
boundaries using qualified names.  For example, the variable named expenditures in 
the model marketing can be referenced from any other model as 
marketing.expenditures.  Note this single qualifying level forces submodel names 
to be unique across a model (there are exceptions in Level 3).  The top level of a model 
has no name, so the variable cost at the top level is simply .cost.  [Note that display 
IDs, described in section 7, must also be qualified when referenced across models 
(particularly in interface objects), e.g., .12 or marketing.4.] 

Submodels typically appear in a container created by and visible to the user (called a 
module).  The SMILE format includes modules for this purpose; these can be ignored by 
packages that do not use them and must be auto-created if not there for packages that do.  
The module must have the same name as the model it contains.  However, if the module 
has been created and named, but not yet assigned a model, it can (and will) have a name 
that does not correspond to any model. 

A module can also have an icon or picture assigned to it.  Depending on the package, this 
will be shown inside the existing icon, or will replace the module icon. 

The scope of variables within a submodel is local to that model; variables in a model are 
not normally visible from outside the model.9  It is therefore necessary to explicitly 
specify the variables that are accessible outside the model, i.e., the outputs of the model. 

Some implementations also require specific variables be set aside for inputs to the model 
– i.e., to pick up the outputs from other models.  These will necessarily need to be 
specified for these implementations.  They can, however, be ignored on systems that do 
not care.  In addition, systems that do care should automatically create them if they do not 
appear within a SMILE document. 

The variables that are used for this cross-model communication, the inputs and outputs, 
are given an additional access attribute.  The access is restricted to the following values: 

SMILE Name  Access Level 
input   placeholder for input value (acts like an alias) 
output   public access output (restricted by upward connections) 

                                                 
9 If the scope of variables in a model should be global, the correct mechanism is a group, not a submodel. 



SMILE 27 K. Chichakly 

Note there is a third access level that is not explicitly represented:  an output can have 
restricted access, available only within the next lower module.  These act like function 
parameters and are typically represented by connections from that entity to the module 
that represents the model they are being passed to.  An entity with input access can also 
have this restricted local (implicit) output access, to act as a pass-through from one 
module up into the containing model and then down again into the other module (which 
is only necessary if the variable is also used in the containing model). 

Note there is no option for an input that is also a global output.  This requires an 
intermediate auxiliary.  As placeholders, inputs do not have to be assigned to an output 
from another module.  When assigned, an input is also referred to as a cross-level ghost 
(or alias).  Within the model file, it is generally preferred that the output they are assigned 
to refers to the qualified name of the input instead of the reverse.  This allows the same 
submodel to be used in many places with different parameters either within the same 
model or across different models.  For symmetry, simplicity, and for upward connected 
outputs that may be used across many models (and so have different upward 
connections), it is also allowed to specify the output in the input instead using the 
output’s qualified name, in a way that mirrors how aliases are defined (section 7.4.4). 

By default, a submodel inherits the simulation specifications of the overall model.  
However, each submodel can specify its own simulation specs.  In such cases, there are 
two modes of operation: 

normal  use same time base as rest of model, but different DT 
independent do a complete run for every DT in the containing model 

In the first mode, the overall model’s DT must be an integer multiple of the submodel’s 
DT.  Note the submodel’s start and end are forced to be the same as the overall model. 

In the second mode, the length of the simulation specifies how many times to iterate 
before returning a value.  This performs a simple loop. 

6.6 Macro-based Auxiliaries and Submodels 

Because the SMILE language has its own macro language, it is possible to allow the user 
to implement their own macros within the SMILE language (and thus within simulation 
packages).  This allows users to extend the basic functionality of any package, and, since 
the macros are in SMILE, it allows these extensions to be shared.  All SMILE 
implementations must support SMILE macros, so the optional behavior is restricted to 
the ability to create and edit these macros. 

The logical consequence, from a user’s point-of-view, is to allow the user to implement 
simple macros in auxiliaries and complex macros in submodels.  In the latter case, the 
module can refer to a named macro rather than a named model, the only difference being 
a macro allows the parameters and return value to be specified.  The auxiliary case 
requires, as an equation option, an indication that the equation is implemented in a macro 
with the same name (no equation then appears within the auxiliary’s definition). 



SMILE 28 K. Chichakly 

7.0 Display 

The display characteristics describe how the model is drawn. 

7.1 Style Information 

Style information describes drawing characteristics, such as color and font.  Style 
information is hierarchical and cascading (like web page style sheets).  The model file 
can have default settings for the entire file.  Each model can override or add to those for 
the model.  Each display definition within the model can then override or add to the file 
and the model styles for that display.  Each individual object can then override or add to 
these to set its specific style.  There are also default styles to be used if none of these 
styles are specified. 

7.2 Drawing Plane 

A drawing plane is assumed that is large enough to hold the entire model.  This plane has 
integer coordinates that more-or-less correspond to pixel locations at normal zoom on a 
72 dpi display.  The coordinate (0, 0) is at the top left of the drawing plane.  The x-
coordinates increase to the right and the y-coordinates increase to the bottom.  When 
referring to a number of coordinates in the drawing plane (also known as model 
coordinates), the term display units will be used. 

Several display options are used define the drawing plane: 

Property Values (defaults in []) 
Number of pages rows and cols [1, 1] 
Page orientation portrait and landscape [portrait] 
Page size width and height of a page (display units) 
Page order Page number ordering:  row or col [row] 
Show pages True to display page boundaries [false] 
Scroll position x- and y-coordinate of top-left of visible area (display units) [0, 0] 
Zoom level Zoom level as a percentage [100.0] 

7.2 Display Properties 

The following display properties are defined for all SMILE objects.  The succeeding 
sections go into more depth. 

Property Values (defaults in []) 
Position x- and y- coordinate on drawing plane 
Predefined size stock_size, aux_size, or module_size with predefined sizes (in the 

file style block) at values name_only, small, medium, and large; 
flow valves cannot be resized, but always use aux_size = medium 
[medium] 

Arbitrary size width and height (in display units); invalid with predefined size 
Name position top, bottom, left, right, or center [bottom, except stocks: top] 



SMILE 29 K. Chichakly 

Name angle Angle (degrees) from center of entity to center of name, where 0 
is the positive x-axis and proceeds counterclockwise [matches 
name position] 

Color RGB color or named constant, e.g., CSS [black] 
Background color RGB color or named constant, e.g., CSS [white] 
Font Family, size, and style; style is limited to normal, bold, italic, 

underline, and oblique [9 pt, sans-serif] 
Text alignment left, center, right, or justify [left] 
Border Any combination of thickness (thin, medium, thick) and style 

(solid, double, dotted, dashed, ridge (3D above surface), groove 
(3D below surface)) [thin solid] 

Padding Thickness of padding inside border (in display units) [2] 
Image File path or reference to embedded image 
Drawing order auto or an integer indicating required order (objects on top of 

other objects have a higher integer value) [auto] 

7.2.1 Position 

When an arbitrary size (width and height) is specified, the position attribute specifies the 
top-left corner of the object (without any nameplate).  This is used for anything that can 
be resized, e.g., stocks, auxiliaries, groups, buttons, and text annotations. 

When a predefined size is specified (the default for stocks, auxiliaries, and modules), the 
position attribute specifies the center of the object (without any nameplate).  For a flow, it 
is the center of the flow valve.  Since building blocks are not rendered at the same size 
across software packages and some software packages may ignore the specified 
predefined size (it may not even make sense for their representation), specifying the 
center allows each package to render such objects in the most natural way for that 
package. 

7.2.2 Name Position 

The name is most often in one of five fixed positions relative to the object it identifies.  
These positions are above the object with bottom vertical alignment (text alignment: 
center), below the object with top vertical alignment (text alignment: center), to the left of 
the object and centered vertically (text alignment: right), to the right of the object and 
centered vertically (text alignment: left), and sharing the same center as the object and 
centered vertically (text alignment: center). 

Names can also be moved away from these positions.  SMILE supports this with an 
optional name angle, which is the angle of the radius (of a circle around the object) 
connecting the center of the object to the center of its name.  This angle is in degrees in 
polar coordinates, i.e., 0 lies on the positive x-axis and the numbers increase 
counterclockwise.   The use of an angle emphasizes that names move around the shape of 
the object, for example, in a circle around an auxiliary and in a rectangle around a stock. 



SMILE 30 K. Chichakly 

The name positions correspond to 0 (right), 90 (top), 180 (left), and 270 (bottom).  
When the name is exactly in one of these positions, the angle is not used (i.e., it defaults 
to whichever of these values corresponds to the name position).  The name angle is 
undefined when the name position is center, as the radius becomes zero in this case. 

Some packages allow the names to be placed at an arbitrary location on the drawing 
plane, completely unrelated to the object position.  SMILE does not support this general 
case, assuming that names should be close to the objects being named. 

7.2.3 Background Color, Border, Padding, and Image 

These are restricted to specific objects (defined later) that have a concept of a foreground 
and a background, or may need a border.  Like the background color, the image appears 
on the background, but may need a specific background color to fill transparent areas. 

The background color can also be applied to a model as a whole, in which case it refers to 
the color of the drawing plane. 

7.2.4 Text Alignment 

This mostly applies to simple text annotations.  Building blocks (stocks, flows, 
auxiliaries, etc.) have predefined alignments based on the name position. 

7.2.5 Drawing Order 

The default setting, auto, draws objects in the order they appear in the SMILE file.  
Drawing order may not be supported in all software packages as some define very 
specific drawing orders.  However, these packages should work toward compliance with 
this part of the standard. 

7.3 Display Properties Unique to Specific Objects 

A number of objects have unique display properties.  These are described in the 
following sections. 

7.3.1 Flows 

A flow is typically drawn through a series of perpendicular bends.  Each endpoint and 
bend can be described by one point.  These points are necessary to draw the flow 
correctly, so the flow requires one additional display property that gives the flow’s points 
in order from the start of the flow to its end: 

Property Values (defaults in []) 
Points List of x- and y-coordinates 

Some programs use curved flows instead.  These are not supported by the standard. 



SMILE 31 K. Chichakly 

7.3.2 Groups 

Groups can be used to collect related model objects together.  As such, they can have 
both borders and background images.  They also have three additional control properties: 

Property Values (defaults in []) 
Locked true or false [false] 
Show name true or false [true] 
Show image true or false [false if no image defined, true otherwise] 

When the locked property is true, the objects within the group remain fixed relative to the 
group, i.e., when the group is moved, they maintain their relative positions within the 
group.  When the show name property is true, the group name is visible, presumably on 
or near the border.  The show image property hides the contents of the group (show 
image also means hide contents) and, if there is a group image, also makes the image 
visible. 

7.4 Display-only Objects 

A number of objects are available only at the display level.  In particular, objects to 
support the graphical representation of the model are needed.  These include connectors 
and aliases (aka ghosts). 

7.4.1 Unique IDs 

Display objects do not generally have names or any other way to refer to them.  For this 
reason, every display object must have a unique identifying number (display ID).  These 
integers must be unique across all objects in a model (but not within the entire model file 
– they are local to a model). 

7.4.2 Connectors 

Algebraic calculations are represented in a stock-flow diagram with connectors between 
the model elements.  Each connector always goes between two entities, which are 
identified either by name or unique display ID.  There are two properties (besides 
position) that are required for all connectors, from and to: 

Property Values 
From Name or ID of object connector is coming from 
To Name or ID of object connector is going to 

Note there is no ambiguity between names and IDs; names must be valid identifiers and 
IDs must be valid integers, and these definitions do not overlap.  However, it is 
encouraged that the file format discern between these in some other way to remove the 
parsing requirement this implies. 



SMILE 32 K. Chichakly 

Connectors also have two optional properties: 

Property Values (defaults in []) 
Type Type of connector (see below) [normal] 
Points List of x- and y-coordinates (same as flow) 

Note that the position of the connector is the center of its starting point, i.e., where it 
attaches to the “from” object.  Usually the connector then follows a linear or semicircular 
path to the “to” object.  Some programs may have multiple points defined along the way.  
In this case, the “points” property should be used instead.  Be aware, though, that the only 
information required by this standard is the single starting position. 

The connector type affects how it is displayed: 

Type Effect 
Normal Normal connector; sometimes called action connector (solid line) 
Info Information connector (dashed line) 
Delay Information connector with delay (dashed line with hash marks) 

7.4.3 Aliases 

An alias (aka ghost or shadow) is a second image of an object used to avoid crossed 
connectors or to communicate across groups or models.  The alias typically appears in the 
same form as (or a close approximation to) the original and has the same name, but 
appears differently in some way.  Aliases may also have different display attributes, such 
as name position and color. 

All aliases require a position and a reference back to the original (sometimes called the 
parent): 

Property Values 
Of Name of object this is an alias of 

Note that if the given object were in another model, the name would have to be fully 
qualified with the model name, e.g., QA.Inspect. 

8.0 Interface 

Interface objects can appear on the surface of the stock-flow diagram or on a separate 
diagram plane.  These include all of the input devices (sliders, knobs, switches, numeric 
inputs, graphical inputs), output devices (graphs, tables, numeric displays, status 
indicators, spatial maps, pie charts, 3D charts, animations), annotation devices (text 
blocks, graphics frame), and control devices (buttons, text- and multimedia-based 
message posters). 

The SMILE language only includes time-series graphs and tables. 


