
XMILE: An XML Interchange Language for System Dynamics
Information Systems SIG of the Systems Dynamics Society

Language Subcommittee
Karim Chichakly

7 June 2013

Background

In the Spring 2003 System Dynamics Society newsletter, Jim Hines proposed that there
be a common interchange format for system dynamics models, called SMILE. More
details can be found in the companion SMILE document.

Vedat Diker and Robert Allen later presented a poster at the 2005 ISDC that proposed a
working group be formed and that XML be the working language for the standard. At
the first meeting of the Information Systems SIG at the 2006 ISDC, I suggested breaking
the problem into two pieces: the language we intend to interchange and the interchange
format. This second document on XMILE (XML Modeling Interchange LanguagE)
documents the interchange format used for SMILE and supersedes documents from 2007
and 2009.

1.0 XMILE Standard Levels

The interchange format is built in three layers (called compliance levels). Each level
builds upon the prior level in a way that allows programs that only support the lowest
level to still read files generated at the highest level. The compliance levels are:

1: Simulation
2: Display
3: Interface

As engineers, perhaps we should give them more cryptic names, such as “Level 307.43b”
or “Subset g”, but I think “Level 1 compliance” is sufficiently obscure already.

The first layer, Simulation, is the minimal level needed for compliance. We intend for
everyone to support this layer. This represents only the underlying equations of a model
in SMILE. If we wished to have an unstructured text format, this could be accomplished
by using a variant of DYNAMO or MDL. It represents the basic information necessary
to simulate the model (we could also name it the Equations layer).

The second layer, Display, adds the information necessary to both display and edit the
stock-flow diagram of the model. We hope everyone will also implement this layer.

The third layer, Interface, adds layout information necessary for management flight
simulators, i.e., user interfaces on top of models. This layer also includes all output
devices, such as graphs and tables, so it is likely everyone will support part of this.

XMILE 2 K. Chichakly

2.0 Overall Architecture

A XMILE file begins with a header that identifies the vendor, program, and version
number that created the file. It also includes information about advanced features used in
the model, such as arrays (with the number of dimensions) or conveyors, so programs
that do not support the higher-order SMILE functionality can find out right off and tell
the user.

The file is conceptually broken into three sections (though, in practice, these pieces are
interwoven):

 Model
 Presentation
 Widgets

Any data from simulation runs is kept separate from this information about the structure
of the model. A separate data layer is not included as there is no intention to support data
interchange.

Although sections include room for vendor-specific extensions, it is recommended to
tread lightly in this area.

2.1 Model

The model section corresponds exactly to the Simulation level. It conforms to SMILE
and contains all the information necessary to simulate the model.

2.2 Presentation

The presentation section is necessary to support the Display level, but it is not restricted
to that level. Presentation involves all aspects of drawing an object, including its
position, its color, its font, its relative size, etc.

Presentation information is hierarchical in the same way cascading style sheets and XML
style sheets are. Global styles can be defined (such as “all stocks are blue”) and can then
be overridden at any level.

Note that this is used by both the Display and Interface levels.

2.3 Widgets

Widgets are the objects used in the model to support the use of the model, such as graphs,
tables, sliders, knobs, etc. As such, widgets live entirely in the Interface level.

This section of the file defines the specific widgets being used with their necessary
parameters, but not their presentation. For example, an entry may describe a slider as
controlling a specific model variable with a given range and increment.

XMILE 3 K. Chichakly

3.0 XMILE Headers

The XMILE file should be encoded in UTF-8. The entire XMILE file is enclosed within
a <xmile> tag as follows:

<xmile version="1.0" level="2"
 xmlns="http://www.systemdynamics.org/XMILE">
 ...
</xmile>

The version number is the XMILE version number (presently 1.0). The level number is
the XMILE compliance level as defined in section 1.0. Both of these attributes are
required.

The first block within the <xmile> tag is the header. The header contains important
information about the origin of the model. Some of this information is required, but other
pieces are optional. The XML tag for the header is <header>. The required pieces are:

 SMILE options: <smile> (defined below)
 Vendor name: <vendor> w/company name
 Product name: <product version="..." lang="..."> w/product name –

the product version number is required. The language code is optional (default:
English) and describes the language used for variable names and comments.
Language codes are described by ISO 639-1 unless the language is not there, in
which case the ISO 639-2 code should be used (e.g., for Hawaiian).

Optional pieces include:

 Model name: <name> w/name
 Model version: <version> w/version information
 Model caption: <caption> w/caption
 Picture of the model in JPG, GIF, TIF, or PNG format: 
 </popup>
</button>

6.7 Model and Interface Annotations

6.7.1 Text Boxes

The model can be annotated with text boxes. These are represented using the
<text_box> tag, which contains the block of text, optionally in HTML format, e.g.,

<text_box color="red" uid="10">Danger!</text_box>

Text boxes, other than the standard display properties with their defaults (e.g., color and
font-size), add two attributes:

 Transparency: appearance="…" with either opaque or transparent
(default: opaque)

 Include vertical scrollbar: vertical_scrollbar="…" with true, false, or
auto, where auto means it only appears if the text exceeds the vertical bounds of
the text box (default: false)

6.7.2 Graphics Frames

The model can also be annotated with graphics. These are represented using the
<graphics_frame> tag. Other than the standard display properties with their defaults
(e.g., border-style), graphics frames have these attributes:

 Interior fill: fill="…" with none, light, dark, or solid (default: none);
light is a light shade of the background color, dark is a dark shade of the
background color, and solid is the background color unchanged.

The contents of a graphics frame are defined with either zero or one instance(s) of the

 <sound>bicycle_bell.wav</sound>
 <link target="next_page" to_black="true" effect="iris_in"/>
 <menu_action>restore_graphs_tables</menu_action>
 <switch_action>
 <group name="Bicycle Policy">
 <value>1</value>
 </group>
 </switch_action>
</button>

