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Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions in-
volving multi-dimensional arrays efficiently. Theano features:

tight integration with NumPy — Use numpy.ndarray in Theano-compiled functions.

transparent use of a GPU - Perform data-intensive calculations up to 140x faster than with
CPU.(float32 only)

efficient symbolic differentiation — Theano does your derivatives for function with one or many
inputs.

speed and stability optimizations — Get the right answer for 1og (1+x) even when x is really tiny.
dynamic C code generation — Evaluate expressions faster.

extensive unit-testing and self-verification — Detect and diagnose many types of errors.

Theano has been powering large-scale computationally intensive scientific investigations since 2007. But it
is also approachable enough to be used in the classroom (University of Montreal’s deep learning/machine
learning classes).
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CHAPTER
ONE

NEWS

* 2016/05/09: New technical report on Theano: Theano: A Python framework for fast computation of
mathematical expressions. This is the new preferred reference.

* 2016/04/21: Release of Theano 0.8.2, adding support for CuDNN v5.

* 2016/03/29: Release of Theano 0.8.1, fixing a compilation issue on MacOS X with XCode 7.3.
* 2016/03/21: Release of Theano 0.8. Everybody is encouraged to update.

* Multi-GPU.

* We added support for CNMeM to speed up the GPU memory allocation.

* Theano 0.7 was released 26th March 2015. Everybody is encouraged to update.

* We support cuDNN if it is installed by the user.

* Open Machine Learning Workshop 2014 presentation.

* Colin Raffel tutorial on Theano.

* Jan Goodfellow did a 12h class with exercises on Theano.

* New technical report on Theano: Theano: new features and speed improvements.

e HPCS 2011 Tutorial. We included a few fixes discovered while doing the Tutorial.

You can watch a quick (20 minute) introduction to Theano given as a talk at SciPy 2010 via streaming (or
downloaded) video:

Transparent GPU Computing With Theano. James Bergstra, SciPy 2010, June 30, 2010.



http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://deeplearning.net/software/theano/library/sandbox/cuda/dnn.html
http://nbviewer.ipython.org/github/craffel/theano-tutorial/blob/master/Theano%20Tutorial.ipynb
https://github.com/goodfeli/theano_exercises
http://arxiv.org/abs/1211.5590
http://www.iro.umontreal.ca/~lisa/pointeurs/tutorial_hpcs2011_fixed.pdf
http://conference.scipy.org/scipy2010/
http://www.archive.org/details/Scipy2010-JamesBergstra-TransparentGpuComputingWithTheano
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CHAPTER
TWO

DOWNLOAD

Theano is now available on PyPI, and can be installed via easy_install Theano, pip install
Theano or by downloading and unpacking the tarball and typing python setup.py install.

Those interested in bleeding-edge features should obtain the latest development version, available via:

git clone git://github.com/Theano/Theano.git

You can then place the checkout directory on your SPYTHONPATH or use python setup.py
develop to install a .pth into your site-packages directory, so that when you pull updates via
Git, they will be automatically reflected the “installed” version. For more information about installation and
configuration, see installing Theano.



http://pypi.python.org/pypi/Theano
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CHAPTER
THREE

CITING THEANO

If you use Theano for academic research, you are highly encouraged (though not required) to cite the fol-
lowing, most recent paper:

* Theano Development Team. “Theano: A Python framework for fast computation of mathematical
expressions”. (short BibTeX, full BibTeX)

Theano is primarily developed by academics, and so citations matter a lot to us. As an added benefit, you
increase Theano’s exposure and potential user (and developer) base, which is to the benefit of all users of
Theano. Thanks in advance!

See our citation for details.



http://arxiv.org/pdf/1605.02688.pdf
http://arxiv.org/pdf/1605.02688.pdf
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CHAPTER
FOUR

DOCUMENTATION

Roughly in order of what you’ll want to check out:

Installing Theano — How to install Theano.

Theano at a Glance — What is Theano?

Tutorial — Learn the basics.

API Documentation — Theano’s functionality, module by module.
faq — A set of commonly asked questions.

Optimizations — Guide to Theano’s graph optimizations.
Extending Theano — Learn to add a Type, Op, or graph optimization.
Developer Start Guide — How to contribute code to Theano.
developer — Primarily of interest to developers of Theano
Internal Documentation — How to maintain Theano and more...
Release — How our release should work.

Acknowledgements — What we took from other projects.

Related Projects — link to other projects that implement new functionalities on top of Theano

You can download the latest PDF documentation, rather than reading it online.

Check out how Theano can be used for Machine Learning: Deep Learning Tutorials.

Theano was featured at SciPy 2010.



https://github.com/Theano/Theano/wiki/Related-projects
http://deeplearning.net/software/theano/theano.pdf
http://www.deeplearning.net/tutorial
http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/461
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CHAPTER
FIVE

COMMUNITY

“Thank YOU for correcting it so quickly. I wish all packages I worked with would have such
an active maintenance - this is as good as it gets :-)”

(theano-users, Aug 2, 2010)

Register to theano-announce if you want to be kept informed on important change on theano(low
volume).

Register and post to theano-users if you want to talk to all Theano users.

Register and post to theano-dev if you want to talk to the developers.

Register to theano-github if you want to receive an email for all changes to the GitHub repository.
Register to theano-buildbot if you want to receive our daily buildbot email.

Ask/view questions/answers at StackOverflow

We use Github tickets to keep track of issues (however, some old tickets can still be found on Assem-
bla).

Come visit us in Montreal! Most developers are students in the LISA group at the University of
Montreal.
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http://groups.google.com/group/theano-announce
http://groups.google.com/group/theano-users
http://groups.google.com/group/theano-dev
http://groups.google.com/group/theano-github
http://groups.google.com/group/theano-buildbot
http://stackoverflow.com/questions/tagged/theano
http://github.com/Theano/Theano/issues
http://www.assembla.com/spaces/theano/tickets
http://www.assembla.com/spaces/theano/tickets
http://www.iro.umontreal.ca/~lisa
http://www.umontreal.ca
http://www.umontreal.ca
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CHAPTER
SIX

HELP!

6.1 How to Seek Help

The appropriate venue for seeking help depends on the kind of question you have.
* How do I? — theano-users mailing list or StackOverflow

* | got this error, why? — theano-users mailing list or StackOverflow (please include the full error
message, even if it’s long)

* I got this error and I'm sure it’s a bug — Github ticket

* | have an idea/request — post the suggestion to theano-dev or, even better, implement the idea and
submit a GitHub pull request!

* Why do you? — theano-users mailing list (not appropriate for StackOverflow)
* When will you? — theano-dev mailing list (not appropriate for StackOverflow)

Please do take some time to search for similar questions that were asked and answered in the past. If you
find something similar that doesn’t fully answer your question, it can be helpful to say something like “I
found X but it doesn’t address facet Y and link to the previous discussion.

When asking questions on StackOverflow, please use the theano tag, so your question can be found, and
follow StackOverflow’s guidance on asking questions. Consider also using the python and numpy tags,
especially if you are unsure which library your problem relates to.

It’s often helpful to include the following details with your question:
* If you have an error, the full error message, even if it’s long
* Which versions of Python and Theano you’re using
* Whether you’re using a CPU or GPU device
* Details of your Theano configuration settings (you can print this in Python via print theano.config)

Spending the time to create a minimal specific example of a problem is likely to get you to an answer quicker
than posting something quickly that has too much irrelevant detail or is too vague. A minimal example may
take you a bit more time to create but the first response is more likely to be the answer you need than, rather
than a frustrated request for clarification.

13


http://groups.google.com/group/theano-users
http://stackoverflow.com/questions/tagged/theano
http://groups.google.com/group/theano-users
http://stackoverflow.com/questions/tagged/theano
http://github.com/Theano/Theano/issues
http://groups.google.com/group/theano-dev
https://github.com/Theano/Theano/pulls
http://groups.google.com/group/theano-users
http://groups.google.com/group/theano-dev
http://stackoverflow.com/help/asking
http://deeplearning.net/software/theano/library/config.html
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6.2 How to provide help

If you see a question on the theano-users mailing list, or on StackOverflow, that you feel reasonably confi-
dent you know an answer to, please do support the community by helping others.

We were all newbies to Theano once and, as the community expands, there is a constant stream of new
Theano users looking for help. Perhaps you asked a question when you were first starting out? Now you
can pay it forward by helping others. It’s also a good way to reinforce your own Theano knowledge.

Often it’s easiest to answer a question directly but sometimes it may be better to refer people to a good
answer that was provided in the past. Pointing people to relevant sections in the documentation, or to a
Theano tutorial, can also be helpful.

When answering questions please be nice (as always!) and, on StackOverflow, follow their guidance for
answering questions.

6.2.1 Release Notes
Theano 0.8.2 (21th of April, 2016)

This is a point release with only the support for cudnn v5 convolution and minor fixes.

Highlights: - cuDNN v5 convolution support (cuDNN v3 isn’t supported anymore) - A few crash fixes

Theano 0.8.1 (29th of March, 2016)

This is a point release without any new feature.

It fixes compilation issues on MacOS X with the command line tools for XCode 7.3, which was released
shortly after Theano 0.8.0.

Theano 0.8 (21th of March, 2016)

We recommend that everybody update to this version.
Highlights:
* Python 2 and 3 support with the same code base
* Faster optimization
* Integration of cuDNN for better GPU performance
* Many Scan improvements (execution speed up, ...)
* optimizer=fast_compile moves computation to the GPU.
* Better convolution on CPU and GPU. (CorrMM, cuDNN, 3d conv, more parameter)
* Interactive visualization of graphs with d3viz

* cnmem (better memory management on GPU)

14 Chapter 6. Help!
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* BreakpointOp

Multi-GPU for data parallism via Platoon (https://github.com/mila-udem/platoon/)
* More pooling parameter supported
* Bilinear interpolation of images

New GPU back-end:

— Float16 new back-end (need cuda 7.5)
— Multi dtypes
— Multi-GPU support in the same process
A total of 141 people contributed to this release, see the list at the bottom.
Installation:
* Better BLAS detection
* Fixes for more recent software and OS versions
* Support Anaconda on Windows
Bug fixes:
* GpuJoin now supports negative axis
* Fix GpuCumsum for negative axis
Interface Deprecation (a warning is printed):
* Deprecate Param class, use In instead
Interface Changes:
* Rename DownsampleFactorMax to Pool.
* tensor.stack now uses the same interface as numpy.stack
* optimizer=fast_compile moves computation to the GPU
* Raise the user stack trace more frequently.
* Change dev version numbering to follow the PEP 440
New Interface (reuses existing functionality):
* theano.tensor.nnet.relu
* theano.tensor.nnet.elu

e BatchNormalization.

MaxAndArgmax support axis=None

Add theano.tensor.compress (equivalent of numpy.compress)
* theano.tensor.signal.downsamples.max_pool_2d_same_size

* COp

6.2. How to provide help 15
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__props__

New features

tensor.unique

map_variables

erfcx

mgrid, ogrid

allclose

BreakpointOp

Make bincount work on GPU

SolveOp on GPU

Optional optimization remove_all_assert

AllocEmpty

LogSoftmax, for stability optimization when the crossentropy optimization does not apply.
theano.tensor.repeat works on GPU

BatchedDot on the GPU and faster on the CPU.

Faster batched_tensordot and make it work on GPU.
SoftmaxGrad grad

3d conv via CorrMM on the GPU

CPU Max Pool support of padding and strides!=windows size

theano.function() now accepts a dict for the outputs. When doing this, the function will return a
dict. Helpful to keep track of which output is what.

Warn for unknown or misspelled theano config variables
theano.tensor.tile update (accept symbolic reps, work on GPU)

scan how have a strict flag. If set to True, this make scan building faster and could make execu-
tion faster.

theano.tensor.signal.conv2d(2d,2d) output 2d answer
More convolution parameter supported

Bilinear interpolation of images

Faster SetSubtensor on the GPU.
Support more reduction pattern on the GPU.
More graph optimization

Faster graph optimization

16
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GpuCrossentropySoftmax Argmax 1 HotWithBias

Crash/no return fixes:

Others:

Fix crash in the assert op grad
Fix curand crash on Mac
Multiple Fix scan crashes

Finish to update all Op.grad() implementation to the new interface

Support ARM processor.

Better tests

Code clean up.

Doc updates

doctest and sphinx test in travis

More tests tagged as slow

Better same_shape implementation

More op with c code to lower overhead

Custom pickler for SharedVariable theano.misc.pkl_utils.{dump,load}
function_dump to help us reproduce user error during compilation
assert_no_cpu_op

pep8, flake8

Better error messages

On non-default modes, reduce the number of allocation when allow_gc=False

Better lock

Committers for this dev version only:

Frederic Bastien
Arnaud Bergeron
Pierre Luc Carrier
Iban Harlouchet
Pascal Lamblin
Chienli Ma

Tim Cooijmans
Nicolas Ballas

Amjad Almahairi

6.2. How to provide help
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David Warde-Farley
Christof Angermueller
Ziye Fan

Caglar

Sina Honari

Roy Xue

hantek

Mohammad Pezeshki
Melanie Ducoffe
Alexandre de Brebisson
Harm de Vries
Samira Shabanian
Alex Lamb
Ramana.S

Francesco Visin
Saizheng Zhang
Ying Zhang

Jan Schliiter

Xavier Bouthillier
Bart van Merrienboer
Cesar Laurent

ITulian Vlad Serban
Li Yao

Sigurd Spieckermann
Dmitrii Serdiuk
Kelvin Xu

Sebastien Jean
Thomas Mesnard
Seon-Wook Park
Vincent Michalski
Dustin Webb

Mikhail Korobov

18
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* Orhan Firat

* Olivier Mastropietro
* Daniel Renshaw

* Julien Rebetez

* Peng Liu

* Sean Lee

* TimSalimans

* Andre Holzner

* Gijs van Tulder

* Guillaume Alain

¢ Julien Demouth

* Markus Beissinger
* Mehdi Mirza

* Moslem Kazemi

* Saxenauts

* Sgren Kaae Sgnderby
* sentient07

* Anatoly Belikov

* Diogo Moitinho de Almeida
 Jakub Sygnowski

» Kashif Rasul

* Laurent Dinh

* Rémy Léone

* Taesup (TS) Kim

* gwO [http://gw.tnode.com/]
* mronian

* vesis84

* Benni

* Chiheb Trabelsi

* JesseLivezey

* Marius Killinger

e Matt Graham
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Matthew Willson
Piotr Frankowski
Stefan Krastanov
vdumoulin
Adithya Ganesh
Anish Shah
Balazs Hidasi
Colin Raffel

Cory Lorenz
Doug

Jesse Livezey
John Salvatier
John Zedlewski
Jonathan Ho
Kaixhin
Liang-Chi Hsieh
Lucas Beyer

Luke Metz
Marc-Alexandre Cote
Martin Arjovsky
Matthias Kiimmerer
Sirisha Rambhatla
briancheung
cai-lw

ivdorelian

* jan-matthis

* jojolalpin

* joncrall

peterjsadowski
scottsievert
Etienne Simon

1. Flaxman

20
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* AlOa

* Albert Zeyer

* Andrea

* Andy Jiang

* Baldzs

* Ben Poole

* Brian Cheung

* Christophe Van Gysel
* Claude Coulombe

* Clay McLeod

* Dario Garcia
 Jakob Lombacher

* Joao Felipe Santos
* John Arevalo

* Jonas Degrave

* Martin Thoma

* Mathieu Germain

* Matthew Koichi Grimes
* Michael Eickenberg
* Michael Opitz

* Paul Hollensen

* Prayag Verma

* Saatvik Shah

* Sergei Lebedev

* Vik Kamath

* Wei Ouyang

* Wojciech Glogowski
* Yi-Lin Juang

* Yurii Shevchuk

* Zach Dwiel

* dan

* culerreich

6.2. How to provide help 21
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* jotterbach
* rolf
* theaverageguy

e wuaalb

6.2.2 Theano at a Glance

Theano is a Python library that lets you to define, optimize, and evaluate mathematical expressions, espe-
cially ones with multi-dimensional arrays (numpy.ndarray). Using Theano it is possible to attain speeds
rivaling hand-crafted C implementations for problems involving large amounts of data. It can also surpass
C on a CPU by many orders of magnitude by taking advantage of recent GPUs.

Theano combines aspects of a computer algebra system (CAS) with aspects of an optimizing compiler. It
can also generate customized C code for many mathematical operations. This combination of CAS with
optimizing compilation is particularly useful for tasks in which complicated mathematical expressions are
evaluated repeatedly and evaluation speed is critical. For situations where many different expressions are
each evaluated once Theano can minimize the amount of compilation/analysis overhead, but still provide
symbolic features such as automatic differentiation.

Theano’s compiler applies many optimizations of varying complexity to these symbolic expressions. These
optimizations include, but are not limited to:

* use of GPU for computations

* constant folding

* merging of similar subgraphs, to avoid redundant calculation

e arithmetic simplification (e.g. x*xy/x —> y, ——x —> X)

* inserting efficient BLAS operations (e.g. GEMM) in a variety of contexts

* using memory aliasing to avoid calculation

* using inplace operations wherever it does not interfere with aliasing

* loop fusion for elementwise sub-expressions

* improvements to numerical stability (e.g. log(1 + exp(x)) and log(} _, exp(z[i])))
* for a complete list, see Optimizations

Theano was written at the LISA lab to support rapid development of efficient machine learning algorithms.
Theano is named after the Greek mathematician, who may have been Pythagoras’ wife. Theano is released
under a BSD license (/ink).

Sneak peek

Here is an example of how to use Theano. It doesn’t show off many of Theano’s features, but it illustrates
concretely what Theano is.
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import theano
from theano import tensor

# declare two symbolic floating-point scalars
a = tensor.dscalar ()
b = tensor.dscalar()

# create a simple expression
c =a+b

# convert the expression into a callable object that takes (a,b)
# values as input and computes a value for c
f = theano.function([a,b], c)

# bind 1.5 to 'a', 2.5 to 'b', and evaluate 'c'
assert 4.0 == £(1.5, 2.5)

Theano is not a programming language in the normal sense because you write a program in Python that
builds expressions for Theano. Still it is like a programming language in the sense that you have to

* declare variables (a, b) and give their types
* build expressions for how to put those variables together
* compile expression graphs to functions in order to use them for computation.

It is good to think of theano. function as the interface to a compiler which builds a callable object
from a purely symbolic graph. One of Theano’s most important features is that theano. function can
optimize a graph and even compile some or all of it into native machine instructions.

What does it do that they don’t?

Theano is a Python library and optimizing compiler for manipulating and evaluating expressions, especially
matrix-valued ones. Manipulation of matrices is typically done using the numpy package, so what does
Theano do that Python and numpy do not?

* execution speed optimizations: Theano can use g++ or nvcce to compile parts your expression graph
into CPU or GPU instructions, which run much faster than pure Python.

* symbolic differentiation: Theano can automatically build symbolic graphs for computing gradients.

* stability optimizations: Theano can recognize [some] numerically unstable expressions and compute
them with more stable algorithms.

The closest Python package to Theano is sympy. Theano focuses more on tensor expressions than Sympy,
and has more machinery for compilation. Sympy has more sophisticated algebra rules and can handle a
wider variety of mathematical operations (such as series, limits, and integrals).

If numpy is to be compared to MATLAB and sympy to Mathematica, Theano is a sort of hybrid of the two
which tries to combine the best of both worlds.

6.2. How to provide help 23
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Getting started

Installing Theano Instructions to download and install Theano on your system.

Tutorial Getting started with Theano’s basic features. Go here if you are new!

API Documentation Details of what Theano provides. It is recommended to go through the Turorial first

though.

A PDF version of the online documentation may be found here.

Theano Vision

This is the vision we have for Theano. This is give people an idea of what to expect in the future of Theano,
but we can’t promise to implement all of it. This should also help you to understand where Theano fits in
relation to other computational tools.

Note:

Support tensor and sparse operations
Support linear algebra operations
Graph Transformations
— Differentiation/higher order differentiation
— ‘R’ and ‘L differential operators
— Speed/memory optimizations
— Numerical stability optimizations
Can use many compiled languages, instructions sets: C/C++, CUDA, OpenCL, PTX, CAL, AVX, ...
Lazy evaluation
Loop
Parallel execution (SIMD, multi-core, multi-node on cluster, multi-node distributed)
Support all NumPy/basic SciPy functionality
Easy wrapping of library functions in Theano

There is no short term plan to support multi-node computation.

Theano Vision State

Here is the state of that vision as of December 3th, 2013 (after Theano release 0.6):

We support tensors using the numpy.ndarray object and we support many operations on them.

We support sparse types by using the scipy.{csc,cst,bsr}_matrix object and support some operations
on them.

We have started implementing/wrapping more advanced linear algebra operations.

We have many graph transformations that cover the 4 categories listed above.

24
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* We can improve the graph transformation with better storage optimization and instruction selection.
— Similar to auto-tuning during the optimization phase, but this doesn’t apply to only 1 op.

— Example of use: Determine if we should move computation to the GPU or not depending on the
input size.

— Possible implementation note: allow Theano Variable in the fgraph to have more than 1 owner.
* We support Python 2 and Python 3.
* We have a CUDA backend for tensors of type float32 only.
» Efforts have begun towards a generic GPU ndarray (GPU tensor) (started in the libgpuarray project)
— Move GPU backend outside of Theano.
— Will provide better support for GPU on Windows and support an OpenCL backend on CPU.
* Loops work, but not all related optimizations are currently done.
* The cvm linker allows lazy evaluation. It is the current default linker.
— How to have DebugMode check it? Right now, DebugMode checks the computation non-lazily.
* SIMD parallelism on the CPU comes from the compiler.

* Multi-core parallelism support limited. If the external BLAS implementation supports it, many dot
are parallelized via gemm, gemv and ger. Also, element-wise operation are supported. See Multi
cores support in Theano.

* No multi-node support.

* Most, but not all NumPy functions/aliases are implemented. * https://github.com/Theano/Theano/
issues/1080

* Wrapping an existing Python function in easy and documented.

* We know how to separate the shared variable memory storage location from its object type (tensor,
sparse, dtype, broadcast flags), but we need to do it.

Contact us

Discussion about Theano takes place in the theano-dev and theano-users mailing lists. People interested in
development of Theano should check the former, while the latter is reserved for issues that concern the end
users.

Questions, comments, praise, criticism as well as bug reports should be submitted to these mailing lists.

We welcome all kinds of contributions. If you have any questions regarding how to extend Theano, please
feel free to ask on the theano-dev mailing list.

6.2. How to provide help 25
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6.2.3 Installing Theano

Warning: If you want to install the bleeding-edge or development version of Theano from GitHub,
please make sure you are reading the latest version of this page.

Requirements

In order to use Theano, the following libraries and software will need to be installed (MacOS and Windows
users should refer to platform-specific instructions below for detailed installation steps):

Linux, Mac OS X or Windows operating system We develop mainly on 64-bit Linux ma-
chines. other architectures are not well-tested.

Python 2 >= 2.6 or Python 3 >=3.3 The development package (python-dev or
python—-devel on most Linux distributions) is recommended (see just below).
Python 2.4 was supported up to and including the release 0.6. Python 3 is supported past
the 3.3 release.

g++ (Linux and Windows), clang (macOS), python—-dev (All platforms) Not techni-
cally required but highly recommended, in order to compile generated C code. Theano
can fall back on a NumPy-based Python execution model, but a C compiler allows for
vastly faster execution. g++ >= 4.2 (for openmp that is currently always used) more
recent version recommended!

NumPy >= 1.7.1 Earlier versions could work, but we don’t test it.

SciPy >=0.11 Only currently required for sparse matrix and special functions support, but
highly recommended. SciPy >=0.8 could work, but earlier versions have known bugs with
sparse matrices.

A BLAS installation (with Level 3 functionality) Including the development headers (-dev,
—devel, depending on your Linux distribution). Mac OS X comes with the Accelerate
framework built in, and various options exist for Windows (see below).

The following libraries and software are optional:
nose >= 1.3.0 and nose-parameterized >= 0.5.0 Recommended, to run Theano’s test-suite.

Sphinx >= 0.5.1, pygments For building the documentation. LaTeX and dvipng are also nec-
essary for math to show up as images.

Git To download bleeding-edge versions of Theano.

graphiz and either pydot-ng or pydot To be able to make picture of Theano computation
graph. pydot-ng is a pydot compatible replacement that support newer Python.

NVIDIA CUDA drivers and SDK Required for GPU code generation/execution on NVIDIA
gpus

libgpuarray Required for GPU/CPU code generation on CUDA and OpenCL devices (see:
GpuArray Backend.)

note OpenCL support is still minimal for now.
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Linux

CentOS 6

install_centos6 provides instructions on how to install Theano on CentOS 6, written by the Theano devel-
opers. It covers how to install Theano (for CPU-based computation only) with the distribution-packaged
ATLAS, a free fast implementation of BLAS.

Ubuntu

install_ubuntu provides instructions on how to install Theano on Ubuntu. It covers how to install Theano
with the distribution-packaged OpenBlas or ATLAS. Both are free fast implementation of BLAS.

Alternative installation on Gentoo

Brian Vandenberg emailed installation instructions on Gentoo, focusing on how to install the appropriate
dependencies.

Nicolas Pinto provides ebuild scripts.

Alternative installation on Mandriva 2010.2

A contributor made rpm package for Mandriva 2010.2 of Theano 0.3.1.

AWS Marketplace with Bitfusion AMI

AWS EC2 AMI pre-installed with Nvidia drivers, CUDA, cuDNN, Theano, Keras, Lasagne, Python 2,
Python 3, PyCuda, Scikit-Learn, Pandas, Enum34, iPython, and Jupyter. Note, as always there is no charge
for Theano and other open software, however there is a charge for AWS hosting + Bitfusion.

Launch an instance from the AWS Marketplace.

Docker

Builds of Theano are available as Docker images: Theano Docker (CPU) or Theano Docker (CUDA). These
are updated on a weekly basis with bleeding-edge builds of Theano. Examples of running bash in a Docker
container are as follows:

sudo docker run -it kaixhin/theano
sudo nvidia-docker run —-it kaixhin/cuda-theano:7.0

For a guide to Docker, see the official docs. CUDA support requires NVIDIA Docker. For more details on
how to use the Theano Docker images, consult the source project.
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Basic user install instructions

The easiest way to obtain the released version of Theano is from PyPI using pip (a replacement for
easy_install provided by setuptools/distribute) by typing

pip install Theano

This should work under Python 2 or Python 3. To test, run

nosetests theano

You may need to add sudo before the pip command to install into your system’s site-packages
directory. If you do not have administrator access to your machine, you can install Theano locally (to
~/.local) using

pip install Theano —--user

Alternatively you can use virtualenv to create an isolated site-packages directory; see the virtualenv
documentation for details.

Note: Theano can be installed with easy_install, however we recommend pip. pip offers many benefits
over easy_install such as more intelligent dependency management, better error messages and a pip
uninstall command for easily removing packages.

If you do not have pip installed but do have easy_install, you can get pip by simply typing
easy_install pip.

Updating Theano

The following command will update only Theano:

sudo pip install —--upgrade —--no-deps theano

The following command will update Theano and Numpy/Scipy (warning bellow):

sudo pip install —--upgrade theano

If you installed NumPy/SciPy with yum/apt-get, updating NumPy/SciPy with pip/easy_install is not al-
ways a good idea. This can make Theano crash due to problems with BLAS (but see below). The ver-
sions of NumPy/SciPy in the distribution are sometimes linked against faster versions of BLAS. Installing
NumPy/SciPy with yum/apt-get/pip/easy_install won’t install the development package needed to recom-
pile it with the fast version. This mean that if you don’t install the development packages manually, when
you recompile the updated NumPy/SciPy, it will compile with the slower version. This results in a slower
Theano as well. To fix the crash, you can clear the Theano cache like this:

theano-cache clear
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Bleeding-edge install instructions

If you are a developer of Theano, then check out the Developer Start Guide.

If you want the bleeding-edge without developing the code you can use pip for this with the command line
below. Note that it will also try to install Theano’s dependencies (like NumPy and SciPy), but not upgrade
them. If you wish to upgrade them, remove the ——no-deps switch to it, but go see a previous warning
before doing this.

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

or (if you want to install it for the current user only):

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git --user

The following are general instructions that will set you up with the bleeding-edge version of Theano and
allow you to hack it. First, get the code using Git:

git clone git://github.com/Theano/Theano.git

From here, the easiest way to get started is (this requires setuptools or distribute to be installed):

cd Theano
python setup.py develop

This will install a . pth file in your site—-packages directory that tells Python where to look for your
Theano installation (i.e. in the directory your just checked out of Github). Using develop mode is
preferable to install as any modifications you make in the checkout directory (or changes you pull
with Git) will be automatically reflected in the “installed” version without re-running python setup.py
install.

If you do not have permission to modify your site-packages directory you can specify an alternative
installation prefix using

python setup.py develop --prefix=~/.local

A common choice is ~/.local which is automatically searched for Python >= 2.6; for earlier
Python versions and other installation prefixes, the prefix specified must contain 1ib/pythonA.B/
site-packages, where A.B is e.g. 2.5, and this site-packages directory must be listed in
PYTHONPATH.

An alternative, perhaps simpler way of creating and using an isolated site-packages isto use virtualenv;
see the virtualenv documentation for details. If you find yourself using virtualenv frequently you may find
the virtualenvwrapper package useful for switching between them.

Configuring PYTHONPATH

If import theano does not work in Python, you may need modify the environment variable
PYTHONPATH accordingly. In bash, you may do this:
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export PYTHONPATH=<new location to add>:S$SPYTHONPATH

In csh:

setenv PYTHONPATH <new location to add>:S$SPYTHONPATH

To make this change stick you will usually need to add the above command to your shell’s startup script, i.e.
~/ .bashrc or ~/.cshrc. Consult your shell’s documentation for details.

Updating

To update your library to the latest revision, change directory (cd) to your Theano folder and execute the
following command:

git pull

You should update frequently, bugs are fixed on a very regular basis.

Specific git commit

You can install a specific git commit by using the bleeding edge instruction and adding @ COMMIT_ID to
the pip command like:

pip install --upgrade —--no-deps git+git://github.com/Theano/Theano.
—~git@07e9332a0932e90c47ed2a70fc3c7£8a55d2aa23

Testing your installation

Once you have installed Theano, you should run the test suite. At a Python (or IPython) interpreter,

import theano
theano.test ()

You can also run them in-place from the Git checkout directory by typing

theano—nose

You should be able to execute it if you followed the instructions above. If theano-nose is not found by
your shell, you will need to add Theano/bin to your PATH environment variable.

Note: In Theano versions <= 0.5, theano-nose was not included. If you are working with such a
version, you can call nosetests instead of theano—-nose. In that case, some tests will fail by raising
the KnownFailureTest Exception, and will be considered as errors, but they are nothing to worry about.
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Note: The tests should be run with the configuration option device set to cpu (default). If you need to
change this value, you can do that by setting the THEANO _FLAGS environment variable, by prefixing the
theano—-nose command with THEANO_FLAGS=device=cpu. If you have a GPU, it will automatically
be used to run GPU-related tests.

If you want GPU-related tests to run on a specific GPU device, and not the default one, you should use
init_gpu_device. For instance: THEANO_FLAGS=device=cpu, init_gpu_device=gpul.

See config — Theano Configuration for more information on how to change these configuration options.

All tests should pass (skipped tests and known failures are normal). If some test fails on your machine, you
are encouraged to tell us what went wrong on the theano-users@googlegroups . com mailing list.

Troubleshooting: Make sure you have a BLAS library

There are many ways to configure BLAS for Theano. This is done with the Theano flags blas.1ldflags
(config — Theano Configuration). The default is to use the BLAS installation information in NumPy, ac-
cessible via numpy .distutils._ config__ .show (). You can tell theano to use a different version
of BLAS, in case you did not compile NumPy with a fast BLAS or if NumPy was compiled with a static
library of BLAS (the latter is not supported in Theano).

The short way to configure the Theano flags blas.ldflags is by setting the environment
variable THEANO_FLAGS to blas.ldflags=XXX (in bash export THEANO_FLAGS=blas.
ldflags=XXX)

The $ {HOME} /.theanorc file is the simplest way to set a relatively permanent option like this one. Add
a [blas] section with an 1dflags entry like this:

# other stuff can go here
[blas]
ldflags = -1f77blas -latlas -lgfortran #put your flags here

# other stuff can go here

For more information on the formatting of ~/ . theanorc and the configuration options that you can put
there, see config — Theano Configuration.

Here are some different way to configure BLAS:

0) Do nothing and use the default config, which is to link against the same BLLAS against which NumPy was
built. This does not work in the case NumPy was compiled with a static library (e.g. ATLAS is compiled by
default only as a static library).

1) Disable the usage of BLAS and fall back on NumPy for dot products. To do this, set the value of blas.
1dflags as the empty string (ex: export THEANO_FLAGS=blas.ldflags=). Depending on the
kind of matrix operations your Theano code performs, this might slow some things down (vs. linking with
BLAS directly).

2) You can install the default (reference) version of BLAS if the NumPy version (against which Theano
links) does not work. If you have root or sudo access in fedora you can do sudo yum install
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blas blas-devel. Under Ubuntu/Debian sudo apt-get install libblas-dev. Then use
the Theano flags blas.ldflags=-1blas. Note that the default version of blas is not optimized. Using
an optimized version can give up to 10x speedups in the BLAS functions that we use.

3) Install the ATLAS library. ATLAS is an open source optimized version of BLAS. You can install a pre-
compiled version on most OSes, but if you’re willing to invest the time, you can compile it to have a faster
version (we have seen speed-ups of up to 3x, especially on more recent computers, against the precompiled
one). On Fedora, sudo yum install atlas-devel. Under Ubuntu, sudo apt-get install
libatlas-base-dev libatlas-base or libatlas3gf-sse2 if your CPU supports SSE2 in-
structions. Then set the Theano flags blas.ldflagsto-1f77blas -latlas —-lgfortran. Note
that these flags are sometimes OS-dependent.

4) Use a faster version like MKL, GOTO, ... You are on your own to install it. See the doc of that
software and set the Theano flags blas.ldflags correctly (for example, for MKL this might be
—1lmkl -lguide -lpthreador —1mkl_intel 1p64 —-1mkl_intel_thread -1lmkl_core
-lguide -liomp5 —-1lmkl_mc -lpthread).

Note: Make sure your BLAS libraries are available as dynamically-loadable libraries. ATLAS is often
installed only as a static library. Theano is not able to use this static library. Your ATLAS installation might
need to be modified to provide dynamically loadable libraries. (On Linux this typically means a library
whose name ends with .so. On Windows this will be a .dll, and on OS-X it might be either a .dylib or a .so.)

This might be just a problem with the way Theano passes compilation arguments to g++, but the problem is
not fixed yet.

Note: If you have problems linking with MKL, Intel Line Advisor and the MKL User Guide can help you
find the correct flags to use.

Using the GPU

The first thing you’ll need for Theano to use your GPU is Nvidia’s GPU-programming toolchain. You
should install at least the CUDA driver and the CUDA Toolkit, as described here. The CUDA Toolkit
installs a folder on your computer with subfolders bin, lib, include, and some more too. (Sanity check: The
bin subfolder should contain an nvce program which is the compiler for GPU code.) This folder is called
the cuda root directory. You must also add the ‘lib’ subdirectory (and/or ‘lib64° subdirectory if you have a
64-bit Linux computer) to your $LD_LIBRARY_PATH environment variable.

You must then tell Theano where the CUDA root folder is, and there are three ways to do it. Any one of
them is enough.

* Define a SCUDA_ROOT environment variable to equal the cuda root directory, as in CUDA_ROOT=/
path/to/cuda/root, or

* add a cuda.root flagto THEANO_FLAGS, as in THEANO_FLAGS="'cuda.root=/path/to/
cuda/root"', or

* add a [cuda] section to your .theanorc file containing the option root = /path/to/cuda/root.

32 Chapter 6. Help!


http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_userguide_lnx/index.htm
https://developer.nvidia.com/cuda-toolkit

theano Documentation, Release 0.8.2

Note: On Debian, you can ask the software package manager to install it for you. We have a user report that
this works for Debian Wheezy (7.0). When you install it this way, you won’t always have the latest version,
but we were told that it gets updated regularly. One big advantage is that it will be updated automatically.
You can try the sudo apt—-get install nvidia-cuda-toolkit command to install it.

Ubuntu instructions.

Once that is done, the only thing left is to change the device option to name the GPU device in your com-
puter, and set the default floating point computations to float32. For example: THEANO_FLAGS="cuda.
root=/path/to/cuda/root,device=gpu, floatX=£float32'. You can also set these options
in the .theanorc file’s [global] section:

[global]

device = gpu

floatX = float32
Note that:

* If your computer has multiple GPUs and you use ‘device=gpu’, the driver selects the one to use
(usually gpu0).

* You can use the program nvida-smi to change this policy.

* You can choose one specific GPU by specifying ‘device=gpuX’, with X the the corresponding GPU
index (0, 1, 2, ...)

* By default, when device indicates preference for GPU computations, Theano will fall back to the
CPU if there is a problem with the GPU. You can use the flag ‘force_device=True’ to instead raise an
error when Theano cannot use the GPU.

Once your setup is complete, head to Using the GPU to find how to verify everything is working properly.

Mac OS

There are various ways to install Theano dependencies on a Mac. Here we describe the process in detail
with Canopy, Anaconda, Homebrew or MacPorts but if you did it differently and it worked, please let us
know the details on the theano-users mailing-list, so that we can add alternate instructions here.

In academia: Enthought Canopy

If you are working in academia, the easiest way to install most of the dependencies is to install Canopy. If
you are affiliated with a university (as student or employee), you can download the installer for free.

The Canopy installation includes in particular Python (and the development headers), NumPy, SciPy, nose,
sphinx, pip, pydot (but not Graphviz, which is necessary for it to work) and the MKL implementation of
blas.

To install the latest Theano release execute this in a terminal:
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$ pip install Theano

If you want the bleeding edge version execute this command instead:

$ pip install —--upgrade —--no-deps git+git://github.com/Theano/Theano.git

See the section install_bleeding edge for more information on the bleeding edge version.

Then you must install the compiler. See Installing the compiler below.

Note: If you use version 0.6 or later of Theano, we try to automatically link with the Canopy blas version.
Due to Mac OS peculiarities, this requires user intervention. We detect if the manipulation was done or not
and give an error message explaining what to do in case it hasn’t been done.

Anaconda

An easy way to install most of the dependencies is to install Anaconda. There is a free version available
to everybody. If you install their MK, Optimizations product (free for academic, ~30$ otherwise)
Theano will also be optimized as we will reuse the faster BLAS version automatically.

The Anaconda installation includes in particular Python (and the development headers), NumPy, SciPy,
nose, sphinx, pip, and a acceptable BLAS version.

After installing Anaconda, in a terminal execute this command to install the latest Theano release:

$ pip install Theano

To install the missing Theano optional dependency (pydot):

$ conda install pydot-ng

If you want the bleeding edge version instead execute this command:

$ pip install --upgrade —--no-deps git+git://github.com/Theano/Theano.git

See the section install_bleeding_edge for more information on the bleeding edge version.

Then you must install the compiler. See /nstalling the compiler below.

Note: If you use version 0.6 or later of Theano, we try to automatically link with the python library. Due to
Mac OS peculiarities, this requires user intervention. We detect if the user did the modification and if not,
we tell him how to do it.
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Installing the compiler

Theano officially supports only clang on OS X. This can be installed by getting XCode from the App Store
and running it once to install the command-line tools.

If you still want to use g++ you can do so by setting its full path in the theano config flag gxx. Note that any
bug reports on Mac using g++ will be ignored unless it can be reproduced with clang.

Homebrew

Install python with homebrew:

$ brew install python # or python3 if you prefer

This will install pip. Then use pip to install numpy, scipy:

$ pip install numpy scipy

If you want to use openblas instead of Accelerate, you have to install numpy and scipy with hombrew:

$ brew tap homebrew/python
$ brew install numpy --with-openblas
$ brew install scipy —--with-openblas

Then install theano as usual:

$ pip install Theano —--user

Or for the bleeding-edge version:

$ pip install —--upgrade —--no-deps git+git://github.com/Theano/Theano.git

MacPorts

Using MacPorts to install all required Theano dependencies is easy, but be aware that it will take a long time
(a few hours) to build and install everything.

* MacPorts requires installing XCode first (which can be found in the Mac App Store), if you do not
have it already. If you can’t install it from the App Store, look in your MacOS X installation DVD for
an old version. Then update your Mac to update XCode.

* Download and install MacPorts, then ensure its package list is up-to-date with sudo port
selfupdate.

* Then, in order to install one or more of the required libraries, use port install, e.g. as follows:

$ sudo port install py27-numpy +atlas py27-scipy +atlas py27-pip
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This will install all the required Theano dependencies. gcc will be automatically installed (since it is
a SciPy dependency), but be aware that it takes a long time to compile (hours)! Having NumPy and
SciPy linked with ATLAS (an optimized BLAS implementation) is not mandatory, but recommended
if you care about performance.

You might have some different versions of gcc, SciPy, NumPy, Python installed on your system,
perhaps via Xcode. It is a good idea to use either the MacPorts version of everything or some other
set of compatible versions (e.g. provided by Xcode or Fink). The advantages of MacPorts are the
transparency with which everything can be installed and the fact that packages are updated quite
frequently. The following steps describe how to make sure you are using the MacPorts version of
these packages.

In order to use the MacPorts version of Python, you will probably need to explicitly select it with
sudo port select python python27. The reason this is necessary is because you may
have an Apple-provided Python (via, for example, an Xcode installation). After performing this
step, you should check that the symbolic link provided by which python points to the MacPorts
python. For instance, on MacOS X Lion with MacPorts 2.0.3, the output of which python is
/opt/local/bin/python and this symbolic link points to /opt/local/bin/python2.7.
When executing sudo port select python python27-apple (which you should not do),
the link points to /usr/bin/python2.7.

Similarly, make sure that you are using the MacPorts-provided gcc: use sudo port select gcc
to see which gcc installs you have on the system. Then execute for instance sudo port select
gcc mp-gcc4d to create a symlink that points to the correct (MacPorts) gcc (version 4.4 in this
case).

At this point, if you have not done so already, it may be a good idea to close and restart your terminal,
to make sure all configuration changes are properly taken into account.

Afterwards, please check that the scipy module that is imported in Python is the right one (and is
a recent one). For instance, import scipy followed by print (scipy.__version__ ) and
print (scipy.__path__) shouldresultin a version number of at least 0.7.0 and a path that starts
with /opt/local (the path where MacPorts installs its packages). If this is not the case, then you
might have some old installation of scipy in your PYTHONPATH so you should edit PYTHONPATH
accordingly.

Please follow the same procedure with numpy.

This is covered in the MacPorts installation process, but make sure that your PATH environment
variable contains /opt/local/bin and /opt/local/sbin before any other paths (to ensure
that the Python and gcc binaries that you installed with MacPorts are visible first).

MacPorts does not create automatically nosetests and pip symlinks pointing to the MacPorts
version, so you can add them yourself with

$ sudo 1n -s /opt/local/bin/nosetests-2.7 /opt/local/bin/
—nosetests
$ sudo 1ln -s /opt/local/bin/pip-2.7 /opt/local/bin/pip

At this point you are ready to install Theano with
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$ sudo pip install Theano

And if you are in no hurry, you can run its test-suite with

$ python -c "import theano; theano.test ()"

Using the GPU

You should be able to follow the Linux instructions to setup CUDA, but be aware of the following caveats:

* If you want to compile the CUDA SDK code, you may need to temporarily revert back to Apple’s gcc
(sudo port select gcc) as their Makefiles are not compatible with MacPort’s gcc.

* If CUDA seems unable to find a CUDA-capable GPU, you may need to manually toggle your GPU
on, which can be done with gfxCardStatus.

Once your setup is complete, head to Using the GPU to find how to verify everything is working properly.

Troubleshooting MacOS issues

Although the above steps should be enough, running Theano on a Mac may sometimes cause unexpected
crashes, typically due to multiple versions of Python or other system libraries. If you encounter such prob-
lems, you may try the following.

* You can ensure MacPorts shared libraries are given priority at run-time with export
LD_LIBRARY_PATH=/opt/local/lib:$LD_LIBRARY_PATH. In order to do the same at
compile time, you can add to your ~/ .theanorc:

[gcel
cxxflags = -L/opt/local/lib

* An obscure Bus error can sometimes be caused when linking Theano-generated object files
against the framework library in Leopard. For this reason, we have disabled linking with
—-framework Python, since on most configurations this solves the Bus error problem. If this
default configuration causes problems with your Python/Theano installation and you think that linking
with —framework Python might help, then either set the THEANO _FLAGS environment variable
with THEANO_FLAGS=cmodule.mac_framework_1link oredit your ~/.theanorc to con-
tain

[emodule]
mac_framework_link=True

* More generally, to investigate libraries issues, you can use the otool —L command on . so files
found under your ~/ . theano directory. This will list shared libraries dependencies, and may help
identify incompatibilities.

Please inform us if you have trouble installing and running Theano on your Mac. We would be especially
interested in dependencies that we missed listing, alternate installation steps, GPU instructions, as well as
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tests that fail on your platform (use the theano-users@googlegroups.com mailing list, but note
that you must first register to it, by going to theano-users).

Windows

install_windows provides step-by-step instructions on how to install Theano on 32- or 64-bit Windows
systems, using freely available tools and compilers.

Editing code in Visual Studio

You will find a Visual Studio solution file (Theano. s1n) in the root of the Theano repository. Note that
this project file may not be kept up-to-date and is not officially supported by the core Theano developers: it
is provided for convenience only. Also, be aware that it will not make Theano use Visual Studio to compile
C files: it is only meant to provide an easy way to edit Theano code within the Visual Studio editor.

Windows Installation References

1. http://stackoverflow.com/questions/9047072/windows-python-version-and-vc-redistributable-version
http://stackoverflow.com/questions/1865069/how-to-compile-a-64-bit-application-using-visual-c-2010-express
http://blog.victorjabur.com/2011/06/05/compiling-python-2-7-modules-on-windows-32-and-64-using-msvc-2008-e>
http://stackoverflow.com/questions/126279/c99-stdint-h-header-and-ms- visual-studio

http://stackoverflow.com/questions/11182765/how-can-i-build-my-c-extensions- with-mingw-w64-in-python

AN

https://mail.python.org/pipermail/python-announce-list/2014-September/010457.html

Generating the documentation

You can read the latest HTML documentation here. You can download the latest PDF documentation here.

We recommend you look at the documentation on the website, since it will be more current than the docu-
mentation included with the package.

If you really wish to build the documentation yourself, you will need sphinx, as described above. Issue the
following command:

python ./doc/scripts/docgen.py

Documentation is built into htm1 /. The PDF of the documentation is html /theano.pdf.

6.2.4 Tutorial

Let us start an interactive session (e.g. with python or ipython) and import Theano.
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>>> from theano import =«

Several of the symbols you will need to use are in the tensor subpackage of Theano. Let us import that
subpackage under a handy name like T (the tutorials will frequently use this convention).

>>> import theano.tensor as T

If that succeeded you are ready for the tutorial, otherwise check your installation (see Installing Theano).

Throughout the tutorial, bear in mind that there is a Glossary as well as index and modules links in the
upper-right corner of each page to help you out.

Prerequisites

Python tutorial

In this documentation, we suppose that the reader knows Python. Here is a small list of Python tutori-
als/exercises if you need to learn it or only need a refresher:

* Python Challenge

* Dive into Python

* Google Python Class

* Enthought Python course (free for academics)

We have a tutorial on how Python manages its memory.

NumPy refresher

Here are some quick guides to NumPy:
* Numpy quick guide for Matlab users
* Numpy User Guide
* More detailed Numpy tutorial
* 100 NumPy exercises

* Numpy tutorial

Matrix conventions for machine learning

Rows are horizontal and columns are vertical. Every row is an example. Therefore, inputs[10,5] is a matrix
of 10 examples where each example has dimension 5. If this would be the input of a neural network then
the weights from the input to the first hidden layer would represent a matrix of size (5, #hid).

Consider this array:
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>>> numpy.asarray ([[1l., 21, [3, 41, [5, 6]11)
array ([[ 1., 2.7,
[ 3., 4.1,
[ 5., 6.11)
>>> numpy.asarray([[1l., 21, [3, 41, [5, 6]1).shape
(3, 2)

This is a 3x2 matrix, i.e. there are 3 rows and 2 columns.

To access the entry in the 3rd row (row #2) and the 1st column (column #0):

>>> numpy.asarray([[1., 21, [3, 41, [5, 611)[2, O]
5.0

To remember this, keep in mind that we read left-to-right, top-to-bottom, so each thing that is contiguous is
a row. That is, there are 3 rows and 2 columns.

Broadcasting

Numpy does broadcasting of arrays of different shapes during arithmetic operations. What this means in
general is that the smaller array (or scalar) is broadcasted across the larger array so that they have compatible
shapes. The example below shows an instance of broadcastaing:

>>> a = numpy.asarray([1.0, 2.0, 3.01)
>> b = 2.0
>>> a

o

*
array ([ 2., 4., 6.1)

The smaller array b (actually a scalar here, which works like a 0-d array) in this case is broadcasted to the
same size as a during the multiplication. This trick is often useful in simplifying how expression are written.
More detail about broadcasting can be found in the numpy user guide.

Basics

Baby Steps - Algebra

Adding two Scalars

To get us started with Theano and get a feel of what we’re working with, let’s make a simple function: add
two numbers together. Here is how you do it:

>>> import numpy
>>> import theano.tensor as T
>>> from theano import function

>>> x = T.dscalar('x")

>>> y = T.dscalar('y")

>>> 7z = X + vy

>>> f = function([x, y], 2z)

40 Chapter 6. Help!



http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

theano Documentation, Release 0.8.2

And now that we’ve created our function we can use it:

>>> f (2, 3)

array (5.0)

>>> numpy.allclose(f(16.3, 12.1), 28.4)
True

Let’s break this down into several steps. The first step is to define two symbols (Variables) representing the
quantities that you want to add. Note that from now on, we will use the term Variable to mean “symbol” (in
other words, x, y, z are all Variable objects). The output of the function f is a numpy . ndarray with zero
dimensions.

If you are following along and typing into an interpreter, you may have noticed that there was a slight delay
in executing the function instruction. Behind the scene, f was being compiled into C code.

Step 1
>>> x = T.dscalar('x")
>>> y = T.dscalar('y")

In Theano, all symbols must be typed. In particular, T.dscalar is the type we assign to “O-dimensional
arrays (scalar) of doubles (d)”. It is a Theano Type.

dscalar is not a class. Therefore, neither x nor y are actually instances of dscalar. They are instances
of TensorVariable. x and y are, however, assigned the theano Type dscalar in their type field, as
you can see here:

>>> type (x)

<class 'theano.tensor.var.TensorVariable'>
>>> x.type

TensorType (float64, scalar)

>>> T.dscalar

TensorType (float64, scalar)

>>> x.type is T.dscalar

True

By calling T.dscalar with a string argument, you create a Variable representing a floating-point scalar
quantity with the given name. If you provide no argument, the symbol will be unnamed. Names are not
required, but they can help debugging.

More will be said in a moment regarding Theano’s inner structure. You could also learn more by looking
into Graph Structures.

Step 2

The second step is to combine x and y into their sum z:

>>> z = X +y

z is yet another Variable which represents the addition of x and y. You can use the pp function to pretty-print
out the computation associated to z.
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>>> from theano import pp
>>> print (pp(z))
(x + vy)

Step 3

The last step is to create a function taking x and y as inputs and giving z as output:

>>> f

function([x, vyl, z)

The first argument to function is a list of Variables that will be provided as inputs to the function. The
second argument is a single Variable or a list of Variables. For either case, the second argument is what we
want to see as output when we apply the function. f may then be used like a normal Python function.

Note: As a shortcut, you can skip step 3, and just use a variable’s eval method. The eval () method
is not as flexible as function () but it can do everything we’ve covered in the tutorial so far. It has the
added benefit of not requiring you to import function () . Here is how eval () works:

>>> import numpy
>>> import theano.tensor as T

>>> x = T.dscalar('x")

>>> y = T.dscalar('y")

>>> z = X +y

>>> numpy.allclose(z.eval({x : 16.3, y : 12.1}), 28.4)
True

We passed eval () a dictionary mapping symbolic theano variables to the values to substitute for them,
and it returned the numerical value of the expression.

eval () will be slow the first time you call it on a variable — it needs to call function () to compile the
expression behind the scenes. Subsequent calls to eval () on that same variable will be fast, because the
variable caches the compiled function.

Adding two Matrices

You might already have guessed how to do this. Indeed, the only change from the previous example is that
you need to instantiate x and y using the matrix Types:

>>> x = T.dmatrix('x")

>>> y = T.dmatrix('y")

>>> z = X +y

>>> f = function([x, y], z)

dmatrix is the Type for matrices of doubles. Then we can use our new function on 2D arrays:

>>> f£([[1, 2], [3, 411, [[l10, 201, [30, 4011)
array ([[ 11., 22.1,
[ 33., 44.11)
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The variable is a NumPy array. We can also use NumPy arrays directly as inputs:

>>> import numpy
>>> f (numpy.array([[1l, 2], [3, 41]), numpy.array([[10, 201, [30, 40711]1))
array ([[ 11., 22.71,

[ 33., 44.11)

It is possible to add scalars to matrices, vectors to matrices, scalars to vectors, etc. The behavior of these
operations is defined by broadcasting.

The following types are available:

* byte: bscalar, bvector, bmatrix, brow, bcol, btensor3, btensor4

¢ 16-bit integers: wscalar, wvector, wmatrix, wrow, wcol, wtensor3,
wtensor4

e 32-bit integers: iscalar, ivector, imatrix, irow, icol, itensor3,
itensorid

¢ 64-bit integers: lscalar, lvector, lmatrix, lrow, lcol, ltensor3,
ltensori4

e float: fscalar, fvector, fmatrix, frow, fcol, ftensor3, ftensori
e double: dscalar, dvector, dmatrix, drow, dcol, dtensor3, dtensorid
* complex: cscalar, cvector, cmatrix, crow, ccol, ctensor3, ctensori

The previous list is not exhaustive and a guide to all types compatible with NumPy arrays may be found
here: tensor creation.

Note: You, the user—not the system architecture—have to choose whether your program will use 32- or
64-bit integers (i prefix vs. the 1 prefix) and floats (£ prefix vs. the d prefix).

Exercise

import theano

a = theano.tensor.vector () # declare variable
out = a + a xx 10 # build symbolic expression
f = theano.function([a], out) # compile function

print (£([0, 1, 21))

[ 0. 2. 1026.]

Modify and execute this code to compute this expression: a ¥* 2 + b ** 2 + 2 * a * b,

Solution
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More Examples

At this point it would be wise to begin familiarizing yourself more systematically with Theano’s fundamental
objects and operations by browsing this section of the library: Basic Tensor Functionality.

As the tutorial unfolds, you should also gradually acquaint yourself with the other relevant areas of the
library and with the relevant subjects of the documentation entrance page.

Logistic Function

Here’s another straightforward example, though a bit more elaborate than adding two numbers together.
Let’s say that you want to compute the logistic curve, which is given by:

1

)=

1

Fig. 6.1: A plot of the logistic function, with x on the x-axis and s(x) on the y-axis.

You want to compute the function e/lementwise on matrices of doubles, which means that you want to apply
this function to each individual element of the matrix.

Well, what you do is this:

>>> import theano
>>> import theano.tensor as T
>>> x = T.dmatrix('x")
>>> s =1 / (1 + T.exp(-x))
>>> logistic = theano.function([x], s)
>>> logistic([[0, 1], [-1, -211)
array ([[ 0.5 , 0.73105858],
[ 0.26894142, 0.1192029211)

The reason logistic is performed elementwise is because all of its operations—division, addition, exponen-
tiation, and division—are themselves elementwise operations.
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It is also the case that:

1 14 tanh(z/2)

s(z) = e 5

We can verify that this alternate form produces the same values:

>>> s2 = (1 + T.tanh(x / 2)) / 2
>>> logistic2 = theano.function([x], s2)
>>> logistic2([[O0, 11, [-1, -211)
array ([[ 0.5 , 0.73105858]

[ 0.26894142, 0.1192029211])

Computing More than one Thing at the Same Time

Theano supports functions with multiple outputs. For example, we can compute the elementwise difference,
absolute difference, and squared difference between two matrices a and b at the same time:

>>> a, b = T.dmatrices('a', 'b'")

>>> diff = a - b

>>> abs diff = abs(diff)

>>> diff_squared = diffx*2

>>> f = theano.function([a, bl, [diff, abs_diff, diff_ squared])

Note: dmatrices produces as many outputs as names that you provide. It is a shortcut for allocating
symbolic variables that we will often use in the tutorials.

When we use the function f, it returns the three variables (the printing was reformatted for readability):

>>> f£([(1, 11, (1, 111, ([0, 11, [2, 311)
[array ([[ 1., 0.1,

[(-1., -2.11), array([[ 1., ©O.],

[ 1., 2.11), array([[ 1., 0.],

[ 1., 4.11)]1

Setting a Default Value for an Argument

Let’s say you want to define a function that adds two numbers, except that if you only provide one number,
the other input is assumed to be one. You can do it like this:

>>> from theano import In

>>> from theano import function

>>> x, y = T.dscalars('x', 'y")

>>> z = X +y

>>> f = function([x, In(y, value=1l)1]1, z)
>>> £ (33)

array (34.0)
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>>> £ (33, 2)
array (35.0)

This makes use of the /n class which allows you to specify properties of your function’s parameters with
greater detail. Here we give a default value of 1 for y by creating a In instance with its value field set to
1.

Inputs with default values must follow inputs without default values (like Python’s functions). There can
be multiple inputs with default values. These parameters can be set positionally or by name, as in standard
Python:

14
(
function([x, In(y, value=1l), In(w, value=2, name='w_by_name')], z)
)

33, w_by_name=1)
34.0)

33, w_by_name=1, y=0)
33.0)

array
>>> f
array

Note: In does not know the name of the local variables y and w that are passed as arguments. The
symbolic variable objects have name attributes (set by dscalars in the example above) and these are the
names of the keyword parameters in the functions that we build. This is the mechanism at work in In (y,
value=1). In the case of In(w, value=2, name='w_by_name'). We override the symbolic
variable’s name attribute with a name to be used for this function.

You may like to see Function in the library for more detail.

Using Shared Variables

It is also possible to make a function with an internal state. For example, let’s say we want to make an
accumulator: at the beginning, the state is initialized to zero. Then, on each function call, the state is
incremented by the function’s argument.

First let’s define the accumulator function. It adds its argument to the internal state, and returns the old state
value.

>>> from theano import shared

>>> state = shared(0)

>>> inc = T.iscalar('inc'")

>>> accumulator = function([inc], state, updates=[(state, statetinc)])

This code introduces a few new concepts. The shared function constructs so-called shared variables.
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These are hybrid symbolic and non-symbolic variables whose value may be shared between multiple func-
tions. Shared variables can be used in symbolic expressions just like the objects returned by dmatrices (.
. .) but they also have an internal value that defines the value taken by this symbolic variable in all the
functions that use it. It is called a shared variable because its value is shared between many functions. The
value can be accessed and modified by the . get_value () and . set_value () methods. We will come
back to this soon.

The other new thing in this code is the updates parameter of function. updates must be supplied
with a list of pairs of the form (shared-variable, new expression). It can also be a dictionary whose keys are
shared-variables and values are the new expressions. Either way, it means “whenever this function runs, it
will replace the .value of each shared variable with the result of the corresponding expression”. Above,
our accumulator replaces the state‘s value with the sum of the state and the increment amount.

Let’s try it out!

>>> print (state.get_value())
0

>>> accumulator (1)

array (0)

>>> print (state.get_value())
1

>>> accumulator (300)

array (1)

>>> print (state.get_value())
301

It is possible to reset the state. Just use the . set_value () method:

>>> state.set_value(-1)

>>> accumulator (3)

array (-1)

>>> print (state.get_value())
2

As we mentioned above, you can define more than one function to use the same shared variable. These
functions can all update the value.

>>> decrementor = function([inc], state, updates=[(state, state-inc)])
>>> decrementor (2)

array (2)

>>> print (state.get_value())

0

You might be wondering why the updates mechanism exists. You can always achieve a similar result by
returning the new expressions, and working with them in NumPy as usual. The updates mechanism can be
a syntactic convenience, but it is mainly there for efficiency. Updates to shared variables can sometimes be
done more quickly using in-place algorithms (e.g. low-rank matrix updates). Also, Theano has more control
over where and how shared variables are allocated, which is one of the important elements of getting good
performance on the GPU.

It may happen that you expressed some formula using a shared variable, but you do not want to use its value.
In this case, you can use the givens parameter of function which replaces a particular node in a graph
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for the purpose of one particular function.

>>> fn_of_ state = state * 2 + inc

>>> # The type of foo must match the shared variable we are replacing
>>> # with the " ‘givens' '

>>> foo = T.scalar (dtype=state.dtype)

>>> skip_shared = function([inc, foo], fn_of_state, givens=[ (state, foo)])
>>> skip_shared (1, 3) # we're using 3 for the state, not state.value

array (7)

>>> print (state.get_value()) # old state still there, but we didn't use it
0

The givens parameter can be used to replace any symbolic variable, not just a shared variable. You can
replace constants, and expressions, in general. Be careful though, not to allow the expressions introduced
by a givens substitution to be co-dependent, the order of substitution is not defined, so the substitutions
have to work in any order.

In practice, a good way of thinking about the givens is as a mechanism that allows you to replace any part
of your formula with a different expression that evaluates to a tensor of same shape and dtype.

Note: Theano shared variable broadcast pattern default to False for each dimensions. Shared variable size
can change over time, so we can’t use the shape to find the broadcastable pattern. If you want a different
pattern, just pass it as a parameter theano.shared (..., broadcastable=(True, False))

Copying functions

Theano functions can be copied, which can be useful for creating similar functions but with different shared
variables or updates. This is done using the copy () method of function objects. The optimized graph
of the original function is copied, so compilation only needs to be performed once.

Let’s start from the accumulator defined above. Let’s add the on_unused_input="'ignore"' parameter
in case we don’t want to use both of our current arguments in a future copy of the function (this isn’t
necessary on versions > 0.8.2):

>>> import theano

>>> import theano.tensor as T

>>> state = theano.shared(0)

>>> inc = T.iscalar('inc'")

>>> accumulator = theano.function([inc], state, updates=|[ (state, state+inc)],
—on_unused_input="ignore')

‘We can use it to increment the state as usual:

>>> accumulator (10)

array (0)

>>> print (state.get_value())
10
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We can use copy () to create a similar accumulator but with its own internal state using the swap param-
eter, which is a dictionary of shared variables to exchange:

>>> new_state = theano.shared(0)

>>> new_accumulator = accumulator.copy (swap={state:new_state})
>>> new_accumulator (100)

[array (0) ]

>>> print (new_state.get_value())

100

The state of the first function is left untouched:

>>> print (state.get_value())
10

We now create a copy with updates removed using the delete_updates parameter, which is set to
False by default. Notice our new copy doesn’t actually use the inc argument after removing the
updates parameter:

>>> null_accumulator = accumulator.copy (delete_updates=True)

As expected, the shared state is no longer updated:

>>> null_accumulator (9000)
[array (10) ]

>>> print (state.get_value())
10

Using Random Numbers

Because in Theano you first express everything symbolically and afterwards compile this expression to get
functions, using pseudo-random numbers is not as straightforward as it is in NumPy, though also not too
complicated.

The way to think about putting randomness into Theano’s computations is to put random variables in your
graph. Theano will allocate a NumPy RandomStream object (a random number generator) for each such
variable, and draw from it as necessary. We will call this sort of sequence of random numbers a random
stream. Random streams are at their core shared variables, so the observations on shared variables hold here
as well. Theanos’s random objects are defined and implemented in RandomStreams and, at a lower level, in
RandomStreamsBase.

Brief Example

Here’s a brief example. The setup code is:

from theano.tensor.shared randomstreams import RandomStreams
from theano import function

srng = RandomStreams (seed=234)

rv_u = srng.uniform((2,2))
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rv_n = srng.normal ((2,2))
f = function([], rv_u)

g = function([], rv_n, no_default_updates=True) #Not updating rv_n.rng
nearly_zeros = function([], rv_u + rv_u - 2 % rv_u)

Here, ‘rv_u’ represents a random stream of 2x2 matrices of draws from a uniform distribution. Likewise,
‘rv_n’ represents a random stream of 2x2 matrices of draws from a normal distribution. The distributions
that are implemented are defined in RandomStreams and, at a lower level, in raw_random. They only
work on CPU. See Other Implementations for GPU version.

Now let’s use these objects. If we call f(), we get random uniform numbers. The internal state of the random
number generator is automatically updated, so we get different random numbers every time.

>>> f vall = f£()
>>> £ vall = f£() #different numbers from f_valO

When we add the extra argument no_default_updates=True to function (as in g), then the ran-
dom number generator state is not affected by calling the returned function. So, for example, calling g
multiple times will return the same numbers.

>>> g_valo0
>>> g_vall = g{() # same numbers as g_valO!

g() # different numbers from f_val0 and f_vall

An important remark is that a random variable is drawn at most once during any single function execution.
So the nearly_zeros function is guaranteed to return approximately O (except for rounding error) even though
the rv_u random variable appears three times in the output expression.

>>> nearly_zeros = function([], rv_u + rv_u — 2 % rv_u)

Seeding Streams

Random variables can be seeded individually or collectively.

You can seed just one random variable by seeding or assigning to the .rng attribute, using .rng.
set_value ().

>>> rng_val = rv_u.rng.get_value (borrow=True) # Get the rng for rv_u
>>> rng_val.seed (89234) # seeds the generator
>>> rv_u.rng.set_value (rng_val, borrow=True) # Assign back seeded rng

You can also seed all of the random variables allocated by a RandomSt reams object by that object’s seed
method. This seed will be used to seed a temporary random number generator, that will in turn generate
seeds for each of the random variables.

>>> srng.seed (902340) # seeds rv_u and rv_n with different seeds each
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Sharing Streams Between Functions

As usual for shared variables, the random number generators used for random variables are common between
functions. So our nearly_zeros function will update the state of the generators used in function f above.

For example:

>>> state_after_v0 = rv_u.rng.get_value () .get_state()
>>> nearly_zeros() # this affects rv_u's generator
array ([[ 0., 0.1,

[ 0., 0.10)
>>> vl = f()
>>> rng = rv_u.rng.get_value (borrow=True)

>>> rng.set_state(state_after_v0)

>>> rv_u.rng.set_value (rng, borrow=True)
>>> v2 = f() # vz = vl

>>> v3 = f() # v3 == vl

Copying Random State Between Theano Graphs

In some use cases, a user might want to transfer the “state” of all random number generators associated
with a given theano graph (e.g. gl, with compiled function f1 below) to a second graph (e.g. g2, with
function f2). This might arise for example if you are trying to initialize the state of a model, from the pa-
rameters of a pickled version of a previous model. For t heano. tensor.shared_randomstreams.
RandomStreamsand theano.sandbox.rng_mrg.MRG_RandomStreams this can be achieved by
copying elements of the state_updates parameter.

Each time a random variable is drawn from a RandomStreams object, a tuple is added to the state_updates
list. The first element is a shared variable, which represents the state of the random number generator
associated with this particular variable, while the second represents the theano graph corresponding to the
random number generation process (i.e. RandomFunction{uniform}.0).

An example of how “random states” can be transferred from one theano function to another is shown below.

>>> from _ future  import print_function

>>> import theano

>>> import numpy

>>> import theano.tensor as T

>>> from theano.sandbox.rng mrg import MRG_RandomStreams

>>> from theano.tensor.shared randomstreams import RandomStreams

>>> class Graph() :
def _ init_ (self, seed=123):
self.rng = RandomStreams (seed)
self.y = self.rng.uniform(size=(1,))

>>> gl

Graph (seed=123)
>>> f1 = theano.function([], gl.y)
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>>> g2 = Graph(seed=987)
>>> f2 = theano.function([], g2.y)

>>> # By default, the two functions are out of sync.
>>> f£1 ()

array ([ 0.728030091])

>>> £2()

array ([ 0.55056769])

>>> def copy_random_state(gl, g2):
if isinstance(gl.rng, MRG_RandomStreams) :
g2.rng.rstate = gl.rng.rstate
for (sul, su2) in zip(gl.rng.state_updates, g2.rng.state_updates):
su2[0].set_value(sul[0].get_value())

>>> # We now copy the state of the theano random number generators.
>>> copy_random_state(gl, g2)

>>> f£1()
array ([ 0.59044123])
>>> £2 ()
array ([ 0.590441237)

Other Random Distributions

There are other distributions implemented.

Other Implementations

There are 2 other implementations based on MRG3/k3p and CURAND. The RandomStream only work on
the CPU, MRG31k3p work on the CPU and GPU. CURAND only work on the GPU.

Note: To use you the MRG version easily, you can just change the import to:

from theano.sandbox.rng mrg import MRG_RandomStreams as RandomStreams

A Real Example: Logistic Regression

The preceding elements are featured in this more realistic example. It will be used repeatedly.

import numpy

import theano

import theano.tensor as T
rng = numpy.random
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N 400
feats

784

# generate a dataset: D =
D (rng.randn (N, feats),
training_steps 10000

(input_values,

# Declare Theano symbolic variables

x = T.dmatrix ("x")

y = T.dvector("y")

# initialize the weight vector w randomly

#

# this and the following bias variable b

# are shared so they keep their values

# between training iterations (updates)

w = theano.shared(rng.randn (feats), name="w"

# initialize the bias term

b = theano.shared (0., name="b")

print ("Initial model:")

print (w.get_value())

print (b.get_value())

# Construct Theano expression graph

p_1l =1/ (1 + T.exp(-T.dot(x, w) - b))

prediction = p_1 > 0.5

xent = -y * T.log(p_1l) - (1l-y) = T.log(l-p_1)

cost = xent.mean() + 0.01 * (w =% 2).sum(

gw, gb = T.grad(cost, [w, Dbl)

—~tutorial)

# Compile

train = theano.function(
inputs=I[x,v],
outputs=[prediction, xent],
updates=((w, w — 0.1 % gw), (b,

predict = theano.function (inputs=[x],

# Train

for i in range(training_steps):

pred, err = train(D[O0], D[1])
print ("Final model:")

(
print (w.get_value())

print (b.get_value())

print ("target values for D:")
print (D[11])

rng.randint (size=N,

# training sample size
# number of input variables

target_class)
low=0, high=2))

)

# Probability that target 1
# The prediction thresholded
# Cross—entropy loss function
) # The cost to minimize
# Compute the gradient of the cost
# w.r.t weight vector w and
# bias term b
# (we shall return to this in a

# following section of this,

b - 0.1 % gb)))

outputs=prediction)
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print ("prediction on D:")
print (predict (D[0]))

Derivatives in Theano
Computing Gradients

Now let’s use Theano for a slightly more sophisticated task: create a function which computes the derivative
of some expression y with respect to its parameter x. To do this we will use the macro T . grad. For instance,
we can compute the gradient of 2 with respect to x. Note that: d(z?)/dz = 2 - z.

Here is the code to compute this gradient:

>>> import numpy

>>> import theano

>>> import theano.tensor as T
>>> from theano import pp

>>> x = T.dscalar('x")

>>> y = X x% 2

>>> gy = T.grad(y, Xx)

>>> pp(gy) # print out the gradient prior to optimization

'"((fill ((x =% TensorConstant{2}), TensorConstant{1l.0}) » TensorConstant{2}) x_
— (x ** (TensorConstant{2} - TensorConstant{l})))'

>>> f = theano.function([x], gy)

>>> £ (4)

array (8.0)
>>> numpy.allclose(£(94.2), 188.4)
True

In this example, we can see from pp (gy) that we are computing the correct symbolic gradient. £111 ( (x
** 2), 1.0) means to make a matrix of the same shape as x ** 2 and fill it with 1.0.

Note: The optimizer simplifies the symbolic gradient expression. You can see this by digging inside the
internal properties of the compiled function.

pp (f .maker.fgraph.outputs[0])
'(2.0 * x)!

After optimization there is only one Apply node left in the graph, which doubles the input.

We can also compute the gradient of complex expressions such as the logistic function defined above. It
turns out that the derivative of the logistic is: ds(z)/dz = s(z) - (1 — s(x)).

>>> x = T.dmatrix('x")

>>> g = T.sum(l / (1 + T.exp(-x)))

>>> gs = T.grad(s, x)

>>> dlogistic = theano.function([x], gs)

>>> dlogistic([[0, 11, [-1, -211)

54 Chapter 6. Help!




theano Documentation, Release 0.8.2

Fig. 6.2: A plot of the gradient of the logistic function, with x on the x-axis and ds(x)/dx on the y-axis.

array ([[ 0.25 , 0.19661193],
[ 0.19661193, 0.1049935911)

In general, for any scalar expression s, T.grad (s, w) provides the Theano expression for computing
a%- In this way Theano can be used for doing efficient symbolic differentiation (as the expression returned
by T.grad will be optimized during compilation), even for function with many inputs. (see automatic
differentiation for a description of symbolic differentiation).

Note: The second argument of T.grad can be a list, in which case the output is also a list. The order
in both lists is important: element i of the output list is the gradient of the first argument of T.grad with
respect to the i-th element of the list given as second argument. The first argument of T.grad has to be a
scalar (a tensor of size 1). For more information on the semantics of the arguments of T . grad and details
about the implementation, see this section of the library.

Additional information on the inner workings of differentiation may also be found in the more advanced
tutorial Extending Theano.

Computing the Jacobian

In Theano’s parlance, the term Jacobian designates the tensor comprising the first partial derivatives of the
output of a function with respect to its inputs. (This is a generalization of to the so-called Jacobian matrix
in Mathematics.) Theano implements the t heano. gradient. jacobian () macro that does all that is
needed to compute the Jacobian. The following text explains how to do it manually.

In order to manually compute the Jacobian of some function y with respect to some parameter x we need to
use scan. What we do is to loop over the entries in y and compute the gradient of y/i] with respect to x.

Note: scan is a generic op in Theano that allows writing in a symbolic manner all kinds of recurrent
equations. While creating symbolic loops (and optimizing them for performance) is a hard task, effort is
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being done for improving the performance of scan. We shall return to scan later in this tutorial.

>>> import theano
>>> import theano.tensor as T

>>> x = T.dvector('x")
>>> y = X Kk*k 2
>>> J, updates = theano.scan(lambda i, y,x : T.grad(y[i], x), sequences=T.

—arange (y.shape[0]), non_sequences=[y,x])

>>> f = theano.function([x], J, updates=updates)
>>> £([4, 4])
array ([ [ -]

[

8., 0.1,
0., 8.11)

What we do in this code is to generate a sequence of ints from 0 to y . shape [0] using T.arange. Then
we loop through this sequence, and at each step, we compute the gradient of element y/i] with respect to x.
scan automatically concatenates all these rows, generating a matrix which corresponds to the Jacobian.

Note: There are some pitfalls to be aware of regarding T.grad. One of them is that you cannot re-
write the above expression of the Jacobian as theano.scan (lambda y_i,x: T.grad(y_i,x),
sequences=y, non_sequences=x), even though from the documentation of scan this seems possi-
ble. The reason is that y_i will not be a function of x anymore, while y/i] still is.

Computing the Hessian

In Theano, the term Hessian has the usual mathematical acception: It is the matrix comprising the second
order partial derivative of a function with scalar output and vector input. Theano implements theano.
gradient.hessian () macro that does all that is needed to compute the Hessian. The following text
explains how to do it manually.

You can compute the Hessian manually similarly to the Jacobian. The only difference is that now, instead
of computing the Jacobian of some expression y, we compute the Jacobian of T.grad (cost, x), where
cost is some scalar.

>>> x = T.dvector('x")
>>> y = X xk 2
>>> cost = y.sum()

>>> gy = T.grad(cost, x)
>>> H, updates = theano.scan(lambda i, gy,x : T.grad(gy[i], x), sequences=T.
—arange (gy.shape[0]), non_sequences=[gy, x])

>>> f = theano.function([x], H, updates=updates)
>>> £ ([4, 41])
array ([[ 2., 0.7,

[ 0., 2.11)
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Jacobian times a Vector

Sometimes we can express the algorithm in terms of Jacobians times vectors, or vectors times Jacobians.
Compared to evaluating the Jacobian and then doing the product, there are methods that compute the desired
results while avoiding actual evaluation of the Jacobian. This can bring about significant performance gains.
A description of one such algorithm can be found here:

* Barak A. Pearlmutter, “Fast Exact Multiplication by the Hessian”, Neural Computation, 1994

While in principle we would want Theano to identify these patterns automatically for us, in practice, im-
plementing such optimizations in a generic manner is extremely difficult. Therefore, we provide special
functions dedicated to these tasks.

R-operator

The R operator is built to evaluate the product between a Jacobian and a vector, namely 8](;(;)11. The
formulation can be extended even for x being a matrix, or a tensor in general, case in which also the Jacobian
becomes a tensor and the product becomes some kind of tensor product. Because in practice we end up
needing to compute such expressions in terms of weight matrices, Theano supports this more generic form
of the operation. In order to evaluate the R-operation of expression y, with respect to x, multiplying the

Jacobian with v you need to do something similar to this:

>>> W = T.dmatrix ('Ww'")

>>> V = T.dmatrix('V")

>>> x = T.dvector('x")

>>> y = T.dot (x, W)

>>> JV = T.Rop(y, W, V)

>>> f = theano.function([W, V, x], JV)

>>> f£([11, 11, 1, 111, (12, 21, [2, 211, [0,1])
array ([ 2., 2.1)

List of Op that implement Rop.

L-operator

In similitude to the R-operator, the L-operator would compute a row vector times the Jacobian. The mathe-

matical formula would be v%ﬁ’:). The L-operator is also supported for generic tensors (not only for vectors).

Similarly, it can be implemented as follows:

>>> w")
IVV)
= T.dvector ('x")
= T.dot (x, W)

W = T.dmatrix ('
v (
b 4
Yy
>>> VJ = T.Lop(y, W, V)
f
f
Yy

>>> T.dvector

>>>
>>>

>>> = theano. function ([v,x], VJ)
([
([

>>> r 21y 11)

2 [o,
arra [ 0., 0.7,
[ 2., 2.11)

6.2. How to provide help 57




theano Documentation, Release 0.8.2

Note:

v, the point of evaluation, differs between the L-operator and the R-operator. For the L-
operator, the point of evaluation needs to have the same shape as the output, whereas for the
R-operator this point should have the same shape as the input parameter. Furthermore, the re-
sults of these two operations differ. The result of the L-operator is of the same shape as the
input parameter, while the result of the R-operator has a shape similar to that of the output.

List of op with r op support.

Hessian times a Vector

If you need to compute the Hessian times a vector, you can make use of the above-defined operators to
do it more efficiently than actually computing the exact Hessian and then performing the product. Due to
the symmetry of the Hessian matrix, you have two options that will give you the same result, though these
options might exhibit differing performances. Hence, we suggest profiling the methods before using either
one of the two:

>>> x = T.dvector('x")

>>> v = T.dvector ('v'")

>>> y = T.sum(x ** 2)

>>> gy = T.grad(y, Xx)

>>> vH = T.grad(T.sum(gy * V), X)
>>> f = theano.function([x, v], VvH)
>>> f£([4, 41, [2, 21])

array ([ 4., 4.17)

or, making use of the R-operator:

>>> x = T.dvector('x")
>>> v

T.dvector ('v")
>>> y = T.sum(x **x 2)
>>> gy = T.grad(y, x)
>>> Hv = T.Rop(gy, X, V)

>>> f = theano.function([x, v], Hv)
>>> f([4, 4], [2, 2])
array ([ 4., 4.1)

Final Pointers

* The grad function works symbolically: it receives and returns Theano variables.
* grad can be compared to a macro since it can be applied repeatedly.
* Scalar costs only can be directly handled by grad. Arrays are handled through repeated applications.

* Built-in functions allow to compute efficiently vector times Jacobian and vector times Hessian.
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* Work is in progress on the optimizations required to compute efficiently the full Jacobian and the
Hessian matrix as well as the Jacobian times vector.

Conditions

IfElse vs Switch

* Both ops build a condition over symbolic variables.
* IfElse takes a boolean condition and two variables as inputs.

* Switch takes a tensor as condition and two variables as inputs. switch is an elementwise operation
and is thus more general than i felse.

* Whereas switch evaluates both output variables, i felse is lazy and only evaluates one variable
with respect to the condition.

Example

from theano import tensor as T
from theano.ifelse import ifelse
import theano, time, numpy

a,b = T.scalars('a', 'b")
x,y = T.matrices('x', 'y'")

z_switch = T.switch(T.lt(a, b), T.mean(x), T.mean(y))
z_lazy = ifelse(T.1lt(a, b), T.mean(x), T.mean(y))

f_switch = theano.function([a, b, x, y], z_switch,
mode=theano.Mode (linker="vm'))
f_lazyifelse = theano.function([a, b, x, yl, z_lazy,
mode=theano.Mode (linker="vm'))

vall = 0.
val2 = 1.
big_matl = numpy.ones((10000, 1000))
big_mat2 numpy.ones ( (10000, 1000))

n_times = 10

tic = time.clock ()

for i in range(n_times):
f_switch(vall, val2, big matl, big_mat2)
print ('time spent evaluating both wvalues sec' % (time.clock () - tic))

tic = time.clock ()

for i in range(n_times):
f _lazyifelse(vall, val2, big_matl, big_mat2)
print ('time spent evaluating one value sec' % (time.clock () - tic))
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In this example, the T fE1se op spends less time (about half as much) than Switch since it computes only
one variable out of the two.

$ python ifelse_switch.py
time spent evaluating both wvalues 0.6700 sec
time spent evaluating one value 0.3500 sec

Unless 1inker="vm' or linker="'cvm' are used, 1felse will compute both variables and take the
same computation time as switch. Although the linker is not currently set by default to cvm, it will be in
the near future.

There is no automatic optimization replacing a switch with a broadcasted scalar to an 1 felse, as this is
not always faster. See this ticket.

Note: If you use fest values, then all branches of the IfElse will be computed. This is normal, as using
test_value means everything will be computed when we build it, due to Python’s greedy evaluation and the
semantic of test value. As we build both branches, they will be executed for test values. This doesn’t cause
any changes during the execution of the compiled Theano function.

Loop
Scan

* A general form of recurrence, which can be used for looping.

* Reduction and map (loop over the leading dimensions) are special cases of scan.

* You scan a function along some input sequence, producing an output at each time-step.

* The function can see the previous K time-steps of your function.

* sum () could be computed by scanning the z + x(i) function over a list, given an initial state of z=0.

* Often a for loop can be expressed as a scan () operation, and scan is the closest that Theano comes
to looping.

* Advantages of using scan over for loops:

Number of iterations to be part of the symbolic graph.

Minimizes GPU transfers (if GPU is involved).

Computes gradients through sequential steps.

Slightly faster than using a for loop in Python with a compiled Theano function.

Can lower the overall memory usage by detecting the actual amount of memory needed.
The full documentation can be found in the library: Scan.

Scan Example: Computing tanh(x(t).dot(W) + b) elementwise
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import theano
import theano.tensor as T
import numpy as np

# defining the tensor variables
X = T.matrix ("X")

W = T.matrix ("W")

b_sym = T.vector ("b_sym")

results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym),
—sequences=X)
compute_elementwise = theano.function (inputs=[X, W, b_sym], outputs=results)

# test values

= np.eye (2, dtype=theano.config.floatX)

w = np.ones((2, 2), dtype=theano.config.floatX)
b = np.ones((2), dtype=theano.config.floatX)
b[l] = 2

X

print (compute_elementwise (x, w, b))

# comparison with numpy
print (np.tanh(x.dot (w) + b))

[[ 0.96402758 0.99505475]
[ 0.96402758 0.99505475]]

[[ 0.96402758 0.99505475]
[ 0.96402758 0.99505475]]

Scan Example: Computing the sequence x(t) = tanh(x(t - 1).dot(W) + y(t).dot(U) + p(T - t).dot(V))

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
X = T.vector ("X")
W = T.matrix ("w")

b_sym = T.vector ("b_sym")
U = T.matrix ("U")
Y = T.matrix ("Y")
V = T.matrix ("V")
P = T.matrix ("P")

results, updates = theano.scan(lambda y, p, x_tml: T.tanh(T.dot (x_tml, W) + T.
—~dot (y, U) + T.dot(p, V)),

sequences=[Y, P[::-1]], outputs_info=[X])
compute_seqg = theano.function (inputs=[X, W, Y, U, P, V], outputs=results)

# test values

X = np.zeros((2), dtype=theano.config.floatX)
x[1] =1

w = np.ones((2, 2), dtype=theano.config.floatX)
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y = np.ones((5, 2), dtype=theano.config.floatX)
y[0, :] = -3
u = np.ones((2, 2), dtype=theano.config.floatX)
p = np.ones((5, 2), dtype=theano.config.floatX)
pl0O, 1 =3
v = np.ones((2, 2), dtype=theano.config.floatX)

print (compute_seq(x, w, y, u, p, V))
# comparison with numpy
X_res = np.zeros((5, 2),
x_res[0] = np.tanh(x.dot (w)
for i in range(1l, 5):

np.tanh(x_res[i - 1].dot (w)

dtype=theano.config.floatX)
+ y[0].dot (u) + pl[4].dot(v))
+ pl[4-1] .dot (v))

x_res[i] = + y[i].dot (u)

print (x_res)

[[-0.99505475 -0.99505475]
[ 0.96471973 0.96471973]
[ 0.99998585 0.99998585]
[ 0.99998771 0.99998771]
[ 1. 1. 11

[[-0.99505475 -0.99505475]
[ 0.96471973 0.96471973]
[ 0.99998585 0.99998585]
[ 0.99998771 0.99998771]
[ 1. 1. 11

Scan Example: Computing norms of lines of X

import theano
import theano.tensor as T
import numpy as np

# define tensor variable
X = T.matrix ("X")
results, updates =
—sequences=[X])
compute_norm_lines =

theano.scan(lambda x_i: T.sqgrt((x_i %% 2).sum()),

[}

theano.function (inputs=[X], outputs=results)
# test value

np.diag(np.arange(l, 6,
print (compute_norm_lines (x))

X = dtype=theano.config.floatX), 1)

# comparison with numpy
print (np.sqgrt ((x %% 2).sum(1l)))

Scan Example: Computing norms of columns of X
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import theano
import theano.tensor as T
import numpy as np

# define tensor variable
X = T.matrix ("X")

results, updates = theano.scan(lambda x_i: T.sqgrt ((x_i == 2).sum()), .
—sequences=[X.T])
compute_norm_cols = theano.function (inputs=[X], outputs=results)

# test value

x = np.diag(np.arange(l, 6, dtype=theano.config.floatX), 1)
print (compute_norm_cols (x))
# comparison with numpy
print (np.sqgrt ((x %% 2).sum(0)))

Scan Example: Computing trace of X

import theano

import theano.tensor as T
import numpy as np

floatX = "float32"

# define tensor variable

X = T.matrix ("X")

results, updates = theano.scan(lambda i, j, t_f: T.cast(X[i, 3J] + t_£f,_
—~floatX),

sequences=[T.arange (X.shape[0]), T.arange (X.shapell])],
outputs_info=np.asarray (0., dtype=floatX))
result = results[-1]

compute_trace = theano.function (inputs=[X], outputs=result)

# test value

X = np.eye (5, dtype=theano.config.floatX)

x[0] = np.arange (5, dtype=theano.config.floatX)
print (compute_trace (x))

# comparison with numpy
print (np.diagonal (x) .sum())

I
(o]

Scan Example: Computing the sequence x(t) = x(t - 2).dot(U) + x(t - 1).dot(V) + tanh(x(t - 1).dot(W) +
b)

import theano
import theano.tensor as T
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import numpy as np

# define tensor variables
X = T.matrix ("X")
= T.matrix ("W")
b_sym = T.vector ("b_sym")
U = T.matrix ("U")
V = T.matrix ("V")
n_sym = T.iscalar("n_sym")

=

results, updates = theano.scan(lambda x_tm2, x_tml: T.dot (x_tm2, U) + T.dot (x_
—tml, V) + T.tanh(T.dot (x_tml, W) + b_sym),

n_steps=n_sym, outputs_info=[dict (initial=X, taps=[-2, -
—=11)1)
compute_seg2 = theano.function (inputs=[X, U, V, W, b_sym, n_sym],
—outputs=results)

# test values
x = np.zeros((2, 2), dtype=theano.config.floatX) # the initial value must be_
—able to return x[-2]

x[1, 11 =1
w = 0.5 % np.ones((2, 2), dtype=theano.config.floatX)
u= 0.5 % (np.ones((2, 2), dtype=theano.config.floatX) - np.eye (2,

—dtype=theano.config.floatX))

v = 0.5 %« np.ones((2, 2), dtype=theano.config.floatX)
n =10

b = np.ones((2), dtype=theano.config.floatX)

print (compute_seq2(x, u, v, w, b, n))

# comparison with numpy

X_res = np.zeros((10, 2))
x_res[0] = x[0].dot(u) + x[1].dot(v) + np.tanh(x[1l].dot(w) + b)
x_res[l] = x[1l].dot(u) + x_res[0O].dot(v) + np.tanh(x_res[0].dot (w) + b)
x_res[2] = x_res[0].dot(u) + x_res[l].dot(v) + np.tanh(x_res[l].dot(w) + b)
for i in range (2, 10):

Xx_res[i] = (x_res[i - 2].dot(u) + x_res[i - 1].dot(v) +

np.tanh(x_res[i - 1].dot(w) + b))
print (x_res)

[ 1.40514825 1.40514825
2.88898899 2.38898899
4.34018291 4.34018291
6.53463142 6.78463142
9.82972243 9.82972243

]
]
]
]
]
14.22203814 14.09703814]
20.07439936 20.07439936]
28.12291843 28.18541843]
39.1913681 39.1913681 ]
54.28407732 54.25282732]
1.40514825 1.40514825]
2.88898899 2.38898899]
4.34018291 4.34018291]

]

L B e B B e B R B T B
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6.53463142 6.78463142]

9.82972243 9.82972243]
14.22203814 14.09703814]
20.07439936 20.07439936]
28.12291843 28.18541843]
39.1913681 39.1913681 ]
54.28407732 54.25282732]

— o/ /o,

]

Scan Example: Computing the Jacobian of y = tanh(v.dot(A)) wrt x

import theano
import theano.tensor as T
import numpy as np

define tensor variables

T.vector ()

= T.matrix ()

= T.tanh(T.dot (v, A))

results, updates = theano.scan(lambda i: T.grad(y[i], V), sequences=[T.
—arange (y.shape[0]) 1)

compute_jac_t = theano.function([A, Vv], results, allow_input_downcast=True) #
—shape (d_out, d_in)

e

[}

# test values

x = np.eye (5, dtype=theano.config.floatX) [0]

w = np.eye(5, 3, dtype=theano.config.floatX)
w[2] = np.ones((3), dtype=theano.config.floatX)
print (compute_jac_t (w, x))

# compare with numpy
print (((1 - np.tanh(x.dot(w)) *xx 2) * w).T)

.41997434 .41997434

O O O O o o
O O O O o o

0 0
0 1
0. 1.
0.41997434 0.41997434
0 1
0 1

— o/ — o/
[N O VR VO I )
f—

Note that we need to iterate over the indices of y and not over the elements of y. The reason is that scan
create a placeholder variable for its internal function and this placeholder variable does not have the same
dependencies than the variables that will replace it.

Scan Example: Accumulate number of loop during a scan

import theano
import theano.tensor as T
import numpy as np

# define shared variables
k = theano.shared (0)
n_sym = T.iscalar ("n_sym")
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results, updates = theano.scan(lambda:{k:(k + 1)}, n_steps=n_sym)
accumulator = theano.function([n_sym], [], updates=updates, allow_input_
—downcast=True)

k.get_value ()
accumulator (5)
k.get_value ()

Scan Example: Computing tanh(v.dot(W) + b) * d where d is binomial

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
X = T.matrix ("X")
W = T.matrix ("w")
b_sym = T.vector ("b_sym")

# define shared random stream
trng = T.shared_randomstreams.RandomStreams (1234)
d=trng.binomial (size=W[1].shape)

results, updates = theano.scan(lambda v: T.tanh(T.dot (v, W) + b_sym) * d

—sequences=X)

compute_with_bnoise = theano.function (inputs=[X, W, b_sym], outputs=results,
updates=updates, allow_input_downcast=True)

x = np.eye (10, 2, dtype=theano.config.floatX)

np.ones ((2, 2), dtype=theano.config.floatX)

b = np.ones((2), dtype=theano.config.floatX)

Ly

w

print (compute_with_bnoise (x, w, b))

[[ 0.96402758 O. ]
[0 0.96402758]
[ O. 0. ]
[ 0.76159416 0.76159416]
[ 0.76159416 O. ]
[ 0. 0.76159416]
[0 0.76159416]
[0 0.7615941¢6]
[ O. 0. ]
[ 0.76159416 0.76159416]]

Note that if you want to use a random variable d that will not be updated through scan loops, you should
pass this variable as a non_sequences arguments.

Scan Example: Computing pow(A, k)

import theano
import theano.tensor as T
theano.config.warn.subtensor_merge_bug = False
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k = T.iscalar ("k")
A = T.vector ("A")

def inner_ fct (prior_result, B):
return prior_result = B

# Symbolic description of the result

result, updates = theano.scan(fn=inner_fct,
outputs_info=T.ones_like (4),
non_sequences=A, n_steps=k)

# Scan has provided us with A %% 1 through A *% k. Keep only the last
# value. Scan notices this and does not waste memory saving them.

final_ result = result[-1]

power = theano.function (inputs=[A, k], outputs=final_result,
updates=updates)

print (power (range (10), 2))

[ O. 1. 4. 9. 16. 25. 36. 49. 64. 81.]

Scan Example: Calculating a Polynomial

import numpy

import theano

import theano.tensor as T
theano.config.warn.subtensor_merge_bug = False

coefficients = theano.tensor.vector ("coefficients")
x = T.scalar("x")
max_coefficients_supported = 10000

# Generate the components of the polynomial
full_range=theano.tensor.arange (max_coefficients_supported)
components, updates = theano.scan (fn=lambda coeff, power, free_var:
coeff * (free_var =% power),
outputs_info=None,
sequences=[coefficients, full_range],
non_seguences=x)

polynomial = components.sum /()
calculate_polynomial = theano.function (inputs=[coefficients, x],
outputs=polynomial)

test_coeff = numpy.asarray([l, 0, 2], dtype=numpy.float32)
print (calculate_polynomial (test_coeff, 3))

19.0
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Exercise

Run both examples.
Modify and execute the polynomial example to have the reduction done by scan.

Solution

How Shape Information is Handled by Theano

It is not possible to strictly enforce the shape of a Theano variable when building a graph since the particular
value provided at run-time for a parameter of a Theano function may condition the shape of the Theano
variables in its graph.

Currently, information regarding shape is used in two ways in Theano:

* To generate faster C code for the 2d convolution on the CPU and the GPU, when the exact output
shape is known in advance.

* To remove computations in the graph when we only want to know the shape, but not the actual value
of a variable. This is done with the Op.infer_shape method.

Example:

>>> import theano

>>> x = theano.tensor.matrix('x")

>>> f = theano.function([x], (x ** 2).shape)
>>> theano.printing.debugprint (f)

MakeVector{dtype="'int64'} [id A] '' 2
| Shape_i{0} [id B] "' 1
| Ix [id C]
| Shape_i{1} [id D] "' 0
Ix [id C]

The output of this compiled function does not contain any multiplication or power. Theano has removed
them to compute directly the shape of the output.

Shape Inference Problem

Theano propagates information about shape in the graph. Sometimes this can lead to errors. Consider this
example:

>>> import numpy
>>> import theano

>>> x = theano.tensor.matrix('x")
>>> y = theano.tensor.matrix('y"'")
>>> 7z = theano.tensor.join(0, x, vy)
>>> xv = numpy.random.rand (5, 4)
>>> yv = numpy.random.rand (3, 3)
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>>> f = theano.function([x, y], z.shape)
>>> theano.printing.debugprint (f)

MakeVector{dtype="'int64'} [id A] "' 4
|[Elemwise{Add}[ (0, 0)] [id B] "' 3
| |Shape_i{0} [id C] "' 1
| [ Ix [id D]
| |Shape_1i{0} [id E] "' 2
\ ly [id F]
| Shape_1i{1} [id G] '' 0
|x [id D]

>>> f(xv, yv) # DOES NOT RAISE AN ERROR AS SHOULD BE.
array ([8, 41])

>>> f = theano.function([x,y], z)# Do not take the shape.
>>> theano.printing.debugprint (f)
Join [id A] '!' 0

| TensorConstant {0} [id B]

|x [1id C]

ly [id D]

>>> f(xv, yv)
Traceback (most recent call last):

ValueError:

As you can see, when asking only for the shape of some computation (join in the example), an inferred
shape is computed directly, without executing the computation itself (there is no join in the first output or
debugprint).

This makes the computation of the shape faster, but it can also hide errors. In this example, the computation
of the shape of the output of join is done only based on the first input Theano variable, which leads to an
error.

This might happen with other ops such as elemwise and dot, for example. Indeed, to perform some
optimizations (for speed or stability, for instance), Theano assumes that the computation is correct and
consistent in the first place, as it does here.

You can detect those problems by running the code without this optimization, using the Theano flag
optimizer_excluding=local_shape_to_shape_1i. You can also obtain the same effect by run-
ning in the modes FAST_COMPILE (it will not apply this optimization, nor most other optimizations) or
DebugMode (it will test before and after all optimizations (much slower)).

Specifing Exact Shape

Currently, specifying a shape is not as easy and flexible as we wish and we plan some upgrade. Here is the
current state of what can be done:

* You can pass the shape info directly to the ConvOp created when calling conv2d. You simply set the
parameters image_shape and filter_shape inside the call. They must be tuples of 4 elements.
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For example:

theano.tensor.nnet.conv2d(..., image_shape=(7, 3, 5, 5), filter_shape=(2, 3,
4, 4))

—

* You can use the SpecifyShape op to add shape information anywhere in the graph. This allows
to perform some optimizations. In the following example, this makes it possible to precompute the
Theano function to a constant.

>>> import theano
>>> x = theano.tensor.matrix()
>>> x_specify_shape = theano.tensor.specify_shape(x, (2, 2))
>>> f = theano.function([x], (x_specify_shape %% 2).shape)
>>> theano.printing.debugprint (f)
DeepCopyOp [id A] "' 0

| TensorConstant{ (2,) of 2} [id B]

Future Plans

The parameter “constant shape” will be added to theano.shared (). This is probably the
most frequent occurrence with shared variables. It will make the code simpler and will make
it possible to check that the shape does not change when updating the shared variable.

Advanced

Sparse

In general, sparse matrices provide the same functionality as regular matrices. The difference lies in the
way the elements of sparse matrices are represented and stored in memory. Only the non-zero elements of
the latter are stored. This has some potential advantages: first, this may obviously lead to reduced memory
usage and, second, clever storage methods may lead to reduced computation time through the use of sparse
specific algorithms. We usually refer to the generically stored matrices as dense matrices.

Theano’s sparse package provides efficient algorithms, but its use is not recommended in all cases or for
all matrices. As an obvious example, consider the case where the sparsity proportion is very low. The
sparsity proportion refers to the ratio of the number of zero elements to the number of all elements in a
matrix. A low sparsity proportion may result in the use of more space in memory since not only the actual
data is stored, but also the position of nearly every element of the matrix. This would also require more
computation time whereas a dense matrix representation along with regular optimized algorithms might do
a better job. Other examples may be found at the nexus of the specific purpose and structure of the matrices.
More documentation may be found in the SciPy Sparse Reference.

Since sparse matrices are not stored in contiguous arrays, there are several ways to represent them in mem-
ory. This is usually designated by the so-called format of the matrix. Since Theano’s sparse matrix
package is based on the SciPy sparse package, complete information about sparse matrices can be found in
the SciPy documentation. Like SciPy, Theano does not implement sparse formats for arrays with a number
of dimensions different from two.
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So far, Theano implements two formats of sparse matrix: csc and csr. Those are almost identical
except that csc is based on the columns of the matrix and csr is based on its rows. They both have
the same purpose: to provide for the use of efficient algorithms performing linear algebra operations. A
disadvantage is that they fail to give an efficient way to modify the sparsity structure of the underlying
matrix, i.e. adding new elements. This means that if you are planning to add new elements in a sparse
matrix very often in your computational graph, perhaps a tensor variable could be a better choice.

More documentation may be found in the Sparse Library Reference.

Before going further, here are the import statements that are assumed for the rest of the tutorial:

>>> import theano

>>> import numpy as np

>>> import scipy.sparse as sp
>>> from theano import sparse

Compressed Sparse Format

Theano supports two compressed sparse formats: csc and csr, respectively based on columns and rows.
They have both the same attributes: data, indices, indptr and shape.

* The data attribute is a one-dimensional ndarray which contains all the non-zero elements of the
sparse matrix.

* The indices and indptr attributes are used to store the position of the data in the sparse matrix.

* The shape attribute is exactly the same as the shape attribute of a dense (i.e. generic) matrix. It
can be explicitly specified at the creation of a sparse matrix if it cannot be infered from the first three
attributes.

Which format should | use?

At the end, the format does not affect the length of the data and indices attributes. They are both
completly fixed by the number of elements you want to store. The only thing that changes with the format is
indptr. In csc format, the matrix is compressed along columns so a lower number of columns will result
in less memory use. On the other hand, with the csr format, the matrix is compressed along the rows and
with a matrix that have a lower number of rows, csr format is a better choice. So here is the rule:

Note: If shape[0] > shape[1], use csc format. Otherwise, use csr.

Sometimes, since the sparse module is young, ops does not exist for both format. So here is what may be
the most relevent rule:

Note: Use the format compatible with the ops in your computation graph.

The documentation about the ops and their supported format may be found in the Sparse Library Reference.
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Handling Sparse in Theano

Most of the ops in Theano depend on the format of the sparse matrix. That is why there are two kinds
of constructors of sparse variables: csc_matrix and csr_matrix. These can be called with the usual
name and dtype parameters, but no broadcastable flags are allowed. This is forbidden since the
sparse package, as the SciPy sparse module, does not provide any way to handle a number of dimensions
different from two. The set of all accepted dtype for the sparse matrices can be found in sparse.
all_dtypes.

>>> sparse.all_dtypes
set (['int8', 'intlé6', 'int32', 'int64', 'uint8', 'uintl6', 'uint32', 'uinte4d',
'float32', 'float64', 'complex64d', 'complex1l28'])

To and Fro

To move back and forth from a dense matrix to a sparse matrix representation, Theano provides the
dense_from_sparse, csr_from_dense and csc_from_dense functions. No additional detail
must be provided. Here is an example that performs a full cycle from sparse to sparse:

>>> x = sparse.csc_matrix(name='x"', dtype='float32'")
>>> y = sparse.dense_from_sparse (x)
>>> z = sparse.csc_from_dense (y)

Properties and Construction

Although sparse variables do not allow direct access to their properties, this can be accomplished using the
csm_properties function. This will return a tuple of one-dimensional t ensor variables that represents
the internal characteristics of the sparse matrix.

In order to reconstruct a sparse matrix from some properties, the functions CSC and CSR can be used. This
will create the sparse matrix in the desired format. As an example, the following code reconstructs a csc
matrix into a csr one.

>>> x = sparse.csc_matrix(name='x"', dtype='into6d')
>>> data, indices, indptr, shape = sparse.csm_properties (x)
>>> y = sparse.CSR(data, indices, indptr, shape)
>>> f = theano.function([x], V)
>>> a = sp.csc_matrix(np.asarray([([0, 1, 11, [0, O, O1, [1, O, 011))
>>> print (a.toarray())
[[0 1 1]
[0 0 0]
[1 0 011
>>> print (f(a) .toarray())
[0 0 1]
[1 0 0]
[1 0 011
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The last example shows that one format can be obtained from transposition of the other. Indeed, when
calling the t ranspose function, the sparse characteristics of the resulting matrix cannot be the same as
the one provided as input.

Structured Operation

Several ops are set to make use of the very peculiar structure of the sparse matrices. These ops are said to
be structured and simply do not perform any computations on the zero elements of the sparse matrix. They
can be thought as being applied only to the data attribute of the latter. Note that these structured ops provide
a structured gradient. More explication below.

>>> = sparse.csc_matrix (name='x"', dtype='float32")

X
>>> y = sparse.structured_add(x, 2)
f

>>> = theano.function([x], V)
>>> a = sp.csc_matrix(np.asarray([[0, O, -11, [0, -2, 11, [3, 0, 01], dtype=
—'float32"'"))
>>> print(a.toarray())
[[ O. 0. —-1.]
[ 0. —-2. 1.]
[ 3. 0. 0.1]
>>> print (f(a) .toarray())
[[ 0. 0. 1.]
[ 0. 0. 3.]
[ 5. 0. 0.]]
Gradient

The gradients of the ops in the sparse module can also be structured. Some ops provide a flag to indicate if
the gradient is to be structured or not. The documentation can be used to determine if the gradient of an op is
regular or structured or if its implementation can be modified. Similarly to structured ops, when a structured
gradient is calculated, the computation is done only for the non-zero elements of the sparse matrix.

More documentation regarding the gradients of specific ops can be found in the Sparse Library Reference.

Using the GPU

For an introductory discussion of Graphical Processing Units (GPU) and their use for intensive parallel
computation purposes, see GPGPU.

One of Theano’s design goals is to specify computations at an abstract level, so that the internal function
compiler has a lot of flexibility about how to carry out those computations. One of the ways we take
advantage of this flexibility is in carrying out calculations on a graphics card.

There are two ways currently to use a gpu, one of which only supports NVIDIA cards (CUDA backend)
and the other, in development, that should support any OpenCL device as well as NVIDIA cards (GpuArray
Backend).

6.2. How to provide help 73



http://en.wikipedia.org/wiki/GPGPU

theano Documentation, Release 0.8.2

CUDA backend

If you have not done so already, you will need to install Nvidia’s GPU-programming toolchain (CUDA) and
configure Theano to use it. We provide installation instructions for Linux, MacOS and Windows.

Testing Theano with GPU

To see if your GPU is being used, cut and paste the following program into a file and run it.

from theano import function, config, shared, sandbox
import theano.tensor as T

import numpy

import time

vlien = 10 » 30 « 768 # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState (22)

x = shared (numpy.asarray (rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print (f.maker.fgraph.toposort ())
t0 = time.time ()
for i in range(iters):
r = 1()
tl = time.time ()
print ("Looping times took seconds" % (iters, tl - t0))
print ("Result is "% (xr,))
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.
—toposort()1]):
print ('Used the cpu')
else:

print ('Used the gpu')

The program just computes the exp () of a bunch of random numbers. Note that we use the shared
function to make sure that the input x is stored on the graphics device.

If I run this program (in checkl.py) with device=cpu, my computer takes a little over 3 seconds, whereas
on the GPU it takes just over 0.64 seconds. The GPU will not always produce the exact same floating-point
numbers as the CPU. As a benchmark, a loop that calls numpy .exp (x.get_value ()) takes about 46
seconds.

$ THEANO_FLAGS=mode=FAST_RUN, device=cpu, floatX=float32 python checkl.py

[Elemwise{exp,no_inplace} (<TensorType (float32, vector)>)]

Looping 1000 times took 3.06635117531 seconds

Result is [ 1.23178029 1.61879337 1.52278066 ..., 2.20771813 2.29967761
1.62323284]

Used the cpu

$ THEANO_FLAGS=mode=FAST_RUN, device=gpu, floatX=float32 python checkl.py
Using gpu device 0: GeForce GTX 580
[GpuElemwise{exp,no_inplace} (<CudaNdarrayType (float32, vector)>),

HostFromGpulGpuElemwisel{exn no inplacel} Q)1
g =T T =T — ind T 7T

—
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Looping 1000 times took 0.638810873032 seconds

Result is [ 1.23178029 1.61879349 1.52278066 ..., 2.20771813 2.29967761
1.62323296]

Used the gpu

Note that GPU operations in Theano require for now f1loatX to be float32 (see also below).

Returning a Handle to Device-Allocated Data

The speedup is not greater in the preceding example because the function is returning its result as a NumPy
ndarray which has already been copied from the device to the host for your convenience. This is what makes
it so easy to swap in device=gpu, but if you don’t mind less portability, you might gain a bigger speedup
by changing the graph to express a computation with a GPU-stored result. The gpu_from_host op means
“copy the input from the host to the GPU” and it is optimized away after the T.exp (x) is replaced by a
GPU version of exp () .

from theano import function, config, shared, sandbox
import theano.sandbox.cuda.basic_ ops

import theano.tensor as T

import numpy

import time

vlien = 10 » 30 « 768 # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState (22)

x = shared (numpy.asarray (rng.rand(vlen), 'float32'"))
f = function([], sandbox.cuda.basic_ops.gpu_from_host (T.exp (x)))
print (f.maker.fgraph.toposort ())
t0 = time.time ()
for i in range(iters):
r = £()
tl = time.time ()
print ("Looping times took seconds" % (iters, tl - t0))
print ("Result is "% (r,))
print ("Numpy result is " % (numpy.asarray(r),))

if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.
—toposort ()]):

print ('Used the cpu')
else:

print ('Used the gpu')

The output from this program is

$ THEANO_FLAGS=mode=FAST_RUN, device=gpu, floatX=float32 python check2.py
Using gpu device 0: GeForce GTX 580

[GpuElemwise{exp,no_inplace} (<CudaNdarrayType (float32, vector)>)]

Looping 1000 times took 0.34898686409 seconds

Result is <CudaNdarray object at 0x6a7a5f0>

Numpy result is [ 1.23178029 1.61879349 1.52278066 ..., 2.20771813 2.
29967761

6.2. How to provide help 75




theano Documentation, Release 0.8.2

1.62323296]
Used the gpu

Here we’ve shaved off about 50% of the run-time by simply not copying the resulting array back to the
host. The object returned by each function call is now not a NumPy array but a “CudaNdarray” which can
be converted to a NumPy ndarray by the normal NumPy casting mechanism using something like numpy .
asarray ().

For even more speed you can play with the borrow flag. See Borrowing when Constructing Function
Objects.

What Can Be Accelerated on the GPU

The performance characteristics will change as we continue to optimize our implementations, and vary from
device to device, but to give a rough idea of what to expect right now:

* Only computations with float32 data-type can be accelerated. Better support for float64 is expected in
upcoming hardware but float64 computations are still relatively slow (Jan 2010).

* Matrix multiplication, convolution, and large element-wise operations can be accelerated a lot (5-50x)
when arguments are large enough to keep 30 processors busy.

* Indexing, dimension-shuffling and constant-time reshaping will be equally fast on GPU as on CPU.
* Summation over rows/columns of tensors can be a little slower on the GPU than on the CPU.

* Copying of large quantities of data to and from a device is relatively slow, and often cancels most
of the advantage of one or two accelerated functions on that data. Getting GPU performance largely
hinges on making data transfer to the device pay off.

Tips for Improving Performance on GPU

* Consider adding floatX=float32 to your .theanorc file if you plan to do a lot of GPU work.
* Use the Theano flag allow_gc=False. See GPU Async capabilities

e Prefer constructors like matrix, vector and scalar to dmatrix, dvector and dscalar
because the former will give you float32 variables when floatX=float32.

* Ensure that your output variables have a floar32 dtype and not float64. The more float32 variables are
in your graph, the more work the GPU can do for you.

* Minimize tranfers to the GPU device by using shared float32 variables to store frequently-accessed
data (see shared () ). When using the GPU, float32 tensor shared variables are stored on the GPU
by default to eliminate transfer time for GPU ops using those variables.

* If you aren’t happy with the performance you see, try running your script with profile=True flag.
This should print some timing information at program termination. Is time being used sensibly? If an
op or Apply is taking more time than its share, then if you know something about GPU programming,
have a look at how it’s implemented in theano.sandbox.cuda. Check the line similar to Spent Xs(X%)
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in cpu op, Xs(X%) in gpu op and Xs(X%) in transfer op. This can tell you if not enough of your graph
is on the GPU or if there is too much memory transfer.

* Use nvcce options. nvee supports those options to speed up some computations: -fiz=true to flush de-
normals values to zeros., —prec-div=false and —prec-sqrt=false options to speed up division and square
root operation by being less precise. You can enable all of them with the nvce.flags=—use_fast_math
Theano flag or you can enable them individually as in this example: nvcc.flags=-ftz=true —prec-
div=false.

* To investigate whether if all the Ops in the computational graph are running on GPU. It is possible to
debug or check your code by providing a value to assert_no_cpu_op flag, i.e. warn, for warning raise
for raising an error or pdb for putting a breakpoint in the computational graph if there is a CPU Op.

GPU Async capabilities

Ever since Theano 0.6 we started to use the asynchronous capability of GPUs. This allows us to be faster
but with the possibility that some errors may be raised later than when they should occur. This can cause
difficulties when profiling Theano apply nodes. There is a NVIDIA driver feature to help with these issues.
If you set the environment variable CUDA_LAUNCH_BLOCKING=1 then all kernel calls will be automat-
ically synchronized. This reduces performance but provides good profiling and appropriately placed error
messages.

This feature interacts with Theano garbage collection of intermediate results. To get the most of this fea-
ture, you need to disable the gc as it inserts synchronization points in the graph. Set the Theano flag
allow_gc=False to get even faster speed! This will raise the memory usage.

Changing the Value of Shared Variables

To change the value of a shared variable, e.g. to provide new data to processes, use
shared_variable.set_value (new_value). For a lot more detail about this, see Understanding
Memory Aliasing for Speed and Correctness.

Exercise

Consider again the logistic regression:

import numpy

import theano

import theano.tensor as T
rng = numpy.random

N = 400

feats 784

D = (rng.randn (N, feats).astype(theano.config.floatX),
rng.randint (size=N, low=0, high=2) .astype (theano.config.floatX))
training_steps = 10000

# Declare Theano symbolic variables
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= T.matrix ("x")
= T.vector("y")
theano.shared

ed

(rng.randn (feats) .astype (theano.config.floatX), name="w")
= theano.shared (numpy.asarray (0., dtype=theano.config.floatX), name="b")
.tag.test_value = D[O0]
.tag.test_value = D[1]

KX DO X

# Construct Theano expression graph

p.1l =1/ (1 + T.exp(-T.dot(x, w)-b)) # Probability of having a one
prediction = p_1 > 0.5 # The prediction that is done: 0 or 1

xent = -y*T.log(p_l) - (1-y)+*T.log(l-p_1l) # Cross—entropy

cost = xent.mean () + 0.01%(wx%2).sum() # The cost to optimize

gw,gb = T.grad(cost, [w,Db])

# Compile expressions to functions
train = theano.function(
inputs=[x,v],
outputs=[prediction, xent],
updates=[(w, w-0.0lxgw), (b, b-0.01xgb)],

name = "train")
predict = theano.function (inputs=[x], outputs=prediction,
name = "predict")
if any([x.op.__class__.__name__ in ['Gemv',6 'CGemv', 'Gemm',6 'CGemm'] for x in

train.maker.fgraph.toposort ()]) :
print ('Used the cpu')
elif any([x.op.__class__._ name__ in ['GpuGemm', 'GpuGemv'] for x in
train.maker.fgraph.toposort ()]) :
print ('Used the gpu')
else:
print ('ERROR, not able to tell if theano used the cpu or the gpu')
print (train.maker.fgraph.toposort ())

for i in range(training_steps):
pred, err = train(D[O0], D[1])

print ("target values for D")
print (D[1])

print ("prediction on D")
print (predict (D[0]))

Modify and execute this example to run on GPU with f1oatX=float32 and time it using the command
line time python file.py. (Of course, you may use some of your answer to the exercise in section
Configuration Settings and Compiling Mode.)

Is there an increase in speed from CPU to GPU?
Where does it come from? (Use profile=True flag.)

What can be done to further increase the speed of the GPU version? Put your ideas to test.

Note:
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* Only 32 bit floats are currently supported (development is in progress).
* Shared variables with float32 dtype are by default moved to the GPU memory space.
* There is a limit of one GPU per process.
* Use the Theano flag device=gpu to require use of the GPU device.
* Use device=gpu{0, 1, ...} tospecify which GPU if you have more than one.
* Apply the Theano flag f1oatX=float 32 (through theano.config.floatX) in your code.
* Cast inputs before storing them into a shared variable.
¢ Circumvent the automatic cast of int32 with float32 to float64:
— Insert manual cast in your code or use [u]int{8,16}.
— Insert manual cast around the mean operator (this involves division by length, which is an int64).

— Notice that a new casting mechanism is being developed.

Solution

GpuArray Backend

If you have not done so already, you will need to install libgpuarray as well as at least one computing toolkit.
Instructions for doing so are provided at libgpuarray.

While all types of devices are supported if using OpenCL, for the remainder of this section, whatever com-
pute device you are using will be referred to as GPU.

Warning: While it is fully our intention to support OpenCL, as of May 2014 this support is still in its
infancy. A lot of very useful ops still do not support it because they were ported from the old backend
with minimal change.

Testing Theano with GPU

To see if your GPU is being used, cut and paste the following program into a file and run it.

from theano import function, config, shared, tensor, sandbox
import numpy
import time

vlien = 10 » 30 « 768 # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState (22)
x = shared (numpy.asarray (rng.rand(vlen), config.floatX))
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f = function([], tensor.exp(x))
print (f.maker.fgraph.toposort ())
t0 = time.time ()
for i in range(iters):
r = 1()
tl = time.time ()
print ("Looping times took seconds" % (iters, tl - t0))
print ("Result is "% (xr,))
if numpy.any([isinstance(x.op, tensor.Elemwise) and
("Gpu' not in type(x.op)._ name_ )
for x in f.maker.fgraph.toposort()]):
print ('Used the cpu')
else:
print ('Used the gpu')

The program just compute exp () of a bunch of random numbers. Note that we use the theano.
shared () function to make sure that the input x is stored on the GPU.

$ THEANO_FLAGS=device=cpu python checkl.py

[Elemwise{exp,no_inplace} (<TensorType (float64, vector)>)]

Looping 1000 times took 2.6071999073 seconds

Result is [ 1.23178032 1.61879341 1.52278065 ..., 2.20771815 2.29967753
1.62323285]

Used the cpu

$ THEANO_FLAGS=device=cudal python checkl.py

Using device cudaO: GeForce GTX 275

[GpuElemwise{exp,no_inplace} (<GpuArray<float64>>),

—HostFromGpu (gpuarray) (GpuElemwise{exp,no_inplace}.0) ]

Looping 1000 times took 2.28562092781 seconds

Result is [ 1.23178032 1.61879341 1.52278065 ..., 2.20771815 2.29967753
1.62323285]

Used the gpu

Returning a Handle to Device-Allocated Data

By default functions that execute on the GPU still return a standard numpy ndarray. A transfer operation
is inserted just before the results are returned to ensure a consistent interface with CPU code. This allows
changing the deivce some code runs on by only replacing the value of the device flag without touching
the code.

If you don’t mind a loss of flexibility, you can ask theano to return the GPU object directly. The following
code is modifed to do just that.

from theano import function, config, shared, tensor, sandbox
import numpy
import time

vlien = 10 » 30 « 768 # 10 x #cores x # threads per core
iters = 1000
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rng = numpy.random.RandomState (22)

x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], sandbox.gpuarray.basic_ops.gpu_from_host (tensor.exp (x)))
print (f.maker.fgraph.toposort())
t0 = time.time ()
for i in range(iters):
r = £()
tl = time.time ()
print ("Looping times took seconds" % (iters, tl - t0))
print ("Result is " % (numpy.asarray(r),))
if numpy.any([isinstance(x.op, tensor.Elemwise) and

("Gpu' not in type(x.op).__name__ )
for x in f.maker.fgraph.toposort()]):
print ('Used the cpu')
else:
print ('Used the gpu')

Here the theano.sandbox.gpuarray.basic.gpu_from_host () call means “copy input to the
GPU”. However during the optimization phase, since the result will already be on th gpu, it will be removed.
It is used here to tell theano that we want the result on the GPU.

The output is

$ THEANO_FLAGS=device=cudal python check2.py

Using device cudaO: GeForce GTX 275

[GpuElemwise{exp,no_inplace} (<GpuArray<float64>>) ]

Looping 1000 times took 0.455810785294 seconds

Result is [ 1.23178032 1.61879341 1.52278065 ..., 2.20771815 2.29967753
1.62323285]

Used the gpu

While the time per call appears to be much lower than the two previous invocations (and should indeed be
lower, since we avoid a transfer) the massive speedup we obtained is in part due to asynchronous nature of
execution on GPUs, meaning that the work isn’t completed yet, just ‘launched’. We’ll talk about that later.

The object returned is a GpuArray from pygpu. It mostly acts as a numpy ndarray with some exceptions due
to its data being on the GPU. You can copy it to the host and convert it to a regular ndarray by using usual
numpy casting such as numpy .asarray ().

For even more speed, you can play with the borrow flag. See Borrowing when Constructing Function
Objects.

What Can be Accelerated on the GPU

The performance characteristics will of course vary from device to device, and also as we refine our imple-
mentation.

This backend supports all regular theano data types (float32, float64, int, ...) however GPU support varies
and some units can’t deal with double (float64) or small (less than 32 bits like int16) data types. You will
get an error at compile time or runtime if this is the case.
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By default all inputs will get transferred to GPU. You can prevent an input from getting transferred by setting
its tag.target attribute to ‘cpu’.

Complex support is untested and most likely completely broken.

In general, large operations like matrix multiplication, or element-wise operations with large inputs, will be
significatly faster.

GPU Async Capabilities

By default, all operations on the GPU are run asynchronously. This means that they are only scheduled to
run and the function returns. This is made somewhat transparently by the underlying libgpuarray.

A forced synchronization point is introduced when doing memory transfers between device and host.

It is possible to force synchronization for a particular GpuArray by calling its sync () method. This is
useful to get accurate timings when doing benchmarks.

Software for Directly Programming a GPU

Leaving aside Theano which is a meta-programmer, there are:
* CUDA: GPU programming API by NVIDIA based on extension to C (CUDA C)
— Vendor-specific
— Numeric libraries (BLAS, RNG, FFT) are maturing.
¢ OpenCL: multi-vendor version of CUDA
— More general, standardized.
— Fewer libraries, lesser spread.

* PyCUDA: Python bindings to CUDA driver interface allow to access Nvidia’s CUDA parallel com-
putation API from Python

— Convenience:
Makes it easy to do GPU meta-programming from within Python.

Abstractions to compile low-level CUDA code from Python (pycuda.driver.
SourceModule).

GPU memory buffer (pycuda.gpuarray.GPUArray).
Helpful documentation.
— Completeness: Binding to all of CUDA’s driver API.
— Automatic error checking: All CUDA errors are automatically translated into Python exceptions.

— Speed: PyCUDA'’s base layer is written in C++.
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— Good memory management of GPU objects:
Object cleanup tied to lifetime of objects (RAII, ‘Resource Acquisition Is Initialization’).
Makes it much easier to write correct, leak- and crash-free code.

PyCUDA knows about dependencies (e.g. it won’t detach from a context before all memory
allocated in it is also freed).

(This is adapted from PyCUDA’s documentation and Andreas Kloeckner’s website on PyCUDA..)
* PyOpenCL: PyCUDA for OpenCL

Learning to Program with PyCUDA

If you already enjoy a good proficiency with the C programming language, you may easily leverage your
knowledge by learning, first, to program a GPU with the CUDA extension to C (CUDA C) and, second, to
use PyCUDA to access the CUDA API with a Python wrapper.

The following resources will assist you in this learning process:
* CUDA API and CUDA C: Introductory
— NVIDIA’s slides
— Stein’s (NYU) slides
* CUDA API and CUDA C: Advanced

MIT IAP2009 CUDA (full coverage: lectures, leading Kirk-Hwu textbook, examples, additional
resources)

Course U. of Illinois (full lectures, Kirk-Hwu textbook)

NVIDIA’s knowledge base (extensive coverage, levels from introductory to advanced)

practical issues (on the relationship between grids, blocks and threads; see also linked and related
issues on same page)

— CUDA optimisation
* PyCUDA: Introductory
— Kloeckner’s slides
— Kloeckner’ website
* PYCUDA: Advanced
— PyCUDA documentation website

The following examples give a foretaste of programming a GPU with PyCUDA. Once you feel competent
enough, you may try yourself on the corresponding exercises.

Example: PyCUDA
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# (from PyCUDA's documentation)
import pycuda.autoinit

import pycuda.driver as drv
import numpy

from pycuda.compiler import SourceModule
mod = SourceModule ("""
__global__ void multiply_them(float =xdest, float =xa, float «Db)
{
const int 1 = threadIdx.x;
dest[i] = al[i] * blil;
}

nn ")

multiply_them = mod.get_function("multiply_ them")

a = numpy.random.randn (400) .astype (numpy.float32)
b numpy . random. randn (400) .astype (numpy.float32)

dest = numpy.zeros_like(a)

multiply_them(
drv.Out (dest), drv.In(a), drv.In(b),
block=(400,1,1), grid=(1,1))

assert numpy.allclose(dest, axb)
print (dest)

Exercise

Run the preceding example.

Modify and execute to work for a matrix of shape (20, 10). Example: Theano + PyCUDA

import numpy, theano

import theano.misc.pycuda_init

from pycuda.compiler import SourceModule
import theano.sandbox.cuda as cuda

class PyCUDADoubleOp (theano.Op) :
__props__ = ()
def make_node(self, inp):

inp = cuda.basic_ops.gpu_contiguous (
cuda.basic_ops.as_cuda_ndarray_variable (inp))

assert inp.dtype == "float32"

return theano.Apply(self, [inp], [inp.type()])
def make_thunk(self, node, storage_map, _, _2):

mod = SourceModule ("""

__global___ void my_fct (float * i0, float » o0, int size) {
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int 1 = blockIdx.xxblockDim.x + threadIdx.x;
1if (i<size) {
o0[1i] = 10[1]+%*2;
}
P
pycuda_fct = mod.get_function("my_fct")

inputs = [storage_map[v] for v in node.inputs]
outputs = [storage_map[v] for v in node.outputs]
def thunk () :
z = outputs[0]
if z[0] is None or z[0].shape != inputs[0][0].shape:
z[0] = cuda.CudaNdarray.zeros (inputs[0][0].shape)
grid = (int (numpy.ceil (inputs[0][0].size / 512.)), 1

)
pycuda_fct (inputs[0][0], z[0], numpy.intc(inputs[0][0].size),
block=(512, 1, 1), grid=grid)
return thunk

Use this code to test it:

>>> x = theano.tensor.fmatrix()

>>> f = theano.function([x], PyCUDADoubleOp () (x))
>>> xv = numpy.ones( (4, 5), dtype="float32")

>>> assert numpy.allclose(f(xv), xv*2)

>>> print (numpy.asarray (f (xv)))

Exercise

Run the preceding example.
Modify and execute to multiply two matrices: x * y.
Modify and execute to return two outputs: x + y and x - y.

(Notice that Theano’s current elemwise fusion optimization is only applicable to computations involving a
single output. Hence, to gain efficiency over the basic solution that is asked here, the two operations would
have to be jointly optimized explicitly in the code.)

Modify and execute to support stride (i.e. to avoid constraining the input to be C-contiguous).

Note

e See Other Implementations to know how to handle random numbers on the GPU.

* The mode FAST_COMPILE disables C code, so also disables the GPU. You can use the Theano flag
optimizer="fast_compile’ to speed up compilation and keep the GPU.
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Using multiple GPUs

Theano has a feature to allow the use of multiple GPUs at the same time in one function. The multiple gpu
feature requires the use of the GpuArray Backend backend, so make sure that works correctly.

In order to keep a reasonably high level of abstraction you do not refer to device names directly for multiple-
gpu use. You instead refer to what we call context names. These are then mapped to a device using the theano
configuration. This allows portability of models between machines.

Warning: The code is rather new and is still considered experimental at this point. It has been tested
and seems to perform correctly in all cases observed, but make sure to double-check your results before
publishing a paper or anything of the sort.

Note: For data-parallelism, you probably are better using platoon.

Defining the context map

The mapping from context names to devices is done through the config.contexts option. The format
looks like this:

dev0->cuda0; devl->cudal

Let’s break it down. First there is a list of mappings. Each of these mappings is separeted by a semicolon *;’.
There can be any number of such mappings, but in the example above we have two of them: dev0->cuda0
and devl->cudal.

The mappings themselves are composed of a context name followed by the two characters ‘->’ and the
device name. The context name is a simple string which does not have any special meaning for Theano. For
parsing reasons, the context name cannot contain the sequence ‘->’ or ‘;’. To avoid confusion context names
that begin with ‘cuda’ or ‘opencl’ are disallowed. The device name is a device in the form that gpuarray
expects like ‘cuda0’ or ‘opencl0:0°.

Note: Since there are a bunch of shell special characters in the syntax, defining this on the command-line
will require proper quoting, like this:

$ THEANO_FLAGS="contexts=dev0->cudal"

When you define a context map, if config.print_active_device is True (the default), Theano will
print the mappings as they are defined. This will look like this:

$ THEANO_FLAGS="contexts=dev0->cudal;devl->cudal" python -c 'import theano'
Mapped name dev0 to device cudalO: GeForce GTX TITAN X
Mapped name devl to device cudal: GeForce GTX TITAN X
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If you don’t have enough GPUs for a certain model, you can assign the same device to more than one name.
You can also assign extra names that a model doesn’t need to some other devices. However, a proliferation of
names is not always a good idea since theano often assumes that different context names will be on different
devices and will optimize accordingly. So you may get faster performance for a single name and a single
device.

Note: It is often the case that multi-gpu operation requires or assumes that all the GPUs involved are
equivalent. This is not the case for this implementation. Since the user has the task of distrubuting the jobs
across the different device a model can be built on the assumption that one of the GPU is slower or has
smaller memory.

A simple graph on two GPUs

The following simple program works on two GPUs. It builds a function which perform two dot products on
two different GPUs.

import numpy
import theano

v0l = theano.shared (numpy.random.random( (1024, 1024)) .astype('float32'"),
target="dev0")

v02 = theano.shared (numpy.random.random( (1024, 1024)) .astype('float32"),
target="dev0")
v1ll = theano.shared (numpy.random.random( (1024, 1024)) .astype('float32'"),

target="devl")
v12 = theano.shared (numpy.random.random( (1024, 1024)) .astype('float32"'),
target="devl'")

f = theano.function([], [theano.tensor.dot (v01l, v02),
theano.tensor.dot (v1ll, v12)1])

£0

This model requires a context map with assignations for ‘dev0’ and ‘dev1’. It should run twice as fast when
the devices are different.

Explicit transfers of data

Since operations themselves cannot work on more than one device, they will pick a device to work on based
on their inputs and automatically insert transfers for any input which is not on the right device.

However you may want some explicit control over where and how these transfers are done at some points.
This is done by using the new t ransfer () method that is present on variables. It works for moving data
between GPUs and also between the host and the GPUs. Here is a example.

import theano
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v = theano.tensor.fmatrix ()

# Move to the device associated with 'gpudev'
gv = v.transfer ('gpudev')

# Move back to the cpu
cv = gv.transfer('cpu')

Of course you can mix transfers and operations in any order you choose. However you should try to mini-
mize transfer operations because they will introduce overhead any may reduce performance.

Advanced configuration and debugging

Configuration Settings and Compiling Modes
Configuration

The config module contains several artributes that modify Theano’s behavior. Many of these attributes
are examined during the import of the theano module and several are assumed to be read-only.

As a rule, the attributes in the conf ig module should not be modified inside the user code.

Theano’s code comes with default values for these attributes, but you can override them from your .
theanorc file, and override those values in turn by the THEANO FLAGS environment variable.

The order of precedence is:
1. an assignment to theano.config.<property>
2. an assignment in THEANO_FLAGS
3. an assignment in the .theanorc file (or the file indicated in THEANORC)

You can display the current/effective configuration at any time by printing theano.config. For example, to
see a list of all active configuration variables, type this from the command-line:

python -c '"import theano; print (theano.config)' | less

For more detail, see Configuration in the library.

Exercise

Consider the logistic regression:

import numpy

import theano

import theano.tensor as T
rng = numpy.random

N = 400
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feats = 784

D = (rng.randn (N, feats) .astype(theano.config.floatX),
rng.randint (size=N, low=0, high=2) .astype (theano.config.floatX))
training_steps = 10000

Declare Theano symbolic variables
= T.matrix("x")
T.vector ("y")
= theano.shared
theano.shared

(rng.randn (feats) .astype (theano.config.floatX), name="w")
(numpy .asarray (0., dtype=theano.config.floatX), name="b")
.tag.test_value = D[O0]
.tag.test_value = D[1]

MY O 2 KX S
I

# Construct Theano expression graph

p_1l =1/ (1 + T.exp(-T.dot(x, w)-b)) # Probability of having a one
prediction = p_1 > 0.5 # The prediction that is done: 0 or 1

xent = -y*T.log(p_l) - (1l-y)*T.log(l-p_l) # Cross—entropy

cost xent.mean () + 0.01l%x(w*x*2).sum() # The cost to optimize

gw,gb = T.grad(cost, [w,b])

# Compile expressions to functions
train = theano.function (
inputs=[x,v],
outputs=[prediction, xent],
updates=[(w, w-0.0lxgw), (b, b-0.01xgb)],

name = "train")
predict = theano.function (inputs=[x], outputs=prediction,
name = "predict")
if any([x.op.__class__._ _name__ in ['Gemv',6 'CGemv', 'Gemm', 'CGemm'] for x in

train.maker.fgraph.toposort ()]):
print ('Used the cpu')
elif any([x.op.__class__._ _name__ in ['GpuGemm', 'GpuGemv'] for x in
train.maker.fgraph.toposort ()]):
print ('Used the gpu')
else:
print ('ERROR, not able to tell if theano used the cpu or the gpu')
print (train.maker. fgraph.toposort ())

for i in range(training_steps):
pred, err = train(D[O0], D[1])

print ("target values for D")
print(D[1])

print ("prediction on D")
print (predict (D[0]))

Modify and execute this example to run on CPU (the default) with floatX=float32 and time the execution
using the command line t ime python file.py. Save your code as it will be useful later on.

Note:
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* Apply the Theano flag f1oatX=float32 (through theano.config.floatX) in your code.
* Cast inputs before storing them into a shared variable.
* Circumvent the automatic cast of int32 with float32 to float64:
— Insert manual cast in your code or use [u]int{8,16}.
— Insert manual cast around the mean operator (this involves division by length, which is an int64).

— Note that a new casting mechanism is being developed.

Solution

Mode

Every time theano. function is called, the symbolic relationships between the input and output Theano
variables are optimized and compiled. The way this compilation occurs is controlled by the value of the
mode parameter.

Theano defines the following modes by name:

* 'FAST_COMPILE"': Apply just a few graph optimizations and only use Python implementations. So
GPU is disabled.

e '"FAST_RUN': Apply all optimizations and use C implementations where possible.

* 'DebugMode ': Verify the correctness of all optimizations, and compare C and Python
implementations. This mode can take much longer than the other modes, but can identify
several kinds of problems.

* 'NanGuardMode ': Same optimization as FAST_RUN, but check if a node generate nans.

The default mode is typically FAST_RUN, but it can be controlled via the configuration variable config.
mode, which can be overridden by passing the keyword argument to theano. function.

short Full constructor What does it do?

name

FAST_COMPdditpile.mode.Mode (linker="py"', Python implementations only, quick and
optimizer='fast_compile"') cheap graph transformations

FAST_RUN compile.mode.Mode (linker="cvm', | Cimplementations where available, all
optimizer='fast_run') available graph transformations.

DebugModecompile.debugmode.DebugMode () Both implementations where available,

all available graph transformations.

Note: For debugging purpose, there also exists a MonitorMode (which has no short name). It can be
used to step through the execution of a function: see the debugging FAQ for details.
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Linkers

A mode is composed of 2 things: an optimizer and a linker. Some modes, like NanGuardMode and
DebugMode, add logic around the optimizer and linker. NanGuardMode and DebugMode use their own
linker.

You can select which linker to use with the Theano flag config. Iinker. Here is a table to compare the
different linkers.

linker gc! | Raise error by | Overhead | Definition
op

cvm yes | yes “H47 As clpy, but the runtime algo to execute the code
isinc

cvm_nogc no | yes “+ As cvm, but without gc

clpy? yes | yes Tt Try C code. If none exists for an op, use Python

clpy_nogc no | yes “++7 As clpy, but without gc

c no | yes “47 Use only C code (if none available for an op,
raise an error)

Py yes | yes e+ Use only Python code

NanGuard- no | no T+ Check if nodes generate NaN

Mode

DebugMode | no | yes VERY Make many checks on what Theano computes

HIGH

For more detail, see Mode in the library.

Using DebugMode

While normally you should use the FAST_RUN or FAST_COMP ILE mode, it is useful at first (especially
when you are defining new kinds of expressions or new optimizations) to run your code using the De-
bugMode (available via mode="'DebugMode). The DebugMode is designed to run several self-checks
and assertions that can help diagnose possible programming errors leading to incorrect output. Note that
DebugMode is much slower than FAST_RUN or FAST_COMPILE so use it only during development (not
when you launch 1000 processes on a cluster!).

DebugMode is used as follows:

x = T.dvector('x")

f = theano.function([x], 10 % x, mode='DebugMode")
£([5])
£([0])
£([7])

! Garbage collection of intermediate results during computation. Otherwise, their memory space used by the ops is kept between
Theano function calls, in order not to reallocate memory, and lower the overhead (make it faster...).
2
Default
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If any problem is detected, DebugMode will raise an exception according to what went wrong, either at
call time (f{5)) or compile time ( £ = theano.function(x, 10 % x, mode='DebugMode')).
These exceptions should not be ignored; talk to your local Theano guru or email the users list if you cannot
make the exception go away.

Some kinds of errors can only be detected for certain input value combinations. In the example above, there
is no way to guarantee that a future call to, say f{-1), won’t cause a problem. DebugMode is not a silver
bullet.

If you instantiate DebugMode using the constructor (see DebugMode) rather than the keyword
DebugMode you can configure its behaviour via constructor arguments. The keyword version of Debug-
Mode (which you get by using mode="'DebugMode ') is quite strict.

For more detail, see DebugMode in the library.

ProfileMode

Note: ProfileMode is deprecated. Use config.profile instead.

Printing/Drawing Theano graphs

Theano provides the functions theano.printing.pprint () and theano.printing.
debugprint () to print a graph to the terminal before or after compilation. pprint () is more
compact and math-like, debugprint () is more verbose. Theano also provides pydotprint () that
creates an image of the function. You can read about them in printing — Graph Printing and Symbolic Print
Statement.

Note: When printing Theano functions, they can sometimes be hard to read. To
help with this, you can disable some Theano optimizations by using the Theano flag:
optimizer_excluding=fusion:inplace. Do not use this during real job execution, as this
will make the graph slower and use more memory.

Consider again the logistic regression example:

>>> import numpy

>>> import theano

>>> import theano.tensor as T

>>> rng = numpy.random

>>> # Training data

>>> N = 400

>>> feats = 784

>>> D = (rng.randn(N, feats) .astype(theano.config.floatX), rng.randint (size=N,
—~low=0, high=2) .astype (theano.config.floatX))
>>> training_steps = 10000

>>> # Declare Theano symbolic variables

>>> x = T.matrix ("x")
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>>> y = T.vector ("y")

>>> w = theano.shared(rng.randn (feats) .astype (theano.config.floatX), name="w")
>>> b = theano.shared (numpy.asarray (0., dtype=theano.config.floatX), name="b")
>>> x.tag.test_value = D[O0]

>>> y.tag.test_value = D[1]

>>> # Construct Theano expression graph

>>> p_1 =1/ (1 + T.exp(-T.dot(x, w)-b)) # Probability of having a one
>>> prediction = p_1 > 0.5 # The prediction that is done: 0 or 1

>>> # Compute gradients

>>> xent = -y*xT.log(p_1l) - (l-y)=*T.log(l-p_1l) # Cross—entropy

>>> cost = xent.mean () + 0.01x(w*%2).sum() # The cost to optimize

>>> gw,gb = T.grad(cost, [w,b])

>>> # Training and prediction function

>>> train = theano.function (inputs=[x,y], outputs=[prediction, xent],

—updates=[[w, w-0.0lxgw], [b, b-0.0lxgb]], name = "train")
>>> predict = theano.function (inputs=[x], outputs=prediction, name = "predict
(_)")

Pretty Printing

>>> theano.printing.pprint (prediction)
'gt ((TensorConstant{1l} / (TensorConstant{l} + exp(((-(x \\dot w)) — Db)))),
TensorConstant{0.5})"'

Debug Print

The pre-compilation graph:

>>> theano.printing.debugprint (prediction)
Elemwise{gt,no_inplace} [id A] ''
|[Elemwise{true_div,no_inplace} [id B] ''
| |DimShuffle{x} [id C] ''
| | |TensorConstant{l} [id D]
| |Elemwise{add,no_inplace} [id E] "'
| |[DimShuffle{x} [id F] ''
| | |TensorConstant{1l} [id D]
| |[Elemwise{exp,no_inplace} [id G] ''
| |[Elemwise{sub,no_inplace} [id H] ''
| |[Elemwise{neg,no_inplace} [id I] ''
| | |dot [id J] ''
| | [x [id K]
| | lw [id L]
| |[DimShuffle{x} [id M] ''
| b [id N]
[DimShuffle{x} [id O] ''
| TensorConstant{0.5} [id P]

The post-compilation graph:
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>>> theano.printing.debugprint (predict)

Elemwise{Composite{GT (scalar_sigmoid ((-((-10) - 1i1))), i2)}} [id A] '' 4
| ...Gemv{inplace} [id B] "' 3
| |AllocEmpty{dtype='float64'} [id C] "' 2
| | |Shape_1i{0} [id D] '' 1
I Ix [id E]
| |TensorConstant{1.0} [id F]
| Ix [id E]
| |w [id G]
| |TensorConstant{0.0} [id H]
| InplaceDimShuffle{x} [id I] '' 0
| b [1id J]

| TensorConstant{(1,) of 0.5} [id K]

Picture Printing of Graphs

The pre-compilation graph:

>>> theano.printing.pydotprint (prediction, outfile="pics/logreg_pydotprint__
—prediction.png", var_with_name_simple=True)
The output file is available at pics/logreg_pydotprint_prediction.png
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0 TensorType(float64, matrix) /1 TensorTypel(fl

ensorType(float64, scalar) ensorType(float64, vector)

DimShuffle{x} id=1 Elemwise{neg,no_inplace }

I TensorType(float6d, (True,)) /0 TensorType(float64, vector)

Elemwise{sub,no_inplace}

TensorType(int8, scalar) \TensorType(int8, scalar) ensorType(float64, vector)

DimShuffle{x} id=3 Elemwise{exp.no_inplace}
DimShuffle{x} id=4 0 TensorType(int8, (True,)) 1 TensorType(float64, vector)

0 TensorType(int8, (True.)) Elemwise{add,no_inplace}

1 TensorType(floatod, vector) ensor Type(float32, scal

Elemwise{true_divm_@ DimShuffle{x}

0 TensorType(float64, vector)

1 TensorType(float32, (True.)

Elemwise{gt.no_inplace}

ensorType(int8, vector)

The post-compilation graph:

>>> theano.printing.pydotprint (predict, outfile="pics/logreg pydotprint_
—predict.png", var_with_name_simple=True)
The output file is available at pics/logreg_pydotprint_predict.png
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TensorType(float64, matrix)

Shape_i{0}

0 TensorType(float64, scalar) | TensorType(int64, scalar)

4 TensorType(float64, scalar)

I TensorType(float64, scalar) /3 TensorType(float64, vector)

g CGemv{inplace} J

0 TensorType(float64, vector)

Inplace DimShuffle {

0 TensorType(floatod, vector) 2 TensorType(float32, (True,))

Elemwise{Composite{GT(scalar_sigmoid((-((-i0) - i1))), i2)}}

ensorType(int8, vector)

1 TensorType(float

The optimized training graph:

>>> theano.printing.pydotprint (train, outfile="pics/logreg pydotprint_train.
—png", var_with_name_simple=True)
The output file is available at pics/logreg_pydotprint_train.png
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4 TensorType(float64, scalar)

TensorType(float64, scaldr) \ 3 TensorType(float64. vector)

Inplace DimShuffle{x} CGemy {inplace}

1 TensorType(float64, (True,))

TensorType(float64, vector

0 TensorType(floaté4, vector) Elemwise{neg.no_inplace}

0 TensorType(float64, vector) (4 TensorType(float64, vector),

D TensorType(float64, scalar) 1 TensorType(float32. (True.))

0 TensorType(float64, scalar)

0 TensorType(float64, vector)

Elemwise{Composite{((-i0) - il )} }[(0, 0)]

‘ensorType(float64, matrix)

Shape_i{0}

2 TensorType(float64, matrix) 1 Tensor Type(int64, scalar)

1 TensorType(float64, scalar)

0 TensorType(float64, vector)

0 TensorType(float64, vector)

\_ Tensor Type(float64, vector) (0 Te

1 TensorType(floaté4, vector) sign

2 TensorType(float64, (True,)) 3 TensorType(float64, vector) \4 TensorT

Elemwise{Comp: id(i0),i1)}}

ite{GT(scalar_si

Elemwise{Composite{((i0 * scalar_softplus(il)) - (i2 @

1 TensorType(float64, (True,))

ensor Type(int8, vector)

Sum{acc_dtype=float64}

P TensorType(float64, scalar)

Elemwise {Composite{(i0 - (1 * i2))}}[(0, 0)]

Interactive Graph Visualization

The new d3viz module complements theano.printing.pydot

[TensorType(float64, vector)

ensor Type(float64, vector)

1 TensorType(float64, scalar)

print () to visualize complex

graph structures. Instead of creating a static image, it generates an HTML file, which allows to dynam-
ically inspect graph structures in a web browser. Features include zooming, drag-and-drop, editing node

labels, or coloring nodes by their compute time.

=>d3viz <=
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Reset nodes Release nodes

dmatrix | | dvector

DimShuffle

Node: apply node
Apply: DimShuffle

dvector

SoftmaxWithBias

Debugging Theano: FAQ and Troubleshooting

There are many kinds of bugs that might come up in a computer program. This page is structured as a
FAQ. It provides recipes to tackle common problems, and introduces some of the tools that we use to find
problems in our own Theano code, and even (it happens) in Theano’s internals, in Using DebugMode.

Isolating the Problem/Testing Theano Compiler

You can run your Theano function in a DebugMode. This tests the Theano optimizations and helps to find
where NaN, inf and other problems come from.

Interpreting Error Messages

Even in its default configuration, Theano tries to display useful error messages. Consider the following
faulty code.
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import numpy as np
import theano
import theano.tensor as T

x = T.vector ()

y = T.vector()

zZ = X + X

z =2z +y

f = theano.function([x, vyl, 2z)
f(np.ones((2,)), np.ones((3,)))

Running the code above we see:

Traceback (most recent call last):

ValueError: Input dimension mis-match. (input[0].shape[0] = 3, input[l].
—shape[0] = 2)

Apply node that caused the error: Elemwise{add,no_inplace} (
—<TensorType (float64, vector)>, <TensorType (floaté64, vector)>,
—<TensorType (float64, vector)>)

Inputs types: [TensorType (float64, vector), TensorType (float64d, vector)
—TensorType (float64, vector)]

r o

Inputs shapes: [(3,), (2,), (2,)]
Inputs strides: [(8,), (8,), (8,)]
Inputs scalar values: ['not scalar', 'not scalar', 'not scalar']

HINT: Re-running with most Theano optimization disabled could give you a back-
—~traces when this node was created. This can be done with by setting the_
—Theano flags 'optimizer=fast_compile'. If that does not work, Theano_
—optimization can be disabled with 'optimizer=None'.

HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint of this_
—apply node.

Arguably the most useful information is approximately half-way through the error message, where the kind
of error is displayed along with its cause (ValueError: Input dimension mis-match. (input[0].shape[0] = 3,
input[1].shape[0] = 2). Below it, some other information is given, such as the apply node that caused the
error, as well as the input types, shapes, strides and scalar values.

The two hints can also be helpful when debugging. Using the theano flag optimizer=fast_compile
or optimizer=None can often tell you the faulty line, while exception_verbosity=high will
display a debugprint of the apply node. Using these hints, the end of the error message becomes :

Backtrace when the node is created:
File "testO.py", line 8, in <module>
z =2z +y

Debugprint of the apply node:

Elemwise{add, no_inplace} [id A] <TensorType (float64, vector)> "'
|[Elemwise{add, no_inplace} [id B] <TensorType (float64, vector)> ''
| |<TensorType (float64, vector)> [id C] <TensorType (float6d4, wvector)>
| |<TensorType (float64, vector)> [id C] <TensorType (float64, wvector)>
| <TensorType (float64, vector)> [id D] <TensorType (float64, vector)>
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We can here see that the error can be traced back to the line z = z + y. For this example, using
optimizer=fast_compile worked. If it did not, you could set opt imizer=None or use test values.

Using Test Values

As of v.0.4.0, Theano has a new mechanism by which graphs are executed on-the-fly, before a theano.
function is ever compiled. Since optimizations haven’t been applied at this stage, it is easier for the
user to locate the source of some bug. This functionality is enabled through the config flag theano.
config.compute_test_value. Its use is best shown through the following example. Here, we use
exception_verbosity=highand optimizer=fast_compile, which would not tell you the line
at fault. opt imizer=None would and it could therefore be used instead of test values.

import numpy
import theano
import theano.tensor as T

# compute_test_value is 'off' by default, meaning this feature 1is inactive
theano.config.compute_test_value = 'off' # Use 'warn' to activate this feature

# configure shared variables

Wlval = numpy.random.rand(2, 10, 10).astype(theano.config.floatX)
W1l = theano.shared (Wlval, 'Wl'")

W2val = numpy.random.rand (15, 20).astype(theano.config.floatX)

W2 = theano.shared (W2val, 'W2'")

# input which will be of shape (5,10)

x = T.matrix('x")

# provide Theano with a default test-value
#x.tag.test_value = numpy.random.rand(5, 10)

# transform the shared variable in some way. Theano does not
# know off hand that the matrix func_of W1 has shape (20, 10)
func_of_W1l = Wl.dimshuffle (2, 0, 1).flatten(2).T

# source of error: dot product of 5x10 with 20x10
hl = T.dot (x, func_of_ W1)

# do more stuff
h2 = T.dot (hl, W2.T)

# compile and call the actual function
f = theano.function([x], h2)
f (numpy .random.rand (5, 10))

Running the above code generates the following error message:

Traceback (most recent call last):
File "testl.py", line 31, in <module>
f (numpy.random.rand (5, 10))
File "PATH_TO_THEANO/theano/compile/function_module.py", line 605, in ___
—call

100 Chapter 6. Help!




theano Documentation, Release 0.8.2

self.fn.thunks[self.fn.position_of_error])
File "PATH_TO_THEANO/theano/compile/function_module.py", line 595, in ___
—call
outputs = self.fn()
ValueError: Shape mismatch: x has 10 cols (and 5 rows) but y has 20 rows (and_
—10 cols)
Apply node that caused the error: Dot22(x, DimShuffle{1,0}.0)
Inputs types: [TensorType (float64, matrix), TensorType(float64, matrix)]

Inputs shapes: [(5, 10), (20, 10)]
Inputs strides: [(80, 8), (8, 160)]
Inputs scalar values: ['not scalar', 'not scalar']

Debugprint of the apply node:
Dot22 [id A] <TensorType(float64, matrix)> ''
|x [id B] <TensorType(float64, matrix)>
[ DimShuffle{1l,0} [id C] <TensorType (float64, matrix)> ''
|[Flatten{2} [id D] <TensorType(float64, matrix)> ''
|[DimShuffle{2,0,1} [id E] <TensorType(floaté64, 3D)> ''
[Wl [id F] <TensorType (float64, 3D)>

HINT: Re-running with most Theano optimization disabled could give you a back-
—traces when this node was created. This can be done with by setting the
—Theano flags 'optimizer=fast_compile'. If that does not work, Theano
—optimization can be disabled with 'optimizer=None'.

If the above is not informative enough, by instrumenting the code ever so slightly, we can get Theano to
reveal the exact source of the error.

# enable on-the-fly graph computations
theano.config.compute_test_value = 'warn'

# input which will be of shape (5, 10)

x = T.matrix('x")
# provide Theano with a default test-value
x.tag.test_value = numpy.random.rand (5, 10)

In the above, we are tagging the symbolic matrix x with a special test value. This allows Theano to eval-
uate symbolic expressions on-the-fly (by calling the per form method of each op), as they are being de-
fined. Sources of error can thus be identified with much more precision and much earlier in the compilation
pipeline. For example, running the above code yields the following error message, which properly identifies
line 24 as the culprit.

Traceback (most recent call last):

File "test2.py", line 24, in <module>
hl = T.dot (x, func_of_W1l)

File "PATH_TO_THEANO/theano/tensor/basic.py", line 4734, in dot
return _dot (a, b)

File "PATH_TO_THEANO/theano/gof/op.py", line 545, in _ call___
required = thunk ()

File "PATH_TO_THEANO/theano/gof/op.py", line 752, in rval

6.2. How to provide help 101




theano Documentation, Release 0.8.2

r = p(n, [x[0] for x in 1], o)
File "PATH_TO_THEANO/theano/tensor/basic.py", line 4554, in perform
z[0] = numpy.asarray (numpy.dot (x, Vv))

ValueError: matrices are not aligned

The compute_test_value mechanism works as follows:
e Theano constants and shared variables are used as is. No need to instrument them.

* A Theano variable (i.e. dmatrix, vector, etc.) should be given a special test value through the
attribute tag.test_value.

* Theano automatically instruments intermediate results. As such, any quantity derived from x will be
given a tag.test_value automatically.

compute_test_value can take the following values:
* of f: Default behavior. This debugging mechanism is inactive.

* raise: Compute test values on the fly. Any variable for which a test value is required, but not
provided by the user, is treated as an error. An exception is raised accordingly.

* warn: Idem, but a warning is issued instead of an Exception.

* ignore: Silently ignore the computation of intermediate test values, if a variable is missing a test
value.

Note: This feature is currently incompatible with Scan and also with ops which do not implement a
perform method.

“How do | Print an Intermediate Value in a Function?”

Theano provides a ‘Print’ op to do this.

import numpy
import theano

X = theano.tensor.dvector('x"')

Xx_printed = theano.printing.Print ('this is a very important value') (x)
f = theano.function([x], x * 5)

f_with_print = theano.function([x], x_printed * 5)

#this runs the graph without any printing
assert numpy.all( £([1, 2, 31) == [5, 10, 151])

#this runs the graph with the message, and value printed
assert numpy.all( f_with_print([1, 2, 3]) == [5, 10, 15])
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this is a very important value __str = [ 1. 2. 3.]

Since Theano runs your program in a topological order, you won’t have precise control over the order in
which multiple Print () ops are evaluted. For a more precise inspection of what’s being computed where,
when, and how, see the discussion “How do I Step through a Compiled Function?”.

Warning: Using this Print Theano Op can prevent some Theano optimization from being applied.
This can also happen with stability optimization. So if you use this Print and have nan, try to remove
them to know if this is the cause or not.

“How do | Print a Graph?” (before or after compilation)

Theano provides two functions (theano.pp () and theano.printing.debugprint ()) to print a
graph to the terminal before or after compilation. These two functions print expression graphs in different
ways: pp () is more compact and math-like, debugprint () is more verbose. Theano also provides
theano.printing.pydotprint () that creates a png image of the function.

You can read about them in printing — Graph Printing and Symbolic Print Statement.

“The Function | Compiled is Too Slow, what’s up?”

First, make sure you’re running in FAST_RUN mode. Even though FAST_RUN is the default mode, insist by
passing mode="'FAST_RUN' to theano. function (or theano.make) or by setting config.mode
to FAST_RUN.

Second, try the Theano ProfileMode. This will tell you which Apply nodes, and which ops are eating up
your CPU cycles.

Tips:

* Use the flags f1oatX=f1loat 32 to require type float32 instead of float64; Use the Theano construc-
tors matrix(),vector(),... instead of dmatrix(), dvector(),... since they respectively involve the default
types float32 and float64.

* Check in the profile mode that there is no Dot op in the post-compilation graph while you are
multiplying two matrices of the same type. Dot should be optimized to dot 22 when the inputs are
matrices and of the same type. This can still happen when using f1loatX=float 32 when one of
the inputs of the graph is of type float64.

“Why does my GPU function seem to be slow?”

When you compile a theano function, if you do not get the speedup that you expect over the CPU perfor-
mance of the same code. It is oftentimes due to the fact that some Ops might be running on CPU instead
GPU. If that is the case, you can use assert_no_cpu_op to check if there is a CPU Op on your computational
graph. assert_no_cpu_op can take the following one of the three options:
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* warn: Raise a warning
* pdb: Stop with a pdb in the computational graph during the compilation
* raise: Raise an error, if there is a CPU Op in the computational graph.

It is possible to wuse this mode by providing the flag in THEANO_FLAGS, such as:
THEANO_FLAGS="float32,device=gpu, assert_no_cpu_op='raise'" python test.

1%

But note that this optimization will not catch all the CPU Ops, it might miss some Ops.

“How do | Step through a Compiled Function?”

You can use MonitorMode to inspect the inputs and outputs of each node being executed when the func-
tion is called. The code snipped below shows how to print all inputs and outputs:

from _ future  import print_function
import theano

def inspect_inputs (i, node, fn):
print (i, node, "input(s) value(s):", [input[0] for input in fn.inputs],
end="'")

def inspect_outputs (i, node, fn):
print (" output (s) value(s):", [output[0] for output in fn.outputs])

x = theano.tensor.dscalar('x")
f = theano.function([x], [5 * x],
mode=theano.compile.MonitorMode (
pre_func=inspect_inputs,
post_func=inspect_outputs))
£(3)

0 Elemwise{mul,no_inplace} (TensorConstant{5.0}, x) input(s) value(s):
—[array (5.0), array(3.0)] output(s) value(s): [array(15.0)]

When using these inspect_inputs and inspect_outputs functions with MonitorMode, you
should see [potentially a lot of] printed output. Every Apply node will be printed out, along with its
position in the graph, the arguments to the functions perform or c_code and the output it computed.
Admittedly, this may be a huge amount of output to read through if you are using big tensors... but you can
choose to add logic that would, for instance, print something out only if a certain kind of op were used, at a
certain program position, or only if a particular value showed up in one of the inputs or outputs. A typical
example is to detect when NaN values are added into computations, which can be achieved as follows:

import numpy
import theano
# This is the current suggested detect_nan implementation to

# show you how it work. That way, you can modify it for your
# need. If you want exactly this method, you can use
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# ~ “theano.compile.monitormode.detect_nan"  that will always
# contain the current suggested version.

def detect_nan (i, node, fn):
for output in fn.outputs:
if (not isinstance (output[0], numpy.random.RandomState) and
numpy .isnan (output [0]) .any ()) :
print ('+x%x+ NaN detected xx*x*'")
theano.printing.debugprint (node)
print ('Inputs : ' % [input[0] for input in fn.inputs])
print ('Outputs: ' % [output[0] for output in fn.outputs])
break

X = theano.tensor.dscalar('x")
f = theano.function([x], [theano.tensor.log(x) * x],
mode=theano.compile.MonitorMode (
post_func=detect_nan))
£(0) # log(0) * 0 = —-inf % 0 = NalN

*xx NaN detected =*x*x
Elemwise{Composite{ (log(i0) = 10)}} [id A] ''

|x [id B]
Inputs : [array(0.0)]
Outputs: [array (nan)]

To help understand what is happening in your graph, you can disable the 1ocal_elemwise_fusion
and all inplace optimizations. The first is a speed optimization that merges elemwise operations together.
This makes it harder to know which particular elemwise causes the problem. The second optimization
makes some ops’ outputs overwrite their inputs. So, if an op creates a bad output, you will not be able to see
the input that was overwriten in the post_ func function. To disable those optimizations (with a Theano
version after 0.6rc3), define the MonitorMode like this:

mode = theano.compile.MonitorMode (post_func=detect_nan) .excluding (
'local_elemwise_fusion', 'inplace')
f = theano.function([x], [theano.tensor.log(x) * x],
mode=mode)

Note: The Theano flags optimizer_including, optimizer_excluding and
optimizer_requiring aren’t used by the MonitorMode, they are used only by the default
mode. You can’t use the default mode with MonitorMode, as you need to define what you monitor.

To be sure all inputs of the node are available during the call to post_func, you must also disable the
garbage collector. Otherwise, the execution of the node can garbage collect its inputs that aren’t needed
anymore by the Theano function. This can be done with the Theano flag:

allow_gc=False
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How to Use pdb

In the majority of cases, you won’t be executing from the interactive shell but from a set of Python scripts.
In such cases, the use of the Python debugger can come in handy, especially as your models become more
complex. Intermediate results don’t necessarily have a clear name and you can get exceptions which are
hard to decipher, due to the “compiled” nature of the functions.

Consider this example script (“ex.py”):

import theano
import numpy
import theano.tensor as T

= T.dmatrix('a'")
b = T.dmatrix('b")

)
|

Hh
Il

theano.function([a, b], [a * b])

# matrices chosen so dimensions are unsuitable for multiplication
matl = numpy.arange (12) .reshape((3, 4))

mat2 = numpy.arange (25) .reshape ((5, 5))

f (matl, mat?2)

This is actually so simple the debugging could be done easily, but it’s for illustrative purposes. As the
matrices can’t be multiplied element-wise (unsuitable shapes), we get the following exception:

File "ex.py", line 14, in <module>

f (matl, mat2)
File "/u/username/Theano/theano/compile/function_module.py", line 451, in ___
—call_
File "/u/username/Theano/theano/gof/link.py", line 271, in streamline_default_
—f
File "/u/username/Theano/theano/gof/link.py", line 267, in streamline_default_
—f
File "/u/username/Theano/theano/gof/cc.py", line 1049, in execute ValueError:
— ('Input dimension mis-match. (input[0].shape[0] = 3, input[l].shapel0] = 5)
—"', Elemwise{mul,no_inplace} (a, b), Elemwise{mul,no_inplace} (a, b))

The call stack contains some useful information to trace back the source of the error. There’s the script
where the compiled function was called — but if you’re using (improperly parameterized) prebuilt modules,
the error might originate from ops in these modules, not this script. The last line tells us about the op that
caused the exception. In this case it’s a “mul” involving variables with names “a” and “b”. But suppose we
instead had an intermediate result to which we hadn’t given a name.

After learning a few things about the graph structure in Theano, we can use the Python debugger to explore
the graph, and then we can get runtime information about the error. Matrix dimensions, especially, are
useful to pinpoint the source of the error. In the printout, there are also 2 of the 4 dimensions of the matrices
involved, but for the sake of example say we’d need the other dimensions to pinpoint the error. First, we
re-launch with the debugger module and run the program with “c”:
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python -m pdb ex.py

> /u/username/experiments/doctmpl/ex.py (1) <module> ()
—> import theano

(Pdb) c

Then we get back the above error printout, but the interpreter breaks in that state. Useful commands here
are

* “up” and “down” (to move up and down the call stack),

* “I” (to print code around the line in the current stack position),

* “p variable_name” (to print the string representation of ‘variable_name’),

* “p dir(object_name)”, using the Python dir() function to print the list of an object’s members

Here, for example, I do “up”, and a simple “I” shows me there’s a local variable “node”. This is the “node”
2 13

from the computation graph, so by following the “node.inputs”, “node.owner” and “node.outputs” links I
can explore around the graph.

That graph is purely symbolic (no data, just symbols to manipulate it abstractly). To get information about
the actual parameters, you explore the “thunk™ objects, which bind the storage for the inputs (and outputs)
with the function itself (a “thunk” is a concept related to closures). Here, to get the current node’s first
input’s shape, you’d therefore do “p thunk.inputs[0][0].shape”, which prints out “(3, 4)”.

Dumping a Function to help debug

If you are reading this, there is high chance that you emailed our mailing list and we asked you to read this
section. This section explain how to dump all the parameter passed to theano.function (). This is
useful to help us reproduce a problem during compilation and it doesn’t request you to make a self contained
example.

For this to work, we need to be able to import the code for all Op in the graph. So if you create your own
Op, we will need this code. Otherwise, we won’t be able to unpickle it. We already have all the Ops from
Theano and Pylearn2.

# Replace this line:

theano. function(...)

# with

theano.function_dump (filename, ...)

# Where filename is a string to a file that we will write to.

Then send us filename.

class theano.tests.breakpoint .PdbBreakpoint (name)
This is an identity-like op with the side effect of enforcing a conditional breakpoint, inside a theano
function, based on a symbolic scalar condition.

Parameters name (St ring) — name of the conditional breakpoint. To be printed when
the breakpoint is activated.
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Note WARNING. At least one of the outputs of the op must be used otherwise the op will
be removed from the Theano graph due to its outputs being unused

Note

WARNING. Employing the function inside a theano graph can prevent Theano
from applying certain optimizations to improve performance, reduce memory
consumption and/or reduce numerical instability.

Detailed explanation: As of 2014-12-01 the PdbBreakpoint op is not known by any
optimization. Setting a PdbBreakpoint op in the middle of a pattern that is usually
optimized out will block the optimization.

Example:

import theano
import theano.tensor as T
from theano.tests.breakpoint import PdbBreakpoint

input = T.fvector()
target = T.fvector ()

# Mean squared error between input and target
mse = (input - target) % 2

# Conditional breakpoint to be activated if the total MSE is higher

# than 100. The breakpoint will monitor the inputs, targets as well

# as the individual error values

breakpointOp = PdbBreakpoint ("MSE too high")

condition = T.gt (mse.sum(), 100)

mse, monitored_input, monitored_target = breakpointOp (condition, mse,
input, target)

# Compile the theano function
fct = theano.function([input, target], mse)

# Use the function
print fct([10, 0], [10, 5]) # Will NOT activate the breakpoint
print fct ([0, 0], [10, 5]) # Will activate the breakpoint

Dealing with NaNs

Having a model yielding NaNs or Infs is quite common if some of the tiny components in your model are
not set properly. NaNs are hard to deal with because sometimes it is caused by a bug or error in the code,
sometimes it’s because of the numerical stability of your computational environment (library versions, etc.),
and even, sometimes it relates to your algorithm. Here we try to outline common issues which cause the
model to yield NaNs, as well as provide nails and hammers to diagnose it.
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Check Superparameters and Weight Initialization

Most frequently, the cause would be that some of the hyperparameters, especially learning rates, are set
incorrectly. A high learning rate can blow up your whole model into NaN outputs even within one epoch of
training. So the first and easiest solution is try to lower it. Keep halving your learning rate until you start to
get resonable output values.

Other hyperparameters may also play a role. For example, are your training algorithms involve regulariza-
tion terms? If so, are their corresponding penalties set reasonably? Search a wider hyperparameter space
with a few (one or two) training epochs each to see if the NaNs could disappear.

Some models can be very sensitive to the initialization of weight vectors. If those weights are not initialized
in a proper range, then it is not surprising that the model ends up with yielding NaNs.

Run in NanGuardMode, DebugMode, or MonitorMode

If adjusting hyperparameters doesn’t work for you, you can still get help from Theano’s NanGuardMode.
Change the mode of your theano function to NanGuardMode and run them again. The NanGuardMode will
monitor all input/output variables in each node, and raises an error if NaNs are detected. For how to use the
NanGuardMode, please refer to nanguardmode.

DebugMode can also help. Run your code in DebugMode with flag mode=DebugMode, DebugMode.
check_py=False. This will give you clue about which op is causing this problem, and then you can
inspect that op in more detail. For details of using DebugMode, please refer to debugmode.

Theano’s MonitorMode provides another helping hand. It can be used to step through the execution of a
function. You can inspect the inputs and outputs of each node being executed when the function is called.
For how to use that, please check “How do I Step through a Compiled Function?”.

Numerical Stability

After you have located the op which causes the problem, it may turn out that the NaNs yielded by that op
are related to numerical issues. For example, 1/log(p(z) + 1) may result in NaNs for those nodes who have
learned to yield a low probability p(x) for some input x.

Algorithm Related

In the most difficult situations, you may go through the above steps and find nothing wrong. If the above
methods fail to uncover the cause, there is a good chance that something is wrong with your algorithm. Go
back to the mathematics and find out if everything is derived correctly.

Cuda Specific Option

The Theano flag nvcc. fastmath=True can genarate NaN. Don’t set this flag while debugging NaN.
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Profiling Theano function

Note: This method replace the old ProfileMode. Do not use ProfileMode anymore.

Besides checking for errors, another important task is to profile your code in terms of speed and/or memory
usage.

You can profile your functions using either of the following two options:
1. Use Theano flag config.profile to enable profiling.

* To enable the memory profiler use the Theano flag: config.profile memory in ad-
dition to config.profile.

* Moreover, to enable the profiling of Theano optimization phase, use the Theano flag:
config.profile optimizer inadditionto config.profile.

* You can also use the Theano flags profiling.n_apply, profiling.n_ops and
profiling.min_memory_size to modify the quantity of information printed.

2. Pass the argument profile=True to the function theano. function. And then call £.profile.print_

» Use this option when you want to profile not all the functions but one or more specific
function(s).

* You can also combine the profile of many functions:

The profiler will output one profile per Theano function and profile that is the sum of the printed profiles.
Each profile contains 4 sections: global info, class info, Ops info and Apply node info.

In the global section, the “Message” is the name of the Theano function. theano.function() has an optional
parameter name that defaults to None. Change it to something else to help you profile many Theano
functions. In that section, we also see the number of times the function was called (1) and the total time
spent in all those calls. The time spent in Function.fn.__call__ and in thunks is useful to understand Theano
overhead.

Also, we see the time spent in the two parts of the compilation process: optimization (modify the graph
to make it more stable/faster) and the linking (compile ¢ code and make the Python callable returned by
function).

The class, Ops and Apply nodes sections are the same information: information about the Apply node that
ran. The Ops section takes the information from the Apply section and merge the Apply nodes that have
exactly the same op. If two Apply nodes in the graph have two Ops that compare equal, they will be merged.
Some Ops like Elemwise, will not compare equal, if their parameters differ (the scalar being executed). So
the class section will merge more Apply nodes then the Ops section.

Note that the profile also shows which Ops were running a ¢ implementation.

Developers wishing to optimize the performance of their graph should focus on the worst offending Ops and
Apply nodes — either by optimizing an implementation, providing a missing C implementation, or by writing
a graph optimization that eliminates the offending Op altogether. You should strongly consider emailing one
of our lists about your issue before spending too much time on this.
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Here is an example output when we disable some Theano optimizations to give you a better idea of the
difference between sections. With all optimizations enabled, there would be only one op left in the graph.

Note: To profile the peak memory usage on the GPU you need to do:

x In the file theano/sandbox/cuda/cuda_ndarray.cu, set the macro
COMPUTE_GPU_MEM_USED to 1.

+ Then call theano.sandbox.cuda.theano_allocated()
It return a tuple with two ints. The first is the current GPU
memory allocated by Theano. The second is the peak GPU memory
that was allocated by Theano.

Do not always enable this, as this slows down memory allocation and free. As this slows down the compu-
tation, this will affect speed profiling. So don’t use both at the same time.

to run the example:

THEANO_FLAGS=optimizer_excluding=fusion:inplace,profile=True python
doc/tutorial/profiling_example.py

The output:

Function profiling

Message: None
Time in 1 calls to Function.__call__: 5.698204e-05s
Time in Function.fn.__call_ : 1.192093e-05s (20.921%)
Time in thunks: 6.198883e-06s (10.879%)
Total compile time: 3.642474e+00s

Theano Optimizer time: 7.326508e-02s

Theano validate time: 3.712177e-04s
Theano Linker time (includes C, CUDA code generation/compiling): 9.
—584920e-01s

Class
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class,
—name>

100.0% 100.0% 0.000s 2.07e-06s C 3 3
—~<class 'theano.tensor.elemwise.Elemwise'>
(remaining 0 Classes account for 0.00%(0.00s) of the runtime)
Ops

<% time> <sum %> <apply time> <time per call> <type> <i#call> <#apply> <Op,,
—name>

65.4% 65.4% 0.000s 2.03e-06s C 2 2
—Elemwise{add, no_inplace}
34.6% 100.0% 0.000s 2.15e-06s C 1 I
—Elemwise{mul,no_inplace}
(remaining 0 Ops account for 0.00%(0.00s) of the runtime)
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o

<% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name>

50.0% 50.0% 0.000s 3.10e-06s 1 0 Elemwise{add, no_
—inplace} (x, V)

34.6% 84.6% 0.000s 2.15e-06s 1 2 Elemwise{mul, no_
—~inplace} (TensorConstant{ (1,) of 2.0}, Elemwise{add,no_inplace}.0)

15.4% 100.0% 0.000s 9.54e-07s 1 1 Elemwise{add, no_

—inplace} (Elemwise{add,no_inplace}.0, 2z)
(remaining 0 Apply instances account for 0.00%(0.00s) of the runtime)

Further readings

Graph Structures

Debugging or profiling code written in Theano is not that simple if you do not know what goes on under the
hood. This chapter is meant to introduce you to a required minimum of the inner workings of Theano.

The first step in writing Theano code is to write down all mathematical relations using symbolic placeholders
(variables). When writing down these expressions you use operations like +, —, %, sum (), tanh (). All
these are represented internally as ops. An op represents a certain computation on some type of inputs
producing some type of output. You can see it as a function definition in most programming languages.

Theano represents symbolic mathematical computations as graphs. These graphs are composed of intercon-
nected Apply, Variable and Op nodes. Apply node represents the application of an op to some variables. It is
important to draw the difference between the definition of a computation represented by an op and its appli-
cation to some actual data which is represented by the apply node. Furthermore, data types are represented
by Type instances. Here is a piece of code and a diagram showing the structure built by that piece of code.
This should help you understand how these pieces fit together:

Code

import theano.tensor as T

x = T.dmatrix('x")
y = T.dmatrix('y")
zZ = X + vy
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None None

(matrix ) | (matrix ) | owner

inputs

outputs

Diagram

Arrows represent references to the Python objects pointed at. The blue box is an Apply node. Red boxes are
Variable nodes. Green circles are Ops. Purple boxes are Types.

When we create Variables and then Apply Ops to them to make more Variables, we build a bi-partite,
directed, acyclic graph. Variables point to the Apply nodes representing the function application producing
them via their owner field. These Apply nodes point in turn to their input and output Variables via their
inputs and outputs fields. (Apply instances also contain a list of references to their outputs, but
those pointers don’t count in this graph.)

The owner field of both x and y point to None because they are not the result of another computation. If
one of them was the result of another computation, it’s owner field would point to another blue box like z
does, and so on.

Note that the Apply instance’s outputs points to z, and z . owner points back to the Apply instance.

Traversing the graph

The graph can be traversed starting from outputs (the result of some computation) down to its inputs using
the owner field. Take for example the following code:

>>> import theano
>>> x = theano.tensor.dmatrix('x")
>>> y = x x 2.

If you enter t ype (y.owner) youget <class 'theano.gof.graph.Apply'>, which is the apply
node that connects the op and the inputs to get this output. You can now print the name of the op that is
applied to get y:

>>> y.owner.op.name
'Elemwise{mul, no_inplace}'’

Hence, an elementwise multiplication is used to compute y. This multiplication is done between the inputs:
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>>> len(y.owner.inputs)
2

>>> y.owner.inputs[0]

X

>>> y.owner.inputs[1]
DimShuffle{x,x}.0

Note that the second input is not 2 as we would have expected. This is because 2 was first broadcasted to a
matrix of same shape as x. This is done by using the op DimShuffle:

>>> type (y.owner.inputs[1l])

<class 'theano.tensor.var.TensorVariable'>

>>> type(y.owner.inputs[l].owner)

<class 'theano.gof.graph.Apply'>

>>> y.owner.inputs[l].owner.op
<theano.tensor.elemwise.DimShuffle object at 0x106fcafl0>
>>> y.owner.inputs[1l].owner.inputs

[TensorConstant{2.0}]

Starting from this graph structure it is easier to understand how automatic differentiation proceeds and how
the symbolic relations can be optimized for performance or stability.

Graph Structures

The following section outlines each type of structure that may be used in a Theano-built computation graph.
The following structures are explained: Apply, Constant, Op, Variable and Type.

Apply

An Apply node is a type of internal node used to represent a computation graph in Theano. Unlike Variable
nodes, Apply nodes are usually not manipulated directly by the end user. They may be accessed via a
Variable’s owner field.

An Apply node is typically an instance of the Apply class. It represents the application of an Op on one
or more inputs, where each input is a Variable. By convention, each Op is responsible for knowing how to
build an Apply node from a list of inputs. Therefore, an Apply node may be obtained from an Op and a list
of inputs by calling Op .make_node (xinputs).

Comparing with the Python language, an Apply node is Theano’s version of a function call whereas an Op
is Theano’s version of a function definition.

An Apply instance has three important fields:

op An Op that determines the function/transformation being applied here.
inputs A list of Variables that represent the arguments of the function.
outputs A list of Variables that represent the return values of the function.

An Apply instance can be created by calling gof .Apply (op, inputs, outputs).
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Op

An Op in Theano defines a certain computation on some types of inputs, producing some types of outputs.
It is equivalent to a function definition in most programming languages. From a list of input Variables and
an Op, you can build an Apply node representing the application of the Op to the inputs.

It is important to understand the distinction between an Op (the definition of a function) and an Apply node
(the application of a function). If you were to interpret the Python language using Theano’s structures, code
going like def f (x): ... would produce an Op for £ whereas code like a = £ (x) or g(£f (4),
5) would produce an Apply node involving the £ Op.

Type

A Type in Theano represents a set of constraints on potential data objects. These constraints allow Theano
to tailor C code to handle them and to statically optimize the computation graph. For instance, the irow type
in the theano.tensor package gives the following constraints on the data the Variables of type irow
may contain:

1. Must be an instance of numpy.ndarray: isinstance (x, numpy.ndarray)
2. Must be an array of 32-bit integers: str (x.dtype) == 'int32'
3. Must have a shape of 1xN: len (x.shape) == 2 and x.shape[0] == 1

Knowing these restrictions, Theano may generate C code for addition, etc. that declares the right data types
and that contains the right number of loops over the dimensions.

Note that a Theano Type is not equivalent to a Python type or class. Indeed, in Theano, irow and dmatrix
both use numpy . ndarray as the underlying type for doing computations and storing data, yet they are
different Theano Types. Indeed, the constraints set by dmatrix are:

1. Must be an instance of numpy.ndarray: isinstance (x, numpy.ndarray)
2. Must be an array of 64-bit floating point numbers: str (x.dtype) == 'float64'
3. Must have a shape of MxN, no restriction on M or N: 1len (x.shape) ==

These restrictions are different from those of i row which are listed above.

There are cases in which a Type can fully correspond to a Python type, such as the double Type we will
define here, which corresponds to Python’s f1oat. But, it’s good to know that this is not necessarily the
case. Unless specified otherwise, when we say “Type” we mean a Theano Type.

Variable

A Variable is the main data structure you work with when using Theano. The symbolic inputs that you
operate on are Variables and what you get from applying various Ops to these inputs are also Variables. For
example, when I type
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>>> import theano
>>> x = theano.tensor.ivector ()
>>> y = —-Xx

x and y are both Variables, i.e. instances of the Variable class. The Type of both x and y is theano.
tensor.ivector.

Unlike x, v is a Variable produced by a computation (in this case, it is the negation of x). vy is the Variable
corresponding to the output of the computation, while x is the Variable corresponding to its input. The
computation itself is represented by another type of node, an Apply node, and may be accessed through
y.owner.

More specifically, a Variable is a basic structure in Theano that represents a datum at a certain point in
computation. It is typically an instance of the class Variable or one of its subclasses.

A Variable r contains four important fields:

type a Type defining the kind of value this Variable can hold in computation.

owner this is either None or an Apply node of which the Variable is an output.

index the integer such that owner.outputs[index] is r (ignored if owner is None)
name a string to use in pretty-printing and debugging.

Variable has one special subclass: Constant.

Constant

A Constant is a Variable with one extra field, data (only settable once). When used in a computation graph
as the input of an Op application, it is assumed that said input will always take the value contained in the
constant’s data field. Furthermore, it is assumed that the Op will not under any circumstances modify the
input. This means that a constant is eligible to participate in numerous optimizations: constant inlining in C
code, constant folding, etc.

A constant does not need to be specified in a function‘s list of inputs. In fact, doing so will raise an
exception.

Graph Structures Extension

When we start the compilation of a Theano function, we compute some extra information. This section
describes a portion of the information that is made available. Not everything is described, so email theano-
dev if you need something that is missing.

The graph gets cloned at the start of compilation, so modifications done during compilation won’t affect the
user graph.

Each variable receives a new field called clients. It is a list with references to every place in the graph
where this variable is used. If its length is 0, it means the variable isn’t used. Each place where it is used is
described by a tuple of 2 elements. There are two types of pairs:

* The first element is an Apply node.
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* The first element is the string “output”. It means the function outputs this variable.

In both types of pairs, the second element of the tuple is an index, such that: var.clients[*][0].
inputs[index] or fgraph.outputs[index] is that variable.

>>> import theano

>>> v = theano.tensor.vector ()

>>> f = theano.function([v], (v+1).sum())

>>> theano.printing.debugprint (f)

Sum{acc_dtype=float64d} [id A] "' 1
|[Elemwise{add,no_inplace} [id B] '' 0

| TensorConstant{(1,) of 1.0} [id C]
| <TensorType (float64, vector)> [id D]
>>> # Sorted list of all nodes in the compiled graph.
>>> topo = f.maker.fgraph.toposort ()
>>> topo[0] .outputs[0].clients
[ (Sum{acc_dtype=float64d} (Elemwise{add,no_inplace}.0), 0)]
>>> topo[l].outputs[0].clients
[ ('output', 0)]

>>> # An internal variable

>>> var = topo[0].outputs[0]

>>> client = var.clients[0]

>>> client

(Sum{acc_dtype=float64} (Elemwise{add, no_inplace}.0), 0)
>>> type(client[0])

<class 'theano.gof.graph.Apply'>

>>> assert client[0].inputs[client[1l]] is var

>>> # An output of the graph

>>> var = topo[l].outputs[0]

>>> client = var.clients([O0]

>>> client

('output', 0)

>>> assert f.maker.fgraph.outputs[client[1l]] is var

Automatic Differentiation

Having the graph structure, computing automatic differentiation is simple. The only thing tensor.
grad () has to do is to traverse the graph from the outputs back towards the inputs through all apply
nodes (apply nodes are those that define which computations the graph does). For each such apply node,
its op defines how to compute the gradient of the node’s outputs with respect to its inputs. Note that if an
op does not provide this information, it is assumed that the gradient is not defined. Using the chain rule
these gradients can be composed in order to obtain the expression of the gradient of the graph’s output with
respect to the graph’s inputs.

A following section of this tutorial will examine the topic of differentiation in greater detail.
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Optimizations

When compiling a Theano function, what you give to the theano. function is actually a graph (starting
from the output variables you can traverse the graph up to the input variables). While this graph structure
shows how to compute the output from the input, it also offers the possibility to improve the way this
computation is carried out. The way optimizations work in Theano is by identifying and replacing certain
patterns in the graph with other specialized patterns that produce the same results but are either faster or
more stable. Optimizations can also detect identical subgraphs and ensure that the same values are not
computed twice or reformulate parts of the graph to a GPU specific version.

For example, one (simple) optimization that Theano uses is to replace the pattern %y by x.

Further information regarding the optimization process and the specific optimizations that are applicable is
respectively available in the library and on the entrance page of the documentation.

Example

Symbolic programming involves a change of paradigm: it will become clearer as we apply it. Consider the
following example of optimization:

>>> import theano

>>> a = theano.tensor.vector ("a") # declare symbolic variable
>>> b = a + a %% 10 # build symbolic expression
>>> f = theano.function([a], b) # compile function

>>> print (£([0, 1, 2]1)) # prints ‘“array([0,2,1026])"
[ 0. 2. 1026.]

>>> theano.printing.pydotprint (b, outfile="./pics/symbolic_graph_unopt.png", |,
—var_with_name_simple=True)

The output file is available at ./pics/symbolic_graph_unopt.png

>>> theano.printing.pydotprint (f, outfile="./pics/symbolic_graph_opt.png",
—var_with_name_simple=True)

The output file is available at ./pics/symbolic_graph_opt.png

We used theano.printing.pydotprint () to visualize the optimized graph (right), which is much
more compact than the unoptimized graph (left).
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Loading and Saving

Python’s standard way of saving class instances and reloading them is the pickle mechanism. Many Theano
objects can be serialized (and deserialized) by pickle, however, a limitation of pickle is that it does not
save the code or data of a class along with the instance of the class being serialized. As a result, reloading
objects created by a previous version of a class can be really problematic.

Thus, you will want to consider different mechanisms depending on the amount of time you anticipate
between saving and reloading. For short-term (such as temp files and network transfers), pickling of the
Theano objects or classes is possible. For longer-term (such as saving models from an experiment) you
should not rely on pickled Theano objects; we recommend loading and saving the underlying shared objects
as you would in the course of any other Python program.

The Basics of Pickling

The two modules pickle and cPickle have the same functionalities, but cPickle, coded in C, is much
faster.

>>> from six.moves import cPickle

You can serialize (or save, or pickle) objects to a file with cPickle . dump:
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>>> f = open('obj.save', 'wb')
>>> cPickle.dump (my_obj, f, protocol=cPickle.HIGHEST_PROTOCOL)
>>> f.close()

Note: If you want your saved object to be stored efficiently, don’t forget to use cPickle.
HIGHEST_PROTOCOL. The resulting file can be dozens of times smaller than with the default protocol.

Note: Opening your file in binary mode ('b ') is required for portability (especially between Unix and
Windows).

To de-serialize (or load, or unpickle) a pickled file, use cPickle.load:

>>> f = open('obj.save', 'rb')
>>> loaded_obj = cPickle.load(f)
>>> f.close ()

You can pickle several objects into the same file, and load them all (in the same order):

>>> f = open('objects.save', 'wb')

>>> for obj in [objl, obj2, obj3]:

. cPickle.dump (obj, f, protocol=cPickle.HIGHEST_PROTOCOL)
>>> f.close()

Then:

>>> f = open('objects.save', 'rb')

>>> loaded_objects = []

>>> for i1 in range(3):

.. loaded_objects.append(cPickle.load(f))
>>> f.close()

For more details about pickle’s usage, see Python documentation.

Short-Term Serialization

If you are confident that the class instance you are serializing will be deserialized by a compatible version
of the code, pickling the whole model is an adequate solution. It would be the case, for instance, if you are
saving models and reloading them during the same execution of your program, or if the class you’re saving
has been really stable for a while.

You can control what pickle will save from your object, by defining a __getstate__ method, and similarly
__setstate__.

This will be especially useful if, for instance, your model class contains a link to the data set currently in
use, that you probably don’t want to pickle along every instance of your model.

For instance, you can define functions along the lines of:
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def _ getstate__ (self):
state = dict(self.__dict_ )
del state['training_set']
return state

def _ setstate_ (self, d):
self.__dict__ .update(d)
self.training_set = cPickle.load(open(self.training set_file, 'rb'))

Robust Serialization

This type of serialization uses some helper functions particular to Theano. It serializes the object using
Python’s pickling protocol, but any ndarray or CudaNdarray objects contained within the object are
saved separately as NPY files. These NPY files and the Pickled file are all saved together in single ZIP-file.

The main advantage of this approach is that you don’t even need Theano installed in order to look at the
values of shared variables that you pickled. You can just load the parameters manually with numpy.

import numpy
numpy.load('model.zip")

This approach could be beneficial if you are sharing your model with people who might not have Theano
installed, who are using a different Python version, or if you are planning to save your model for a long time
(in which case version mismatches might make it difficult to unpickle objects).

See theano.misc.pkl_utils.dump () and theano.misc.pkl_utils.load().

Long-Term Serialization

If the implementation of the class you want to save is quite unstable, for instance if functions are created or
removed, class members are renamed, you should save and load only the immutable (and necessary) part of
your class.

You can do that by defining __getstate__ and __setstate___ functions as above, maybe defining the attributes
you want to save, rather than the ones you don’t.

For instance, if the only parameters you want to save are a weight matrix W and a bias b, you can define:

def _ _getstate_ (self):
return (self.W, self.Db)

def _ setstate_ (self, state):
W, b = state
self.W = W
self.b = b

If at some point in time W is renamed to weights and b to bias, the older pickled files will still be usable, if
you update these functions to reflect the change in name:
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def _ getstate__ (self):
return (self.weights, self.bias)

def _ setstate_ (self, state):
W, b = state
self.weights = W
self.bias = Db

For more information on advanced use of pickle and its internals, see Python’s pickle documentation.

PyCUDA/CUDAMat/Gnumpy compatibility
PyCUDA

Currently, PyCUDA and Theano have different objects to store GPU data. The two implementations do not
support the same set of features. Theano’s implementation is called CudaNdarray and supports strides. It
also only supports the float32 dtype. PyCUDA’s implementation is called GPUArray and doesn’t support
strides. However, it can deal with all NumPy and CUDA dtypes.

We are currently working on having the same base object for both that will also mimic Numpy. Until this is
ready, here is some information on how to use both objects in the same script.

Transfer

You can use the theano.misc.pycuda_utils module to convert GPUArray to and from CudaNdar-
ray. The functions to_cudandarray (x, copyif=False) andto_gpuarray (x) returnanew ob-
ject that occupies the same memory space as the original. Otherwise it raises a ValueError. Because GPUAT-
rays don’t support strides, if the CudaNdarray is strided, we could copy it to have a non-strided copy. The
resulting GPUArray won’t share the same memory region. If you want this behavior, set copyif=True in
to_gpuarray.

Compiling with PyCUDA

You can use PyCUDA to compile CUDA functions that work directly on CudaNdarrays. Here is an example
from the file theano/misc/tests/test_pycuda_theano_simple.py:

import sys

import numpy

import theano

import theano.sandbox.cuda as cuda_ndarray
import theano.misc.pycuda_init

import pycuda

import pycuda.driver as drv

import pycuda.gpuarray

def test_pycuda_theano():
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""rSimple example with pycuda function and Theano CudaNdarray object.”"""
from pycuda.compiler import SourceModule
mod = SourceModule ("""
__global__ void multiply_them(float =dest, float =xa, float =xb)
{
const int i1 = threadIdx.x;
dest[i] = a[i] = bl[i];
}

nn ")

multiply_them = mod.get_function("multiply_ them")

a numpy .random.randn (100) .astype (numpy.float32)
b = numpy.random.randn (100) .astype (numpy.float32)

# Test with Theano object

ga = cuda_ndarray.CudaNdarray (a)
gb = cuda_ndarray.CudaNdarray (b)
dest = cuda_ndarray.CudaNdarray.zeros (a.shape)

multiply_them(dest, ga, gb,
block=(400, 1, 1), grid=(1, 1))
assert (numpy.asarray(dest) == a » b).all()

Theano Op using a PyCUDA function

You can use a GPU function compiled with PyCUDA in a Theano op:

import numpy, theano

import theano.misc.pycuda_init

from pycuda.compiler import SourceModule
import theano.sandbox.cuda as cuda

class PyCUDADoubleOp (theano.Op) :
_props__ = ()
def make_node(self, inp):
inp = cuda.basic_ops.gpu_contiguous (
cuda.basic_ops.as_cuda_ndarray_variable (inp))

assert inp.dtype == "float32"
return theano.Apply(self, [inp]l, [inp.type()])
def make_thunk(self, node, storage_map, _, _2):

mod = SourceModule ("""
__global___ void my_fct (float % 10, float * o0, int size) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
if (i<size) {
o0[1] = 10[1i] * 2;
}
P
pycuda_fct = mod.get_function("my_fct")

inputs = [ storage_map([v] for v in node.inputs]
outputs = [ storage_map[v] for v in node.outputs]
def thunk () :
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z = outputs[0]
if z[0] is None or z[0].shape!=inputs[0][0].shape:
z[0] = cuda.CudaNdarray.zeros (inputs[0] [0].shape)
grid = (int (numpy.ceil (inputs[0][0].size / 512.)),1)
pycuda_fct (inputs[0][0], z[0], numpy.intc (inputs[0][0].size),
block=(512, 1, 1), grid=grid)
thunk.lazy = False
return thunk

CUDAMat

There are functions for conversion between CUDAMat objects and Theano’s CudaNdArray objects.
They obey the same principles as Theano’s PyCUDA functions and can be found in theano.misc.
cudamat_utils.py.

WARNING: There is a peculiar problem associated with stride/shape with those converters. In order to
work, the test needs a transpose and reshape...

Gnumpy

There are conversion functions between Gnumpy garray objects and Theano CudaNdArray objects. They
are also similar to Theano’s PyCUDA functions and can be found in theano.misc.gnumpy_utils.

py.

Understanding Memory Aliasing for Speed and Correctness

The aggressive reuse of memory is one of the ways through which Theano makes code fast, and it is impor-
tant for the correctness and speed of your program that you understand how Theano might alias buffers.

This section describes the principles based on which Theano handles memory, and explains when you might
want to alter the default behaviour of some functions and methods for faster performance.

The Memory Model: Two Spaces

There are some simple principles that guide Theano’s handling of memory. The main idea is that there is a
pool of memory managed by Theano, and Theano tracks changes to values in that pool.

* Theano manages its own memory space, which typically does not overlap with the memory of normal
Python variables that non-Theano code creates.

* Theano functions only modify buffers that are in Theano’s memory space.

* Theano’s memory space includes the buffers allocated to store shared variables and the temporaries
used to evaluate functions.

* Physically, Theano’s memory space may be spread across the host, a GPU device(s), and in the future
may even include objects on a remote machine.
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* The memory allocated for a shared variable buffer is unique: it is never aliased to another shared
variable.

* Theano’s managed memory is constant while Theano functions are not running and Theano’s library
code is not running.

* The default behaviour of a function is to return user-space values for outputs, and to expect user-space
values for inputs.

The distinction between Theano-managed memory and user-managed memory can be broken down by
some Theano functions (e.g. shared, get_value and the constructors for In and Out) by using a
borrow=True flag. This can make those methods faster (by avoiding copy operations) at the expense of
risking subtle bugs in the overall program (by aliasing memory).

The rest of this section is aimed at helping you to understand when it is safe to use the borrow=True
argument and reap the benefits of faster code.

Borrowing when Creating Shared Variables

A borrow argument can be provided to the shared-variable constructor.

import numpy, theano
np_array = numpy.ones (2, dtype='float32")

s_default theano.shared(np_array)
s_false = theano.shared (np_array, borrow=False)
s_true theano.shared(np_array, borrow=True)

By default (s_default) and when explicitly setting borrow=False, the shared variable we construct gets
a [deep] copy of np_array. So changes we subsequently make to np_array have no effect on our shared
variable.

np_array += 1 # now it is an array of 2.0 s

print (s_default.get_value())
print (s_false.get_value())
print (s_true.get_value())

N e
N e

If we are running this with the CPU as the device, then changes we make to np_array right away will
show up in s_true.get_value () because NumPy arrays are mutable, and s_true is using the np_array
object as it’s internal buffer.

However, this aliasing of np_array and s_true is not guaranteed to occur, and may occur only temporarily
even if it occurs at all. It is not guaranteed to occur because if Theano is using a GPU device, then the
borrow flag has no effect. It may occur only temporarily because if we call a Theano function that updates
the value of s_true the aliasing relationship may or may not be broken (the function is allowed to update the
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shared variable by modifying its buffer, which will preserve the aliasing, or by changing which buffer the
variable points to, which will terminate the aliasing).

Take home message:

It is a safe practice (and a good idea) to use borrow=True in a shared variable constructor when the
shared variable stands for a large object (in terms of memory footprint) and you do not want to create
copies of it in memory.

It is not a reliable technique to use borrow=True to modify shared variables through side-effect, be-
cause with some devices (e.g. GPU devices) this technique will not work.

Borrowing when Accessing Value of Shared Variables

Retrieving

A borrow argument can also be used to control how a shared variable’s value is retrieved.

s = theano.shared(np_array)

v_false = s.get_value (borrow=False) # N.B. borrow default is False
v_true = s.get_value (borrow=True)

When borrow=False is passed to get_value, it means that the return value may not be aliased to any
part of Theano’s internal memory. When borrow=True is passed to get_value, it means that the return
value might be aliased to some of Theano’s internal memory. But both of these calls might create copies of
the internal memory.

The reason that borrow=True might still make a copy is that the internal representation of a shared
variable might not be what you expect. When you create a shared variable by passing a NumPy array
for example, then get_value () must return a NumPy array too. That’s how Theano can make the GPU
use transparent. But when you are using a GPU (or in the future perhaps a remote machine), then the
numpy.ndarray is not the internal representation of your data. If you really want Theano to return its internal
representation and never copy it then you should use the return_internal_type=True argument to
get_value. It will never cast the internal object (always return in constant time), but might return various
datatypes depending on contextual factors (e.g. the compute device, the dtype of the NumPy array).

v_internal = s.get_value (borrow=True, return_internal_type=True)

It is possible to use borrow=False in conjunction with return_internal_type=True, which will
return a deep copy of the internal object. This is primarily for internal debugging, not for typical use.

For the transparent use of different type of optimization Theano can make, there is the policy that
get_value () always return by default the same object type it received when the shared variable was
created. So if you created manually data on the gpu and create a shared variable on the gpu with this data,
get_value will always return gpu data even when return_internal_type=False.

Take home message:

It is safe (and sometimes much faster) to use get_value (borrow=True) when your code does not
modify the return value. Do not use this to modify a ‘‘shared‘‘ variable by side-effect because it will make
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your code device-dependent. Modification of GPU variables through this sort of side-effect is impossible.

Assigning

Shared variables also have a set_value method that can accept an optional borrow=True argument.
The semantics are similar to those of creating a new shared variable - borrow=False is the default and
borrow=True means that Theano may reuse the buffer you provide as the internal storage for the variable.

A standard pattern for manually updating the value of a shared variable is as follows:

s.set_value (
some_inplace_fn(s.get_value (borrow=True)),
borrow=True)

This pattern works regardless of the computing device, and when the latter makes it possible to expose
Theano’s internal variables without a copy, then it proceeds as fast as an in-place update.

When shared variables are allocated on the GPU, the transfers to and from the GPU device memory can
be costly. Here are a few tips to ensure fast and efficient use of GPU memory and bandwidth:

* Prior to Theano 0.3.1, set_value did not work in-place on the GPU. This meant that, sometimes,
GPU memory for the new value would be allocated before the old memory was released. If you're
running near the limits of GPU memory, this could cause you to run out of GPU memory unnecessar-
ily.

Solution: update to a newer version of Theano.

* If you are going to swap several chunks of data in and out of a shared variable repeatedly, you
will want to reuse the memory that you allocated the first time if possible - it is both faster and more
memory efficient.

Solution: upgrade to a recent version of Theano (>0.3.0) and consider padding your source data to
make sure that every chunk is the same size.

* It is also worth mentioning that, current GPU copying routines support only contiguous memory. So
Theano must make the value you provide C-contiguous prior to copying it. This can require an extra
copy of the data on the host.

Solution: make sure that the value you assign to a CudaNdarraySharedVariable is already C-
contiguous.

(Further information on the current implementation of the GPU version of set_value () can be found
here: sandbox.cuda.var — The Variables for Cuda-allocated arrays)

Borrowing when Constructing Function Objects

A borrow argument can also be provided to the In and Out objects that control how theano.
function handles its argument[s] and return value[s].

import theano, theano.tensor
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X = theano.tensor.matrix ()
y = 2 x X
f = theano.function([theano.In(x, borrow=True)], theano.Out (y, borrow=True))

Borrowing an input means that Theano will treat the argument you provide as if it were part of Theano’s
pool of temporaries. Consequently, your input may be reused as a buffer (and overwritten!) during the
computation of other variables in the course of evaluating that function (e.g. £).

Borrowing an output means that Theano will not insist on allocating a fresh output buffer every time you
call the function. It will possibly reuse the same one as on a previous call, and overwrite the old content.
Consequently, it may overwrite old return values through side-effect. Those return values may also be
overwritten in the course of evaluating another compiled function (for example, the output may be aliased
to a shared variable). So be careful to use a borrowed return value right away before calling any more
Theano functions. The default is of course to not borrow internal results.

It is also possible to pass a return_internal_type=True flagto the Out variable which has the same
interpretation as the return_internal_type flag to the shared variable’s get_value function.
Unlike get_value (), the combination of return_internal_type=True and borrow=True ar-
guments to Out () are not guaranteed to avoid copying an output value. They are just hints that give more
flexibility to the compilation and optimization of the graph.

For GPU graphs, this borrowing can have a major speed impact. See the following code:

from theano import function, config, shared, sandbox, tensor, Out
import numpy
import time

vlen = 10 « 30 x 768 # 10 x # cores x # threads per core
iters = 1000

rng = numpy.random.RandomState (22)

x = shared (numpy.asarray (rng.rand(vlen), config.floatX))

f1 = function([], sandbox.cuda.basic_ops.gpu_from_host (tensor.exp(x)))
f2 = function([],

Out (sandbox.cuda.basic_ops.gpu_from_ host (tensor.exp(x)),
borrow=True))

t0 = time.time ()
for i in range(iters):
r = £1()
tl = time.time ()
no_borrow = tl - tO
t0 = time.time ()
for i in range(iters):
r = £2()
tl = time.time ()
print (
"Looping times took seconds without borrow "
"and seconds with borrow" % (iters, no_borrow, (tl - tO0))

)
if numpy.any ([isinstance(x.0op, tensor.Elemwise) and
("Gpu' not in type(x.op).__name_ )
for x in fl.maker.fgraph.toposort()]):
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print ('Used the cpu')
else:
print ('Used the gpu')

Which produces this output:

$ THEANO_FLAGS=device=gpul, floatX=float32 python testl.py

Using gpu device 0: GeForce GTIX 275

Looping 1000 times took 0.368273973465 seconds without borrow and O.
—~0240728855133 seconds with borrow.

Used the gpu

Take home message:

When an input x to a function is not needed after the function returns and you would like to make it available
to Theano as additional workspace, then consider marking it with In (x, borrow=True). It may make
the function faster and reduce its memory requirement. When a return value y is large (in terms of memory
footprint), and you only need to read from it once, right away when it’s returned, then consider marking it
with an Out (y, borrow=True).

Python Memory Management

One of the major challenges in writing (somewhat) large-scale Python programs is to keep memory usage
at a minimum. However, managing memory in Python is easy—if you just don’t care. Python allocates
memory transparently, manages objects using a reference count system, and frees memory when an object’s
reference count falls to zero. In theory, it’s swell. In practice, you need to know a few things about Python
memory management to get a memory-efficient program running. One of the things you should know, or at
least get a good feel about, is the sizes of basic Python objects. Another thing is how Python manages its
memory internally.

So let us begin with the size of basic objects. In Python, there’s not a lot of primitive data types: there
are ints, longs (an unlimited precision version of ints), floats (which are doubles), tuples, strings, lists,
dictionaries, and classes.

Basic Objects

What is the size of int? A programmer with a C or C++ background will probably guess that the size of
a machine-specific int is something like 32 bits, maybe 64; and that therefore it occupies at most 8 bytes.
But is that so in Python?

Let us first write a function that shows the sizes of objects (recursively if necessary):

import sys
def show_sizeof (x, level=0):
print "\t" % level, x._ class_ , sys.getsizeof(x), x

if hasattr(x, '__iter_'"):
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if hasattr(x, 'items'):
for xx in x.items{() :
show_sizeof (xx, level + 1)
else:
for xx in x:
show_sizeof (xx, level + 1)

We can now use the function to inspect the sizes of the different basic data types:

None)

3)

2x%63)
102947298469128649161972364837164)

show_sizeof
show_sizeof
show_sizeof
show_sizeof
show__

—s51zeo0f (9186593269437561348975613048756103487563847561934857613048756139485762

—~ e~~~

If you have a 32-bit 2.7x Python, you’ll see:

8 None

12 3

22 9223372036854775808

28 102947298469128649161972364837164

48,
—91865932694375613489756130487561034875638475619348576130487561394857629748569

and if you have a 64-bit 2.7x Python, you’ll see:

16 None

24 3

36 9223372036854775808

40 102947298469128649161972364837164

60,
—91865932694375613489756130487561034875638475619348576130487561394857629748569

Let us focus on the 64-bit version (mainly because that’s what we need the most often in our case). None
takes 16 bytes. int takes 24 bytes, three times as much memory as a C int 64_t, despite being some kind
of “machine-friendly” integer. Long integers (unbounded precision), used to represent integers larger than
263_1, have a minimum size of 36 bytes. Then it grows linearly in the logarithm of the integer represented.

Python’s floats are implementation-specific but seem to be C doubles. However, they do not eat up only 8
bytes:

show_sizeof (3.14159265358979323846264338327950288)

Outputs

16 3.14159265359

on a 32-bit platform and

24 3.14159265359
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on a 64-bit platform. That’s again, three times the size a C programmer would expect. Now, what about
strings?

show_sizeof ("")
show_sizeof ("My hovercraft is full of eels")

outputs, on a 32 bit platform:

21
50 My hovercraft is full of eels

and

37
66 My hovercraft is full of eels

An empty string costs 37 bytes in a 64-bit environment! Memory used by string then linearly grows in the
length of the (useful) string.

k ok ok
Other structures commonly used, tuples, lists, and dictionaries are worthwhile to examine. Lists (which are

implemented as array lists, not as linked lists, with everything it entails) are arrays of references to Python
objects, allowing them to be heterogeneous. Let us look at our sizes:

show_sizeof ([])
show_sizeof ([4, "toaster", 230.1])

outputs

32 [1]
44 [4, 'toaster', 230.1]

on a 32-bit platform and

72 1]
96 [4, 'toaster', 230.1]

on a 64-bit platform. An empty list eats up 72 bytes. The size of an empty, 64-bit C++ std::1ist () is
only 16 bytes, 4-5 times less. What about tuples? (and dictionaries?):

show_sizeof ({})
show_sizeof ({'a':213, 'b':2131})

outputs, on a 32-bit box

136 {}
136 {'a': 213, 'b': 2131}
32 ('a', 213)
22 a
12 213
32 ('b', 2131)
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22 b
12 2131

and

280 {}
280 {'a': 213, 'b': 2131}
72 ('a', 213)
38 a
24 213
72 ('b', 2131)
38 b
24 2131

for a 64-bit box.

This last example is particularly interesting because it “doesn’t add up.” If we look at individual key/value
pairs, they take 72 bytes (while their components take 38+24=62 bytes, leaving 10 bytes for the pair itself),
but the dictionary takes 280 bytes (rather than a strict minimum of 144=72x2 bytes). The dictionary is
supposed to be an efficient data structure for search and the two likely implementations will use more space
that strictly necessary. If it’s some kind of tree, then we should pay the cost of internal nodes that contain a
key and two pointers to children nodes; if it’s a hash table, then we must have some room with free entries
to ensure good performance.

The (somewhat) equivalent std: :map C++ structure takes 48 bytes when created (that is, empty). An
empty C++ string takes 8 bytes (then allocated size grows linearly the size of the string). An integer takes 4
bytes (32 bits).

K ok ok

Why does all this matter? It seems that whether an empty string takes 8 bytes or 37 doesn’t change anything
much. That’s true. That’s true until you need to scale. Then, you need to be really careful about how many
objects you create to limit the quantity of memory your program uses. It is a problem in real-life applications.
However, to devise a really good strategy about memory management, we must not only consider the sizes
of objects, but how many and in which order they are created. It turns out to be very important for Python
programs. One key element to understand is how Python allocates its memory internally, which we will
discuss next.

Internal Memory Management

To speed-up memory allocation (and reuse) Python uses a number of lists for small objects. Each list will
contain objects of similar size: there will be a list for objects 1 to 8 bytes in size, one for 9 to 16, etc. When
a small object needs to be created, either we reuse a free block in the list, or we allocate a new one.

There are some internal details on how Python manages those lists into blocks, pools, and “arena”: a number
of block forms a pool, pools are gathered into arena, etc., but they’re not very relevant to the point we want to
make (if you really want to know, read Evan Jones’ ideas on how to improve Python’s memory allocation).
The important point is that those lists never shrink.

Indeed: if an item (of size x) is deallocated (freed by lack of reference) its location is not returned to Python’s
global memory pool (and even less to the system), but merely marked as free and added to the free list of
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items of size x. The dead object’s location will be reused if another object of compatible size is needed. If
there are no dead objects available, new ones are created.

If small objects memory is never freed, then the inescapable conclusion is that, like goldfishes, these small
object lists only keep growing, never shrinking, and that the memory footprint of your application is domi-
nated by the largest number of small objects allocated at any given point.

Kok ok

Therefore, one should work hard to allocate only the number of small objects necessary for one task, favoring
(otherwise unpythonesque) loops where only a small number of elements are created/processed rather than
(more pythonésque) patterns where lists are created using list generation syntax then processed.

While the second pattern is more a la Python, it is rather the worst case: you end up creating lots of small
objects that will come populate the small object lists, and even once the list is dead, the dead objects (now
all in the free lists) will still occupy a lot of memory.

K ok ok

The fact that the free lists grow does not seem like much of a problem because the memory it contains
is still accessible to the Python program. But from the OS’s perspective, your program’s size is the total
(maximum) memory allocated to Python. Since Python returns memory to the OS on the heap (that allocates
other objects than small objects) only on Windows, if you run on Linux, you can only see the total memory
used by your program increase.

K ok ok

Let us prove my point using memory_profiler, a Python add-on module (which depends on the
python-psutil package) by Fabian Pedregosa (the module’s github page). This add-on provides the
decorator @profile that allows one to monitor one specific function memory usage. It is extremely sim-
ple to use. Let us consider the following program:

import copy
import memory_ profiler

@profile
def function():
x = list (range (1000000)) # allocate a big list
y = copy.deepcopy (x)
del x
return y
if _ name_ == "_ _main__ ":
function ()
invoking

python -m memory_profiler memory-profile-me.py

prints, on a 64-bit computer

Filename: memory-profile-me.py

Line # Mem usage Increment Line Contents
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4 @profile

5 9.11 MB 0.00 MB def function():

9 40.05 MB 30.94 MB x = list (range (1000000)) # allocate a_
—big list

7 89.73 MB 49.68 MB y = copy.deepcopy (X)

8 82.10 MB -7.63 MB del x

9 82.10 MB 0.00 MB return y

This program creates a list of n=1,000,000 ints (n x 24 bytes = ~23 MB) and an additional list of references
(n x 8 bytes = ~7.6 MB), which amounts to a total memory usage of ~31 MB. copy.deepcopy copies
both lists, which allocates again ~50 MB (I am not sure where the additional overhead of 50 MB - 31 MB =
19 MB comes from). The interesting part is del x: it deletes x, but the memory usage only decreases by
7.63 MB! This is because de 1 only deletes the reference list, not the actual integer values, which remain on
the heap and cause a memory overhead of ~23 MB.

This example allocates in total ~73 MB, which is more than twice the amount of memory needed to store a
single list of ~31 MB. You can see that memory can increase surprisingly if you are not careful!

Note that you might get different results on a different platform or with a different python version.

Pickle

On a related note: is pickle wasteful?

Pickle is the standard way of (de)serializing Python objects to file. What is its memory footprint? Does it
create extra copies of the data or is it rather smart about it? Consider this short example:

import memory profiler
import pickle
import random

def random_string() :

return "".join([chr (64 + random.randint (0, 25)) for _ in xrange (20)])
@profile
def create_file():

x = [ (random.random (),

random_string(),
random.randint (0, 2 %% 64))
for _ in xrange (1000000) ]

pickle.dump (x, open('machin.pkl', 'w'))

@profile
def load_file():
y = pickle.load(open('machin.pkl', 'r'"))
return y
if _ name_ =="__main_ ":
create_file()
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#load file()

With one invocation to profile the creation of the pickled data, and one invocation to re-read it (you comment
out the function not to be called). Using memory_profiler, the creation uses a lot of memory:

Filename: test-pickle.py

Line # Mem usage Increment Line Contents
8 @profile
9 9.18 MB 0.00 MB def create_file():
10 9.33 MB 0.15 MB x=[ (random.random(),
11 random_string (),
12 random.randint (0, 2+x%64))
13 246.11 MB 236.77 MB for _ in xrange (1000000) ]
14
15 481.64 MB 235.54 MB pickle.dump (x,open ('machin.pkl', 'w'))

and re-reading a bit less:

Filename: test-pickle.py

Line # Mem usage Increment Line Contents
18 @profile
19 9.18 MB 0.00 MB def load_file():
20 311.02 MB 301.83 MB y=pickle.load (open('machin.pkl', 'r"))
21 311.02 MB 0.00 MB return y

So somehow, pickling is very bad for memory consumption. The initial list takes up more or less 230MB,
but pickling it creates an extra 230-something MB worth of memory allocation.

Unpickling, on the other hand, seems fairly efficient. It does create more memory than the original list
(300MB instead of 230-something) but it does not double the quantity of allocated memory.

Overall, then, (un)pickling should be avoided for memory-sensitive applications. What are the alternatives?
Pickling preserves all the structure of a data structure, so you can recover it exactly from the pickled file at a
later time. However, that might not always be needed. If the file is to contain a list as in the example above,
then maybe a simple flat, text-based, file format is in order. Let us see what it gives.

A naive implementation would give:

import memory profiler
import random
import pickle

def random_string() :

return "".Jjoin([chr (64 + random.randint (0, 25)) for _ in xrange (20)1])
@profile
def create_file():

x = [ (random.random(),

random_string (),
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random.randint (0, 2 %% 64))
for _ in xrange (1000000) ]

f = open('machin.flat', 'w')
for xx in x:
print >>f, xx

f.close()
@profile
def load_file():
y = [1]
f = open('machin.flat', 'r'")
for line in f:
y.append(eval (1ine))
f.close()
return y
if _ name_ == "_ _main_ ":
create_file()
#load _file()
Creating the file:
Filename: test-flat.py
Line # Mem usage Increment Line Contents
8 @profile
9 9.19 MB 0.00 MB def create_file():
10 9.34 MB 0.15 MB x=[ (random.random(),
11 random_string (),
12 random.randint (0, 2+x%64))
13 246.09 MB 236.75 MB for _ in xrange (1000000) ]
14
15 246.09 MB 0.00 MB f=open ('machin.flat', 'w'")
16 308.27 MB 62.18 MB for xx in x:
17 print >>f, xx
and reading the file back:
Filename: test-flat.py
Line # Mem usage Increment Line Contents
20 @profile
21 9.19 MB 0.00 MB def load_file():
22 9.34 MB 0.15 MB v=11
23 9.34 MB 0.00 MB f=open ('machin.flat', 'r'")
24 300.99 MB 291.66 MB for line in f:
25 300.99 MB 0.00 MB y.append (eval (1line))
26 301.00 MB 0.00 MB return y

Memory consumption on writing is now much better. It still creates a lot of temporary small objects (for
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60MB’s worth), but it’s not doubling memory usage. Reading is comparable (using only marginally less
memory).

This particular example is trivial but it generalizes to strategies where you don’t load the whole thing first
then process it but rather read a few items, process them, and reuse the allocated memory. Loading data to
a Numpy array, for example, one could first create the Numpy array, then read the file line by line to fill the
array: this allocates one copy of the whole data. Using pickle, you would allocate the whole data (at least)
twice: once by pickle, and once through Numpy.

Or even better yet: use Numpy (or PyTables) arrays. But that’s a different topic. In the mean time, you can
have a look at loading and saving another tutorial in the Theano/doc/tutorial directory.

Kok ok

Python design goals are radically different than, say, C design goals. While the latter is designed to give
you good control on what you’re doing at the expense of more complex and explicit programming, the
former is designed to let you code rapidly while hiding most (if not all) of the underlying implementation
details. While this sounds nice, in a production environment ignoring the implementation inefficiencies of
a language can bite you hard, and sometimes when it’s too late. I think that having a good feel of how
inefficient Python is with memory management (by design!) will play an important role in whether or not
your code meets production requirements, scales well, or, on the contrary, will be a burning hell of memory.

Multi cores support in Theano

BLAS operation

BLAS is an interface for some mathematic operations between two vectors, a vector and a matrix or two
matrices (e.g. the dot product between vector/matrix and matrix/matrix). Many different implementations
of that interface exist and some of them are parallelized.

Theano tries to use that interface as frequently as possible for performance reasons. So if Theano links to a
parallel implementation, those operations will run in parallel in Theano.

The most frequent way to control the number of threads used is via the OMP_NUM_THREADS environment
variable. Set it to the number of threads you want to use before starting the Python process. Some BLAS
implementations support other environment variables.

To test if you BLAS supports OpenMP/Multiple cores, you can use the theano/misc/check_blas.py script
from the command line like this:

OMP_NUM_THREADS=1 python theano/misc/check_blas.py —g
OMP_NUM_THREADS=2 python theano/misc/check_blas.py —g

Parallel element wise ops with OpenMP

Because element wise ops work on every tensor entry independently they can be easily parallelized using
OpenMP.

To use OpenMP you must set the openmp flag to True.
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You can use the flag openmp_elemwise_minsize to set the minimum tensor size for which the opera-
tion is parallelized because for short tensors using OpenMP can slow down the operation. The default value
i 200000.

For simple (fast) operations you can obtain a speed-up with very large tensors while for more complex
operations you can obtain a good speed-up also for smaller tensors.

There is a script elemwise_openmp_speedup.py in theano/misc/ which you can use to tune the
value of openmp_elemwise_minsize for your machine. The script runs two elemwise operations (a
fast one and a slow one) for a vector of size openmp_elemwise_minsize with and without OpenMP
and shows the time difference between the cases.

The only way to control the number of threads used is via the OMP_NUM_THREADS environment variable.
Set it to the number of threads you want to use before starting the Python process. You can test this with
this command:

OMP_NUM_THREADS=2 python theano/misc/elemwise_openmp_speedup.py
#The output

Fast op time without openmp 0.000533s with openmp 0.000474s speedup 1.12
Slow op time without openmp 0.002987s with openmp 0.001553s speedup 1.92

Frequently Asked Questions
How to update a subset of weights?

If you want to update only a subset of a weight matrix (such as some rows or some columns) that are used
in the forward propogation of each iteration, then the cost function should be defined in a way that it only
depends on the subset of weights that are used in that iteration.

For example if you want to learn a lookup table, e.g. used for word embeddings, where each row is a vector
of weights representing the embedding that the model has learned for a word, in each iteration, the only
rows that should get updated are those containing embeddings used during the forward propagation. Here is
how the theano function should be written:

Defining a shared variable for the lookup table

lookup_table = theano.shared(matrix_ndarray)

Getting a subset of the table (some rows or some columns) by passing an integer vector of indices corre-
sponding to those rows or columns.

subset = lookup_table[vector_of_indices]

From now on, use only ‘subset’. Do not call lookup_table[vector_of_indices] again. This causes problems
with grad as this will create new variables.

Defining cost which depends only on subset and not the entire lookup_table
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cost = something that depends on subset
g = theano.grad(cost, subset)

There are two ways for updating the parameters: Either use inc_subtensor or set_subtensor. It is recom-
mended to use inc_subtensor. Some theano optimizations do the conversion between the two functions, but
not in all cases.

updates = inc_subtensor (subset, g=xlr)
OR
updates = set_subtensor (subset, subset + g=xlr)

Currently we just cover the case here, not if you use inc_subtensor or set_subtensor with other types of
indexing.

Defining the theano function

f = theano.function (..., updates=[ (lookup_table, updates)])

Note that you can compute the gradient of the cost function w.r.t. the entire lookup_table, and the gradient
will have nonzero rows only for the rows that were selected during forward propagation. If you use gradient
descent to update the parameters, there are no issues except for unnecessary computation, e.g. you will
update the lookup table parameters with many zero gradient rows. However, if you want to use a different
optimization method like rmsprop or Hessian-Free optimization, then there will be issues. In rmsprop, you
keep an exponentially decaying squared gradient by whose square root you divide the current gradient to
rescale the update step component-wise. If the gradient of the lookup table row which corresponds to a rare
word is very often zero, the squared gradient history will tend to zero for that row because the history of
that row decays towards zero. Using Hessian-Free, you will get many zero rows and columns. Even one of
them would make it non-invertible. In general, it would be better to compute the gradient only w.r.t. to those
lookup table rows or columns which are actually used during the forward propagation.

6.2.5 Extending Theano

This advanced tutorial is for users who want to extend Theano with new Types, new Operations (Ops), and
new graph optimizations. This first page of the tutorial mainly focuses on the Python implementation of an
Op and then proposes an overview of the most important methods that define an op. The second page of the
tutorial (Extending Theano with a C Op) provides then information on the C implementation of an Op. The
rest of the tutorial goes more in depth on advanced topics related to Ops, such as how to write efficient code
for an Op and how to write an optimization to speed up the execution of an Op.

Along the way, this tutorial also introduces many aspects of how Theano works, so it is also good for you if
you are interested in getting more under the hood with Theano itself.

Note: Before tackling this more advanced presentation, it is highly recommended to read the introductory
Tutorial, especially the sections that introduce the Theano Graphs, as providing a novel Theano op requires
a basic understanting of the Theano Graphs.
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See also the Developer Start Guide for information regarding the versioning framework, namely about git
and GitHub, regarding the development workflow and how to make a quality contribution.

Creating a new Op: Python implementation

So suppose you have looked through the library documentation and you don’t see a function that does what
you want.

If you can implement something in terms of existing Ops, you should do that. Odds are your function that
uses existing Theano expressions is short, has no bugs, and potentially profits from optimizations that have
already been implemented.

However, if you cannot implement an Op in terms of existing Ops, you have to write a new one. Don’t
worry, Theano was designed to make it easy to add new Ops, Types, and Optimizations.

As an illustration, this tutorial shows how to write a simple Python-based operations which performs op-
erations on Type, double<Double>. .. It also shows how to implement tests that .. ensure the proper
working of an op.

Note: This is an introductury tutorial and as such it does not cover how to make an op that returns a
view or modifies the values in its inputs. Thus, all ops created with the instructions described here MUST
return newly allocated memory or reuse the memory provided in the parameter output_storage of the
perform () function. See Views and inplace operations for an explanation on how to do this.

If your op returns a view or changes the value of its inputs without doing as prescribed in that page, Theano
will run, but will return correct results for some graphs and wrong results for others.

It is recommended that you run your tests in DebugMode (Theano flag mode=DebugMode) since it verifies
if your op behaves correctly in this regard.

Theano Graphs refresher

Apply Node > Op
A

Outputs | »  Inputs

Theano represents symbolic mathematical computations as graphs. Those graphs are bi-partite graphs
(graphs with 2 types of nodes), they are composed of interconnected Apply and Variable nodes. Vari-
able nodes represent data in the graph, either inputs, outputs or intermediary values. As such, Inputs and
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Outputs of a graph are lists of Theano Variable nodes. Apply nodes perform computation on these variables
to produce new variables. Each App/y node has a link to an instance of Op which describes the computation
to perform. This tutorial details how to write such an Op instance. Please refers to Graph Structures for a
more detailed explanation about the graph structure.

Op’s basic methods

An op is any Python object which inherits from gof . Op. This section provides an overview of the basic
methods you typically have to implement to make a new op. It does not provide extensive coverage of all
the possibilities you may encounter or need. For that refer to Op’s contract.

import theano

class MyOp (theano.Op) :
# Properties attribute
_props__ = ()

#itypes and otypes attributes are

#compulsory 1if make_node method is not defined.
#They're the type of input and output respectively
itypes None

otypes = None

#Compulsory 1f itypes and otypes are not defined
def make_node(self, *inputs):
pass

# Python implementation:
def perform(self, node, inputs_storage, output_storage):
pass

# Other type of implementation
# C implementation: [see theano web site for other functions]
def c_code(self, node, inputs, outputs, sub):

pass

# Other implementations (pycuda, ...):

def make_thunk(self, node, storage_map, _, _2)
pass

# optional:

check_input = True
def _ _init__ (self, =xargs):
pass

def grad(self, inputs, g):
pass

def R_op(self, inputs, eval_points):
pass
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def infer_shape (node, input_shapes):
pass

An op has to implement some methods defined in the the interface of gof.Op. More specifically, it is
mandatory for an op to define either the method make_node () or itypes, ot ypes and one of the imple-
mentation methods, either perform (), Op.c_code () or make_thunk (). method make node ()
and one of the implementation methods, either perform (), Op.c_code () or make_thunk ().

make_node () method creates an Apply node representing the application of the op on the
inputs provided. This method is reponsible for three things:

* it first checks that the input Variables types are compatible with the current op. If the
op cannot be applied on the provided input types, it must raises an exception (such as
TypeError).

* it operates on the Variables found in » input s in Theano’s symbolic language to infer the
type of the symbolic output Variables. It creates output Variables of a suitable symbolic
Type to serve as the outputs of this op’s application.

* it creates an Apply instance with the input and output Variable, and return the Apply
instance.

perform () method defines the Python implementation of an op. It takes several arguments:

* node is a reference to an Apply node which was previously obtained via the Op‘s
make_node () method. It is typically not used in simple ops, but it contains symbolic
information that could be required for complex ops.

* inputs is a list of references to data which can be operated on using non-symbolic
statements, (i.e., statements in Python, Numpy).

* output_storage is a list of storage cells where the output is to be stored. There is one
storage cell for each output of the op. The data put in out put__st orage must match the
type of the symbolic output. It is forbidden to change the length of the list(s) contained
in output_storage. A function Mode may allow output_storage elements to
persist between evaluations, or it may reset output_storage cells to hold a value
of None. It can also pre-allocate some memory for the op to use. This feature can allow
perform toreuse memory between calls, for example. If there is something preallocated
in the output_storage, it will be of the good dtype, but can have the wrong shape
and have any stride pattern.

perform () method must be determined by the inputs. That is to say, when applied to identical
inputs the method must return the same outputs.

gof.Op allows some other way to define the op implentation. For instance, it is possible to
define Op.c_code () to provide a C-implementation to the op. Please refers to tutorial Ex-
tending Theano with a C Op for a description of Op. c_code () and other related c_methods.
Note that an op can provide both Python and C implementation.

make_thunk () method is another alternative to perform (). It returns a thunk. A thunk is
defined as a zero-arguments function which encapsulates the computation to be performed by
an op on the arguments of its corresponding node. It takes several parameters:
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* node is the Apply instance for which a thunk is requested,

* storage_map is a dict of lists which maps variables to a one-element lists holding
the variable’s current value. The one-element list acts as pointer to the value and allows
sharing that “pointer” with other nodes and instances.

* compute_map is also a dict of lists. It maps variables to one-element lists holding
booleans. If the value is O then the variable has not been computed and the value should
not be considered valid. If the value is 1 the variable has been computed and the value is
valid. If the value is 2 the variable has been garbage-collected and is no longer valid, but
shouldn’t be required anymore for this call. The returned function must ensure that it sets
the computed variables as computed in the compute_map.

make_thunk () is useful if you want to generate code and compile it yourself. For example,
this allows you to use PyCUDA to compile GPU code.

If make thunk () is defined by an op, it will be used by Theano to obtain the op’s implemen-
tation. perform () and Op.c_code () will be ignored.

If make node () is not defined, the itypes and otypes are used by the Op’s
make_node () method to implement the functionality of make_node () method mentioned
above.

Op’s auxiliary methods

There are other methods that can be optionally defined by the op:

The __ str.__ () method provides a meaningful string representation of your op.

__eq__ () and __hash__ () define respectivelly equality between two ops and the hash
of an op instance. They will be used by the optimization phase to merge nodes that are do-
ing equivalent computations (same inputs, same operation). Two ops that are equal according
__eq__ () should return the same output when they are applied on the same inputs.

The___props___lists the properties that influence how the computation is performed (Ususally
these are those that you set in __init__ ()). It must be a tuple. If you don’t have any
properties, then you should set this attribute to the emtpy tuple ().

___props___enables the automatic generation of appropriate __eq () and __hash__ ().
Given the method __eq (), automatically generated from ___props__, two ops will be
equal if they have the same values for all the properties listed in ___props__ . Given to
the method ___hash___ () automatically generated from __props__, two ops will be have
the same hash if they have the same values for all the properties listed in __ props_ .
__props___ will also generate a suitable __str__ () for your op. This requires develop-
ment version after September 1st, 2014 or version 0.7.

The infer_shape () method allows to infer the shape of the op output variables, without
actually computing the outputs. It takes as input node, a reference to the op Apply node, and
a list of Theano symbolic Varables (10_shape, 11_shape, ...) which are the shape of the
op input Variables. infer shape () returns a list where each element is a tuple representing
the shape of one output. This could be helpful if one only needs the shape of the output instead
of the actual outputs, which can be useful, for instance, for optimization procedures.

6.2.
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The grad () method is required if you want to differentiate some cost whose expression in-
cludes your op. The gradient may be specified symbolically in this method. It takes two argu-
ments inputs and output_gradients which are both lists of symbolic Theano Variables
and those must be operated on using Theano’s symbolic language. The grad method must re-
turn a list containing one Variable for each input. Each returned Variable represents the gradient
with respect to that input computed based on the symbolic gradients with respect to each output.
If the output is not differentiable with respect to an input then this method should be defined
to return a variable of type NullType for that input. Likewise, if you have not implemented the
grad computation for some input, you may return a variable of type NullType for that input.
Please refer to grad () for a more detailed view.

The R_op () method is needed if you want theano.tensor.Rop to work with your op.
This function implements the application of the R-operator on the function represented by your
op. Let assume that function is f, with input x, applying the R-operator means computing the
Jacobian of f and right-multiplying it by v, the evaluation point, namely: %v.

The optional boolean check_input attribute is used to specify if you want the types used in
your op to check their inputs in their c_code. It can be used to speed up compilation, reduce
overhead (particularly for scalars) and reduce the number of generated C files.

Example: Op definition

import theano

#Using make_node

class DoubleOpl (theano.Op) :
__props__ = ()

def make_node(self, x):
X = theano.tensor.as_tensor_variable (x)
# Note: using x_.type() is dangerous, as it copies x's broadcasting
# behaviour
return theano.Apply(self, [x], [x.type()])

def perform(self, node, inputs, output_storage):

x = inputs[0]
z = output_storage[0]
z[0] = x * 2

def infer_shape(self, node, i0_shapes):
return i10_shapes

def grad(self, inputs, output_grads):
return [output_grads[0] * 2]

def R_op(self, inputs, eval_points):
# R_op can receive None as eval_points.
# That mean there is no diferientiable path through that input
# If this imply that you cannot compute some outputs,
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# return None for those.
if eval_points[0] is None:
return eval_points
return self.grad(inputs, eval_points)

doubleOpl = DoubleOpl ()

#Using itypes and otypes

class DoubleOp2 (theano.Op) :

__props__ = ()
itypes = [theano.tensor.dmatrix]
otypes = [theano.tensor.dmatrix]

def perform(self, node, inputs, output_storage):

x = inputs[0]
z = output_storage[0]
z[0] = x * 2

def infer_shape(self, node, 10_shapes):
return i10_shapes

def grad(self, inputs, output_grads):
return [output_grads[0] = 2]

def R_op(self, inputs, eval_points):
# R_op can receive None as eval_points.
# That mean there is no diferientiable path through that input
# If this imply that you cannot compute some outputs,
# return None for those.
if eval_points[0] is None:
return eval_points
return self.grad(inputs, eval_points)

doubleOp2 = DoubleOp2 ()

At a high level, the code fragment declares a class (e.g., DoubleOp1l) and then creates one instance of it
(e.g., doubleOpl).

We often gloss over this distinction, but will be precise here: doubleOpl (the instance) is an Op, not
DoubleOpl (the class which is a subclass of theano.Op). You can call doubleOpl (tensor.
vector ()) on a Variable to build an expression, and in the expression there will be a . op attribute
that refers to doubleOpl.

The make_node method creates a node to be included in the expression graph. It runs when we ap-
ply our Op (doubleOpl) to the Variable (x), as in doubleOpl (tensor.vector()). When an
Op has multiple inputs, their order in the inputs argument to Apply is important: Theano will call
make_node («inputs) tocopy the graph, so it is important not to change the semantics of the expression
by changing the argument order.

All the inputs and output s arguments to Apply must be Variables. A common and easy way to ensure
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inputs are variables is to run them through as_tensor_variable. This function leaves TensorType
variables alone, raises an error for non-TensorType variables, and copies any numpy . ndarray into the
storage for a TensorType Constant. The make_node method dictates the appropriate Type for all output
variables.

The perform method implements the Op’s mathematical logic in Python. The inputs (here x) are passed
by value, but a single output is returned indirectly as the first element of single-element lists. If doubleOpl
had a second output, it would be stored in output_storage[1] [0].

In some execution modes, the output storage might contain the return value of a previous call. That old
value can be reused to avoid memory re-allocation, but it must not influence the semantics of the Op output.

You can try the new Op as follows:

import theano
X = theano.tensor.matrix ()
f = theano.function([x], DoubleOpl () (x))

import numpy

inp = numpy.random.rand (5, 4)

out = f(inp)

assert numpy.allclose(inp * 2, out)

print (inp)

print (out)

[[ 0.08257206 0.34308357 0.5288043 0.06582951]
[ 0.65977826 0.10040307 0.5402353 0.55472296]
[ 0.82358552 0.29502171 0.97387481 0.0080757 1]
[ 0.77327215 0.65401857 0.76562992 0.94145702]
[ 0.8452076 0.30500101 0.88430501 0.95818655]]
[[ 0.16514411 0.68616713 1.0576086 0.13165902]
[ 1.31955651 0.20080613 1.08047061 1.10944593]
[ 1.64717104 0.595004341 1.94774962 0.0161514 ]
[ 1.5465443 1.30803715 1.53125983 1.88291403]
[ 1.6904152 0.61000201 1.76861002 1.9163731 1]

import theano

x = theano.tensor.matrix()

f = theano.function([x], DoubleOp2 () (x))

import numpy

inp = numpy.random.rand (5, 4)

out = f (inp)

assert numpy.allclose(inp * 2, out)

print (inp)

print (out)

[[ 0.02443785 0.67833979 0.91954769 0.95444365]
[ 0.60853382 0.7770539 0.78163219 0.92838837]
[ 0.04427765 0.37895602 0.23155797 0.4934699 ]
[ 0.20551517 0.7419955 0.34500905 0.49347629]
[ 0.24082769 0.49321452 0.24566545 0.15351132]]
[[ 0.04887571 1.35667957 1.83909538 1.90888731]
[ 1.21706764 1.55410779 1.56326439 1.85677674]
[ 0.08855531 0.75791203 0.46311594 0.9869398 1]
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[ 0.41103034 1.48399101 0.69001811 0.98695258]
[ 0.48165539 0.98642904 0.4913309 0.307022647]

Example: _ props__ definition

We can modify the previous piece of code in order to demonstrate the usage of the __props___ attribute.

We create an Op that takes a variable x and returns ax+b. We want to say that two such ops are equal
when their values of a and b are equal.

import theano

class AXPBOp (theano.Op) :

mmn

This creates an Op that takes x to ax*xtb.

mmrn

_props_ — ("a", "b")

def _ init__ (self, a, Db):
self.a = a
self.b = Db
super (AXPBOp, self).__init__ ()

def make_node(self, x):
# check that the theano version has support for __props__.
assert hasattr(self, '_props'), ("Your version of theano is too"
"old to support __props__.")
X = theano.tensor.as_tensor_variable (x)
return theano.Apply(self, [x], [x.type()])

def perform(self, node, inputs, output_storage):

x = inputs[0]
z = output_storage[0]
z[0] = self.a » x + self.b

def infer_ shape(self, node, 10_shapes):
return i0_shapes

def grad(self, inputs, output_grads):
return [a » output_grads[0] + Db]

The use of __props__ saves the user the trouble of implementing __eqg () and___hash () manu-
ally. It also generates a default__str () method that prints the attribute names and their values.

We can test this by running the following segment:

multd4plusbSop = AXPBOp (4, 5)
another_mult4plusbop = AXPBOp (4, 5)
mult2plus3op = AXPBROp (2, 3)

assert multdplusbop == another_multdplusbop
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assert multdplusbop != mult2plus3op

= theano.tensor.matrix ()
= theano.function([x], mult4plusbop(x))
theano. function ([x], mult2plus3op(x))

Q Fh X
[l

import numpy

inp = numpy.random.rand (5, 4).astype (numpy.float32)
assert numpy.allclose(4 * inp + 5, f(inp))

assert numpy.allclose(2 = inp + 3, g(inp))

How To Test it

Theano has some functionalities to simplify testing. These help test the infer_shape, grad and R_op
methods. Put the following code in a file and execute it with the theano-nose program.

Basic Tests

Basic tests are done by you just by using the op and checking that it returns the right answer. If you
detect an error, you must raise an exception. You can use the assert keyword to automatically raise an
AssertionError.

import numpy
import theano

from theano.tests import unittest_tools as utt
from theano import config
class test_Double (utt.InferShapeTester) :
def setUp(self):
super (test_Double, self) .setUp()
self.op_class = DoubleOp
self.op = DoubleOp ()

def test_basic(self):

x = theano.tensor.matrix()
f = theano.function([x], self.op(x))
inp = numpy.asarray (numpy.random.rand(5, 4), dtype=config.floatX)

out = f (inp)
# Compare the result computed to the expected value.
utt.assert_allclose(inp * 2, out)

We call utt.assert_allclose (expected_value, value) to compare NumPy ndarray. This
raise an error message with more information. Also, the default tolerance can be changed with the Theano
flags config.tensor.cmp_sloppy that take values in 0, 1 and 2. The defaul value do the most strict
comparison, 1 and 2 make less strict comparison.
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Testing the infer_shape

When a class inherits from the InferShapeTester class, it gets the self._compile_and_check
method that tests the op’s infer_shape method. It tests that the op gets optimized out of the graph if
only the shape of the output is needed and not the output itself. Additionally, it checks that the optimized
graph computes the correct shape, by comparing it to the actual shape of the computed output.

self._compile_and_check compiles a Theano function. It takes as parameters the lists of input and
output Theano variables, as would be provided to theano.function, and a list of real values to pass
to the compiled function. It also takes the op class as a parameter in order to verify that no instance of it
appears in the shape-optimized graph.

If there is an error, the function raises an exception. If you want to see it fail, you can implement an incorrect
infer_shape.

When testing with input values with shapes that take the same value over different dimensions (for instance,
a square matrix, or a tensor3 with shape (n, n, n), or (m, n, m)), it is not possible to detect if the output
shape was computed correctly, or if some shapes with the same value have been mixed up. For instance,
if the infer_shape uses the width of a matrix instead of its height, then testing with only square matrices
will not detect the problem. This is why the self._compile_and_check method prints a warning in
such a case. If your op works only with such matrices, you can disable the warning with the warn=False
parameter.

from theano.tests import unittest_tools as utt
from theano import config
class test_Double (utt.InferShapeTester):
# [...] as previous tests.
def test_infer_ shape(self):
x = theano.tensor.matrix()
self._compile_and_check([x], # theano.function inputs
[self.op(x)], # theano.function outputs
# Always use not square matrix!
# inputs data
[numpy.asarray (numpy.random.rand (5, 4),
dtype=config.floatX)],
# Op that should be removed from the graph.
self.op_class)

Testing the gradient

The function verify_grad verifies the gradient of an op or Theano graph. It compares the analytic (symboli-
cally computed) gradient and the numeric gradient (computed through the Finite Difference Method).

If there is an error, the function raises an exception. If you want to see it fail, you can implement an incorrect
gradient (for instance, by removing the multiplication by 2).

def test_grad(self):
theano.tests.unittest_tools.verify_grad(self.op,
[numpy.random.rand (5, 7, 2)1)
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Testing the Rop

The class RopLop_checker defines the functions RopLop_checker.check_mat_rop_lop (),
RopLop_checker.check_rop_lop () and RopLop_checker.check_nondiff_rop ().
These allow to test the implementation of the Rop method of a particular op.

For instance, to verify the Rop method of the DoubleOp, you can use this:

import numpy
import theano.tests
from theano.tests.test_rop import RopLop_checker
class test_DoubleRop (RopLop_checker) :
def setUp(self):
super (test_DoubleRop, self) .setUp()
def test_double_rop(self):
self.check_rop_lop (DoubleRop () (self.x), self.in_shape)

Testing GPU Ops

Ops to be executed on the GPU should inherit from the theano.sandbox.cuda.GpuOp and not
theano.Op. This allows Theano to distinguish them. Currently, we use this to test if the NVIDIA driver
works correctly with our sum reduction code on the GPU.

Running Your Tests

To perform your tests, you may select either one of the three following methods:

theano-nose

The method of choice to conduct tests is to run the file theano-nose. In a regular Theano installation,
the latter will be on the operating system’s path and directly accessible from any folder. Otherwise, it can
be accessed in the Theano/bin folder. The following command lines may be used for the corresponding
purposes:

* theano-nose --theano: Run every test found in Theano’s path.
* theano-nose folder_name: Run every test found in the folder folder_name.
* theano-nose test_file.py: Run every test found in the file test_file.py.

The following are particularly useful for development purposes since they call for particular classes or even
for particular tests:

* theano-nose test_file.py:test_DoubleRop: Run every test found inside the class
test_DoubleRop.

* theano-nose test_file.py:test_DoubleRop.test_double_op: Run only the test
test_double_op in the class test_DoubleRop.
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Help with the use and functionalities of theano-nose may be obtained by running it with the command
line parameter ——help (-h).

nosetests

The command nosetests can also be used. Although it lacks the useful functionalities that
theano-nose provides, nosetests can be called similarly to theano-nose from any folder in
Python’s path like so:

nosetests [suffix similar to the above].

More documentation on nosetests is available here: nosetests.

In-file

One may also add a block of code similar to the following at the end of the file containing a specific test
of interest and run the file. In this example, the test test_DoubleRop in the class test_double_op would be
performed.

if _ name_ == '_main_ ':
t = test_DoubleRop ("test_double_rop")
t.setUp()

t.test_double_rop ()

We recommend that when we execute a file, we run all tests in that file. This can be done by adding this at
the end of your test files:

if name == '_ main '

unittest.main ()

Exercise

Run the code of the DoubleOp example above.

Modify and execute to compute: X *y.

Modify and execute the example to return two outputs: X + y and x - y.

You can omit the Rop functions. Try to implement the testing apparatus described above.

(Notice that Theano’s current elemwise fusion optimization is only applicable to computations involving a
single output. Hence, to gain efficiency over the basic solution that is asked here, the two operations would
have to be jointly optimized explicitly in the code.)

Random numbers in tests

Making tests errors more reproducible is a good practice. To make your tests more reproducible, you need
a way to get the same random numbers. You can do this by seeding NumPy’s random number generator.
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For convenience, the classes InferShapeTester and RopLop_checker already do this for you. If you imple-
ment your own setUp function, don’t forget to call the parent setUp function.

For more details see Using Random Values in Test Cases.

Solution

as_op

as_op is a python decorator that converts a python function into a basic Theano op that will call the supplied
function during execution.

This isn’t the recommended way to build an op, but allows for a quick implementation.

It takes an optional infer_shape () parameter that must have this signature:

def infer_ shape(node, input_shapes):
#

return output_shapes

— “input_shapes’ and “output_shapes are lists of tuples that
represent the shape of the corresponding inputs/outputs.

Note: Not providing the infer_shape method prevents shape-related optimizations from working with this
op. For example your_op(inputs, ...).shape will need the op to be executed just to get the shape.

Note: As no grad is defined, this means you won’t be able to differentiate paths that include this op.

Note: It converts the Python function to a callable object that takes as inputs Theano variables that were
declared.

Note: The python function wrapped by the as_op decorator needs to return a new data allocation, no views
or in place modification of the input.

as_op Example

import theano

import numpy

from theano import function

from theano.compile.ops import as_op

def infer_shape_numpy_dot (node, input_shapes):
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ashp, bshp = input_shapes
return [ashp[:-1] + bshp[-1:]]

@as_op (itypes=[theano.tensor.fmatrix, theano.tensor.fmatrix],
otypes=[theano.tensor.fmatrix], infer_shape=infer_shape_numpy_dot)
def numpy_dot (a, Db):
return numpy.dot (a, b)

You can try it as follows:

X = theano.tensor.fmatrix ()
y = theano.tensor.fmatrix()
f = function([x, y], numpy_dot (x, Vv))

inpl = numpy.random.rand (5, 4).astype('float32")
inp2 = numpy.random.rand (4, 7).astype('float32")
out = f(inpl, inp2)

Exercise

Run the code of the numpy_dot example above.
Modify and execute to compute: numpy.add and numpy.subtract.

Modify and execute the example to return two outputs: x +y and x - y.

Documentation and Coding Style

Please always respect the Requirements for Quality Contributions or your contribution will not be accepted.

NanGuardMode and AllocEmpty

NanGuardMode help users find where in the graph NaN appear. But sometimes, we want some variables to
not be checked. For example, in the old GPU back-end, we use a float32 CudaNdarray to store the MRG
random number generator state (they are integers). So if NanGuardMode check it, it will generate false
positive. Another case is related to [Gpu]AllocEmpty or some computation on it (like done by Scan).

You can tell NanGuardMode to do not check a variable with: variable.tag.
nan_guard_mode_check. Also, this tag automatically follow that variable during optimization.
This mean if you tag a variable that get replaced by an inplace version, it will keep that tag.

Final Note

A more extensive discussion of this section’s content may be found in the advanced tutorial Extending
Theano.

The section Other ops includes more instructions for the following specific cases:
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Scalar/Elemwise/Reduction Ops
* SciPy Ops

* Sparse Ops

* Random ops

* OpenMP Ops

* Numba Ops

Extending Theano with a C Op

This tutorial covers how to extend Theano with an op that offers a C implementation. It does not cover
ops that run on a GPU but it does introduce many elements and concepts which are relevant for GPU ops.
This tutorial is aimed at individuals who already know how to extend Theano (see tutorial Creating a new
Op: Python implementation) by adding a new op with a Python implementation and will only cover the
additional knowledge required to also produce ops with C implementations.

Providing a Theano op with a C implementation requires to interact with Python’s C-API and Numpy’s
C-API. Thus, the first step of this tutorial is to introduce both and highlight their features which are most
relevant to the task of implementing a C op. This tutorial then introduces the most important methods that
the op needs to implement in order to provide a usable C implementation. Finally, it shows how to combine
these elements to write a simple C op for performing the simple task of multiplying every element in a vector
by a scalar.

Python C-API

Python provides a C-API to allows the manipulation of python objects from C code. In this API, all variables
that represent Python objects are of type PyObject =. All objects have a pointer to their type object and
a reference count field (that is shared with the python side). Most python methods have an equivalent C
function that can be called on the PyObject »* pointer.

As such, manipulating a PyObject instance is often straight-forward but it is important to properly manage
its reference count. Failing to do so can lead to undesired behavior in the C code.

Reference counting

Reference counting is a mechanism for keeping track, for an object, of the number of references to it held by
other entities. This mechanism is often used for purposes of garbage collecting because it allows to easily
see if an object is still being used by other entities. When the reference count for an object drops to 0, it
means it is not used by anyone any longer and can be safely deleted.

PyObjects implement reference counting and the Python C-API defines a number of macros to help man-
age those reference counts. The definition of these macros can be found here : Python C-API Reference
Counting. Listed below are the two macros most often used in Theano C ops.

void Py_XINCREF (PyObject *0)
Increments the reference count of object o. Without effect if the object is NULL.
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void Py_ XDECREF (PyObject *0)
Decrements the reference count of object o. If the reference count reaches 0, it will trigger a call of
the object’s deallocation function. Without effect if the object is NULL.

The general principle, in the reference counting paradigm, is that the owner of a reference to an object is
responsible for disposing properly of it. This can be done by decrementing the reference count once the
reference is no longer used or by transfering ownership; passing on the reference to a new owner which
becomes responsible for it.

Some functions return “borrowed references”; this means that they return a reference to an object without
transfering ownership of the reference to the caller of the function. This means that if you call a function
which returns a borrowed reference, you do not have the burden of properly disposing of that reference. You
should neot call Py_XDECREF() on a borrowed reference.

Correctly managing the reference counts is important as failing to do so can lead to issues ranging from
memory leaks to segmentation faults.

NumPy C-API

The NumPy library provides a C-API to allow users to create, access and manipulate NumPy arrays from
within their own C routines. NumPy’s ndarrays are used extensively inside Theano and so extending Theano
with a C op will require interaction with the NumPy C-APL

This sections covers the API’s elements that are often required to write code for a Theano C op. The full
documentation for the API can be found here : NumPy C-API.

NumPy data types

To allow portability between platforms, the NumPy C-API defines its own data types which should be
used whenever you are manipulating a NumPy array’s internal data. The data types most commonly used
to implement C ops are the following : npy_int{8,16, 32,64}, npy_uint{8,16,32,64} and
npy_float{32,64}.

You should use these data types when manipulating a NumPy array’s internal data instead of C primitives
because the size of the memory representation for C primitives can vary between platforms. For instance,
a C long can be represented in memory with 4 bytes but it can also be represented with 8. On the other
hand, the in-memory size of NumPy data types remains constant across platforms. Using them will make
your code simpler and more portable.

The full list of defined data types can be found here : NumPy C-API data types.

NumPy ndarrays

In the NumPy C-API, NumPy arrays are represented as instances of the PyArrayObject class which is a
descendant of the PyObject class. This means that, as for any other Python object that you manipulate from
C code, you need to appropriatedly manage the reference counts of PyArrayObject instances.
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Unlike in a standard multidimensionnal C array, a NumPy array’s internal data representation does not have
to occupy a continuous region in memory. In fact, it can be C-contiguous, F-contiguous or non-contiguous.
C-contiguous means that the data is not only contiguous in memory but also that it is organized such that
the index of the latest dimension changes the fastest. If the following array

is C-contiguous, it means that, in memory, the six values contained in the array x are stored in the order
(1, 2, 3, 4, 5, 6] (thefirstvalueisx[0, 0], the second valueis x [0, 11, the third valueis x [0,
21, the, fourth value is x[1, 0], etc). F-contiguous (or Fortran Contiguous) also means that the data is
contiguous but that it is organized such that the index of the latest dimension changes the slowest. If the
array x is F-contiguous, it means that, in memory, the values appear in the order [1, 4, 2, 5, 3, 6]
(the first value is x [0, 0], the second value is x[1, 0], the third value is x [0, 17, etc).

Finally, the internal data can be non-contiguous. In this case, it occupies a non-contiguous region in memory
but it is still stored in an organized fashion : the distance between the element x [1, 7] and the element
x [1+1, 7] of the array is constant over all valid values of i and 7, just as the distance between the element
x[1i, j] and the element x [1, J+1] of the array is constant over all valid values of i and j. This distance
between consecutive elements of an array over a given dimension, is called the stride of that dimension.

Accessing NumPy ndarrays’ data and properties

The following macros serve to access various attributes of NumPy ndarrays.

voidx PyArray DATA (PyArrayObjectx arr)
Returns a pointer to the first element of the array’s data. The returned pointer must be cast to a pointer
of the proper Numpy C-API data type before use.

int PyArray NDIM(PyArrayObject* arr)
Returns the number of dimensions in the the array pointed by arr

npy_intpx PyArray DIMS (PyArrayObjectx* arr)
Returns a pointer on the first element of arr‘s internal array describing its dimensions. This internal
array contains as many elements as the array arr has dimensions.

The macro PyArray_SHAPE () is a synonym of PyArray_DIMS () : it has the same effect and
is used in an identical way.

npy_ intp* PyArray STRIDES (PyArrayObject* arr)
Returns a pointer on the first element of arr‘s internal array describing the stride for each of its
dimension. This array has as many elements as the number of dimensions in arr. In this array, the
strides are expressed in number of bytes.

PyArray Descr* PyArray DESCR (PyArrayObject* arr)
Returns a reference to the object representing the dtype of the array.

The macro PyArray_DTYPE () is a synonym of the PyArray_DESCR () : it has the same effect
and is used in an identical way.

Note This is a borrowed reference so you do not need to decrement its reference count
once you are done with it.

156 Chapter 6. Help!




theano Documentation, Release 0.8.2

int PyArray TYPE (PyArrayObject* arr)
Returns the typenumber for the elements of the array. Like the dtype, the typenumber is a descriptor
for the type of the data in the array. However, the two are not synonyms and, as such, cannot be used
in place of the other.

npy intp PyArray SIZE (PyArrayObjectx arr)
Returns to total number of elements in the array

bool PyArray_ CHKFLAGS (PyArrayObject* arr, flags)
Returns true if the array has the specified flags. The variable flag should either be a NumPy array flag
or an integer obtained by applying bitwise or to an ensemble of flags.

The flags that can be used in with this macro are : NPY_ARRAY_C_CONTIGUOUS,
NPY_ARRAY_F CONTIGUOUS, NPY_ARRAY_OWNDATA, NPY_ARRAY_ALIGNED,
NPY_ARRAY_WRITEABLE, NPY_ARRAY_UPDATEIFCOPY.

Creating NumPy ndarrays

The following functions allow the creation and copy of NumPy arrays :

PyObject* PyArray EMPTY (int nd, npy_intp* dims, typenum dtype,

int fortran)
Constructs a new ndarray with the number of dimensions specified by nd, shape specified by dims
and data type specified by dtype. If fortran is equal to 0, the data is organized in a C-contiguous
layout, otherwise it is organized in a F-contiguous layout. The array elements are not initialized in
any way.

The function PyArray_Empty () performs the same function as the macro PyArray_EMPTY ()
but the data type is given as a pointer to a PyArray_Descr object instead of a t ypenum.

PyObjectx PyArray ZEROS (int nd, npy_ intp* dims, typenum dtype,

int fortran)
Constructs a new ndarray with the number of dimensions specified by nd, shape specified by dims
and data type specified by dtype. If fortran is equal to 0, the data is organized in a C-contiguous

layout, otherwise it is organized in a F-contiguous layout. Every element in the array is initialized to
0.

The function PyArray_Zeros () performs the same function as the macro PyArray_ZEROS ()
but the data type is given as a pointer to a PyArray_Descr object instead of a t ypenum.

PyArrayObject* PyArray_GETCONTIGUOUS (PyObject* op)
Returns a C-contiguous and well-behaved copy of the array op. If op is already C-contiguous and
well-behaved, this function simply returns a new reference to op.

Methods the C Op needs to define

There is a key difference between an op defining a Python implementation for its computation and defining
a C implementation. In the case of a Python implementation, the op defines a function perform () which
executes the required Python code to realize the op. In the case of a C implementation, however, the op does
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not define a function that will execute the C code; it instead defines functions that will return the C code to
the caller.

This is because calling C code from Python code comes with a significant overhead. If every op was
responsible for executing its own C code, every time a Theano function was called, this overhead would
occur as many times as the number of ops with C implementations in the function’s computational graph.

To maximize performance, Theano instead requires the C ops to simply return the code needed for their
execution and takes upon itself the task of organizing, linking and compiling the code from the various ops.
Through this, Theano is able to minimize the number of times C code is called from Python code.

The following is a very simple example to illustrate how it’s possible to obtain performance gains with this
process. Suppose you need to execute, from Python code, 10 different ops, each one having a C imple-
mentation. If each op was responsible for executing its own C code, the overhead of calling C code from
Python code would occur 10 times. Consider now the case where the ops instead return the C code for their
execution. You could get the C code from each op and then define your own C module that would call the
C code from each op in succession. In this case, the overhead would only occur once; when calling your
custom module itself.

Moreover, the fact that Theano itself takes care of compiling the C code, instead of the individual ops, allows
Theano to easily cache the compiled C code. This allows for faster compilation times.

See Implementing the arithmetic Ops in C for the full documentation of the various methods of the class Op
that are related to the C implementation. Of particular interest are:

* The methods Op.c_libraries () and Op.c_lib_dirs () to allow your op to use external
libraries.

* The method Op.c _code_cleanup () to specify how the op should clean up what it has allocated
during its execution.

* The methods Op.c _init_code() and Op.c_init_code_apply () to specify code that
should be executed once when the module is initialized, before anything else is executed.

* The methods Op.c compile args () and Op.c _no_compile_args () to specify require-
ments regarding how the op’s C code should be compiled.

This section describes the methods Op.c _code(), Op.c_support_code (), Op.
c_support_code_apply () and Op.c_code_cache_version () because they are the ones
that are most commonly used.

c_code (node, name, input_names, output_names, sub)
This method returns a string containing the C code to perform the computation required by this op.

The node argument is an App/y node representing an application of the current Op on a list of inputs,
producing a list of outputs.

input_names is a sequence of strings which contains as many strings as the op has inputs.
Each string contains the name of the C variable to which the corresponding input has been as-
signed. For example, the name of the C variable representing the first input of the op is given by
input_names [0]. You should therefore use this name in your C code to interact with that vari-
able. output_names is used identically to input_names, but for the op’s outputs.

Finally, sub is a dictionary of extras parameters to the c_code method. Among other things, it
contains sub ['fail'] which is a string of C code that you should include in your C code (after
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ensuring that a Python exception is set) if it needs to raise an exception. Ex:

C_Code — nnn
PyErr_Format (PyExc_ValueError, "X does not have the right wvalue");
% (fail)s;

mew s {'fail' : sub['fail']}

to raise a ValueError Python exception with the specified message. The function PyErr_Format ()
supports string formatting so it is possible to tailor the error message to the specifics of the error that
occured. If PyErr_Format () is called with more than two arguments, the subsequent arguments
are used to format the error message with the same behavior as the function PyString_FromFormat().
The % characters in the format characters need to be escaped since the C code itself is defined in a
string which undergoes string formatting.

c_code = """
PyErr_Format (PyExc_ValueError,
"X==%%1 but it should be greater than 0", X);
$(fail) s;
tnno g {'fail' : sub['fail']}

Note Your C code should not return the output of the computation but rather put the results
in the C variables whose names are contained in the output_names.

c_support_code ()
Returns a string containing some support C code for this op. This code will be included at the global
scope level and can be used to define functions and structs that will be used by every apply of this op.

c_support_code_apply (node, name)
Returns a string containing some support C code for this op. This code will be included at
the global scope level and can be used to define functions and structs that will be used by
this op. The difference between this method and c_support_code () is that the C code
specified in c_support_code_apply () should be specific to each apply of the Op, while
c_support_code () is for support code that is not specific to each apply.

Both c_support_code () and c_support_code_apply () are necessary because a Theano
op can be used more than once in a given Theano function. For example, an op that adds two matrices
could be used at some point in the Theano function to add matrices of integers and, at another point,
to add matrices of doubles. Because the dtype of the inputs and outputs can change between different
applies of the op, any support code that relies on a certain dtype is specific to a given apply of the op
and should therefore be defined in c_support_code_apply ().

c_code_cache_version ()
Returns a tuple of integers representing the version of the C code in this op. Ex : (1, 4, 0) for version
1.4.0

This tuple is used by Theano to cache the compiled C code for this op. As such, the return value
MUST BE CHANGED every time the C code is altered or else Theano will disregard the change in
the code and simply load a previous version of the op from the cache. If you want to avoid caching of
the C code of this op, return an empty tuple or do not implement this method.

Note Theano can handle tuples of any hashable objects as return values for this function
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but, for greater readability and easier management, this function should return a tuple
of integers as previously described.

Important restrictions when implementing an Op

There are some important restrictions to remember when implementing an Op. Unless your Op correctly
defines a view_map attribute, the perform and c_code must not produce outputs whose memory is
aliased to any input (technically, if changing the output could change the input object in some sense, they
are aliased). Unless your Op correctly defines a destroy_map attribute, perform and c_code must
not modify any of the inputs.

TODO: EXPLAIN DESTROYMAP and VIEWMAP BETTER AND GIVE EXAMPLE.

When developing an Op, you should run computations in DebugMode, by using argument
mode="'DebugMode' to theano.function. DebugMode is slow, but it can catch many common
violations of the Op contract.

TODO: Like what? How? Talk about Python vs. C too.

DebugMode is no silver bullet though. For example, if you modify an Op self.* during any of
make_node, perform, or c_code, you are probably doing something wrong but DebugMode will not
detect this.

TODO: jpt: I don’t understand the following sentence.

Ops and Types should usually be considered immutable — you should definitely not make a change that
would have an impact on __eq__, __hash__, or the mathematical value that would be computed by
performor c_code.

Simple C Op example

In this section, we put together the concepts that were covered in this tutorial to generate an op which
multiplies every element in a vector by a scalar and returns the resulting vector. This is intended to be a
simple example so the methods c_support_code () and c_support_code_apply () are not used
because they are not required.

In the C code below notice how the reference count on the output variable is managed. Also take note of how
the new variables required for the op’s computation are declared in a new scope to avoid cross-initialization
erTors.

Also, in the C code, it is very important to properly validate the inputs and outputs storage. Theano guaran-
tees that the inputs exist and have the right number of dimensions but it does not guarantee their exact shape.
For instance, if an op computes the sum of two vectors, it needs to validate that its two inputs have the same
shape. In our case, we do not need to validate the exact shapes of the inputs because we don’t have a need
that they match in any way.

For the outputs, things are a little bit more subtle. Theano does not guarantee that they have been allocated
but it does guarantee that, if they have been allocated, they have the right number of dimension. Again,
Theano offers no guarantee on the exact shapes. This means that, in our example, we need to validate that
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the output storage has been allocated and has the same shape as our vector input. If it is not the case, we
allocate a new output storage with the right shape and number of dimensions.

import numpy

import theano

from theano import gof
import theano.tensor as T

class VectorTimesScalar (gof.Op) :
__props__ = ()

def make_node(self, x, vy):
# Validate the inputs' type

if x.type.ndim != 1:
raise TypeError('x must be a 1-d vector')
if y.type.ndim != 0:

raise TypeError('y must be a scalar')

# Create an output variable of the same type as x
output_var = x.type/()

return gof.Apply(self, [x, vy], [output_var])

def c_code_cache_version(self):
return (1, 0)

def c_code(self, node, name, inp, out, sub):
X, y = inp
z, = out

# Extract the dtypes of the inputs and outputs storage to
# be able to declare pointers for those dtypes in the C

# code.

dtype_x = node.inputs[0].dtype

dtype_y node.inputs[1l].dtype

dtype_z node.outputs[0] .dtype

itemsize_x = numpy.dtype (dtype_x) .itemsize
itemsize_z = numpy.dtype (dtype_z) .itemsize

fail = sub['fail']

C_COde . nmmnn
// Validate that the output storage exists and has the same
// dimension as x.
if (NULL == % (z)s ||
PyArray_DIMS (% (x)s) [0] !'= PyArray_DIMS(%(z)s)[0])

/+ Reference received to invalid output variable.

Decrease received reference's ref count and allocate new

output variable */

Py_XDECREF (% (z) s) ;

$(z)s = (PyArrayObjectx)PyArray_EMPTY (1,
PyArray_DIMS (% (x)s),

6.2. How to provide help 161




theano Documentation, Release 0.8.2

PyArray_TYPE ( ),
0);

// Perform the vector multiplication by a scalar

{
/+ The declaration of the following variables is done in a new
scope to prevent cross initialization errors =/

npy_ * x_data_ptr =

(npy__ *)PyArray_DATA ( ) ;
npy__ x z_data_ptr =

(npy_ x)PyArray_DATA ( ) ;
npy_ y_value =

((npy__ x)PyArray_DATA ( )) [0];
int x_stride = PyArray_STRIDES ( y [0] / ;
int z_stride = PyArray_STRIDES ( Y [0] / ;
int x_dim = PyArray_DIMS ( ) [0];

for (int 1i=0; i < x_dim; i++)
{
z_data_ptr[i » z_stride] = (x_data_ptr[i » x_stride] «*
y_value);

}

nmmnn

)

return c_code % locals|()

The c_code method accepts variable names as arguments (name, inp, out, sub) and returns a C code
fragment that computes the expression output. In case of error, the $ (fail) s statement cleans up and
returns properly.

More complex C Op example

This section introduces a new example, slightly more complex than the previous one, with an op to perform
an element-wise multiplication between the elements of two vectors. This new example differs from the
previous one in its use of the methods c_support_code () and c_support_code_apply () (itdoes
not need to use them but it does so to explain their use) and its capacity to support inputs of different dtypes.

Recall the method c_support_code () is meant to produce code that will be used for every apply of the
op. This means that the C code in this method must be valid in every setting your op supports. If the op
is meant to supports inputs of various dtypes, the C code in this method should be generic enough to work
with every supported dtype. If the op operates on inputs that can be vectors or matrices, the C code in this
method should be able to accomodate both kinds of inputs.

In our example, the method c_support_code () is used to declare a C function to validate that two
vectors have the same shape. Because our op only supports vectors as inputs, this function is allowed to rely
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on its inputs being vectors. However, our op should support multiple dtypes so this function cannot rely on
a specific dtype in its inputs.

The method c__support_code_apply (), on the other hand, is allowed to depend on the inputs to the op
because it is apply-specific. Therefore, we use it to define a function to perform the multiplication between
two vectors. Variables or functions defined in the method c_support_code_apply () will be included
at the global scale for every apply of the Op. Because of this, the names of those variables and functions
should include the name of the op, like in the example. Otherwise, using the op twice in the same graph will
give rise to conflicts as some elements will be declared more than once.

The last interesting difference occurs in the c_code () method. Because the dtype of the output is variable
and not guaranteed to be the same as any of the inputs (because of the upcast in the method make_node () ),
the typenum of the output has to be obtained in the Python code and then included in the C code.

class VectorTimesVector (gof.Op) :
_props__ = ()

def make_node(self, x, vy):
# Validate the inputs' type

if x.type.ndim != 1:
raise TypeError ('x must be a 1-d vector')
if y.type.ndim != 1:

raise TypeError ('y must be a 1-d vector')

# Create an output variable of the same type as x

output_var = theano.tensor.TensorType (
dtype=theano.scalar.upcast (x.dtype, y.dtype),
broadcastable=[False]) ()

return gof.Apply(self, [x, y], [output_var])

def c_code_cache_version (self):
return (1, 0, 2)

def c_support_code(self):
c_support_code = """
bool vector_same_shape (PyArrayObject* arrl,
PyArrayObject* arr2)

return (PyArray_DIMS (arrl) [0] == PyArray_DIMS (arr2) [0]);
}

nmmnn

return c_support_code

def c_support_code_apply(self, node, name):
dtype_x node.inputs[0] .dtype
dtype_y = node.inputs[1l].dtype
dtype_z = node.outputs|[0].dtype

Cc_support_code = """
void vector_elemwise_mult_ (npy__ * x_ptr,
int x_str, npy_ * y_ptr, int y_str,
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npy_% (dtype_z)s* z_ptr, int z_str, int nbElements)

for (int i=0; i1 < nbElements; 1i++) {
z_ptr[i » z_str] = x_ptr[i % x_str] » y_ptr[i » y_str];

}

Q

return c_support_code % locals()

def c_code(self, node, name, inp, out, sub):
X, y = inp
z, = out

dtype_x = node.inputs[0].dtype
dtype_y node.inputs[1].dtype
dtype_z = node.outputs[0].dtype

itemsize_x = numpy.dtype (dtype_x) .itemsize
itemsize_y = numpy.dtype (dtype_y) .itemsize
itemsize_z = numpy.dtype (dtype_z) .itemsize

typenum_z = numpy.dtype (dtype_z) .num

fail = sub['fail']

C_Code = nman
// Validate that the inputs have the same shape
if ( !vector_same_shape ($(x)s, %(y)s))

{

PyErr_Format (PyExc_ValueError, "Shape mismatch "
"x.shape[0] and y.shape[0] should match but "
"x.shape[0] == %%i and y.shape[0] == %3%i",
PyArray_DIMS (% (x)s) [0], PyArray_DIMS(2%(y)s)[0]);

% (fail)s;

// Validate that the output storage exists and has the same
// dimension as x.
if (NULL == %(z)s || !(vector_same_shape($(x)s, %(z)s)))
{
/+ Reference received to invalid output variable.
Decrease received reference's ref count and allocate new
output variable =*/
Py_XDECREF (% (z) s) ;
$(z)s = (PyArrayObjectx)PyArray EMPTY (1,
PyArray_DIMS (% (x)s),
% (typenum_z) s,
0);

if (!'%(z)s) {
% (fail) s;
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}

// Perform the vector elemwise multiplication
vector_elemwise_mult__ (

(npy_ x)PyArray_DATA ( ),
PyArray_STRIDES ( ) [01 / /
(npy_ x) PyArray_DATA ( ),
PyArray_STRIDES ( ) [0] / '
(npy_ x) PyArray_DATA ( )
PyArray_STRIDES ( ) (01 / '
PyArray_DIMS ( ) [0]);

nmmnn

[

return c_code % locals()

Alternate way of defining C Ops

The two previous examples have covered the standard way of implementing C Ops in Theano by inheriting
from the class Op. This process is mostly simple but it still involves defining many methods as well as
mixing, in the same file, both Python and C code which tends to make the result less readable.

To help with this, Theano defines a class, COp, from which new C ops can inherit. The class COp aims to
simplify the process of implementing C ops by doing the following :

* It allows you to define the C implementation of your op in a distinct C code file. This makes it easier
to keep your Python and C code readable and well indented.

* It can automatically handle all the methods that return C code, in addition to Op.
c_code_cache_version () based on the provided external C implementation.

To illustrate how much simpler the class COp makes the process of defining a new op with a C implemen-
tation, let’s revisit the second example of this tutorial, the VectorTimesVector op. In that example,
we implemented an op to perform the task of element-wise vector-vector multiplication. The two following
blocks of code illustrate what the op would look like if it was implemented using the COp class.

The new op is defined inside a Python file with the following code :

import theano
from theano import gof

class VectorTimesVector (gof.COp) :

__props__ = ()
func_file = "./vectorTimesVector.c"
func_name = "APPLY_ SPECIFIC (vector_times_vector)"

def _ init_ (self):
super (VectorTimesVector, self).__init__ (self.func_file,
self.func_name)

def make_node(self, x, vy):
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# Validate the inputs' type

if x.type.ndim != 1:
raise TypeError ('x must be a 1-d vector')
if y.type.ndim != 1:

raise TypeError ('y must be a 1-d vector')

# Create an output variable of the same type as x

output_var = theano.tensor.TensorType (
dtype=theano.scalar.upcast (x.dtype, y.dtype),
broadcastable=[False]) ()

return gof.Apply(self, [x, y], [output_var])

And the following is the C implementation of the op, defined in an external C file named vectorTimes Vector.c

#section support_code

// Support code function
bool vector_same_shape (PyArrayObject arrl, PyArrayObjectx arr2)
{

return (PyArray_DIMS (arrl) [0] == PyArray_DIMS (arr2) [0]);

#section support_code_apply

// Apply-specific support function

void APPLY_SPECIFIC (vector_elemwise_mult) (
DTYPE_INPUT_O* x_ptr, int x_str,
DTYPE_INPUT_1x y_ptr, int y_str,
DTYPE_OUTPUT_O0* z_ptr, int z_str, int nbElements)

for (int i=0; 1 < nbElements; i++) {
z_ptr[i » z_str] = x_ptr[i » x_str] * y_ptr[i x y_str];

// Apply-specific main function

int APPLY_SPECIFIC (vector_times_vector) (PyArrayObject* inputO,
PyArrayObject* inputl,
PyArrayObjectx* outputO)

// Validate that the inputs have the same shape
if ( !vector_same_shape (input0, inputl))
{
PyErr_Format (PyExc_ValueError, "Shape mismatch : "
"inputO.shape[0] and inputl.shape[0] should "
"match but x.shape[0] == %$i and "
"y.shape[0] == %i",
PyArray_DIMS (input0) [0], PyArray_DIMS (inputl) [0]);
return 1;
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// Validate that the output storage exists and has the same
// dimension as x.
if (NULL == «xoutputO || ! (vector_same_shape (input0, =xoutputO)))
{
/* Reference received to invalid output variable.
Decrease received reference's ref count and allocate new
output variable x/
Py_XDECREF (*outputO) ;
~outputO0 = (PyArrayObject«)PyArray EMPTY (1,
PyArray_DIMS (inputO),
TYPENUM_OUTPUT_O,
0);

if (!xoutputO) {
PyErr_Format (PyExc_ValueError,
"Could not allocate output storage");
return 1;

// Perform the actual vector-vector multiplication

APPLY_ SPECIFIC (vector_elemwise_mult) (
(DTYPE_INPUT_O«*)PyArray_DATA (inputO),
PyArray_STRIDES (inputO) [0] / ITEMSIZE_INPUT_O,
(DTYPE_INPUT_1x)PyArray_DATA (inputl),
PyArray_STRIDES (inputl) [0] / ITEMSIZE_INPUT_1,
(DTYPE_OUTPUT_O0«)PyArray_DATA (xoutputO),
PyArray_STRIDES (xoutputQ) [0] / ITEMSIZE_OUTPUT_O,
PyArray_DIMS (inputO) [0]);

return O;

As you can see from this example, the Python and C implementations are nicely decoupled which makes
them much more readable than when they were intertwined in the same file and the C code contained string
formatting markers.

Now that we have motivated the COp class, we can have a more precise look at what it does for us. For this,
we go through the various elements that make up this new version of the VectorTimesVector op :

* Parent class : instead of inheriting from the class Op, VectorTimesVector inherits from the class COp.

* Constructor : inournew op,the __init__ () method has an important use; to inform the constructor
of the COp class of the location, on the filesystem of the C implementation of this op. To do this, it
gives a list of file paths containing the C code for this op. To auto-generate the c_code method with a
function call you can specify the function name as the second parameter. The paths should be given
as a relative path from the folder where the descendant of the COp class is defined.

* make_node () : the make_node () method is absolutely identical to the one in our old example.
Using the COp class doesn’t change anything here.

* External C code : the external C code implements the various functions associated with the op. Writ-
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ing this C code involves a few subtleties which deserve their own respective sections.

Main function

If you pass a function name to the __init__ () method of the COp class, it must respect the following
constraints:

* It must return an int. The value of that int indicates whether the op could perform its task or not.
A value of 0 indicates success while any non-zero value will interrupt the execution of the Theano
function. When returning non-zero the function must set a python exception indicating the details of
the problem.

* It must receive one argument for each input to the op followed by one pointer to an argument for each
output of the op. The types for the argument is dependant on the Types (that is theano Types) of your
inputs and outputs.

For example, the main C function of an op that takes two TensorTypes (which has PyArrayObject =* as
its C type) as inputs and returns both their sum and the difference between them would have four parameters
(two for the op’s inputs and two for its outputs) and it’s signature would look something like this :

int sumAndDiffOfScalars (PyArrayObjectx in0O, PyArrayObjectx inl,
PyArrayObject*x out0, PyArrayObjectxx outl)

Macros

For certain section tags, your C code can benefit from a number of pre-defined macros. These section tags
have no macros: init_code, support_code. All other tags will have the support macros discussed
below.

* APPLY_ SPECIFIC (str) which will automatically append a name unique to the App/y node that
applies the Op at the end of the provided st r. The use of this macro is discussed futher below.

For every input which has a dtype attribute (this means Tensors, and equivalent types on GPU), the fol-
lowing macros will be defined unless your Op class has an Op.check_input attribute defined to False.
In these descrptions ‘i’ refers to the position (indexed from 0) in the input array.

* DTYPE_INPUT_ {i} : NumPy dtype of the data in the array. This is the variable type corresponding
to the NumPy dtype, not the string representation of the NumPy dtype. For instance, if the op’s first
input is a float32 ndarray, then the macro DTYPE_INPUT_ 0 corresponds to npy_float32 and can
directly be used to declare a new variable of the same dtype as the data in the array :

DTYPE_INPUT_O myVar = someValue;

e TYPENUM_INPUT_{1i} : Typenum of the data in the array
* ITEMSIZE_INPUT_{i} : Size, in bytes, of the elements in the array.

In the same way, the macros DTYPE_OUTPUT_{i}, ITEMSIZE_OUTPUT_{i} and
TYPENUM_OUTPUT_ {1} are defined for every output ‘i’ of the op.
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In addition to these macros, the init_code_struct, code, and code_cleanup section tags also
have the following macros:

* FAIL : Code to insert at error points. A python exception should be set prior to this code. An
invocation look like this:

if (error) {
// Set python exception
FATL

You can add a semicolon after the macro if it makes your editor happy.

* PARAMS : Name of the params variable for this node. (only for Ops which have params, which is
discussed elsewhere)

Finally the tag code and code_cleanup have macros to pass the inputs and output names. These are
name INPUT_{i} and OUTPUT_ {1} where i is the O-based index position in the input and output arrays
respectively.

Support code

Certain section are limited in what you can place in them due to semantic and syntactic restrictions of the
C++ language. Most of these restrictions apply to the tags that end in _struct.

When we defined the VectorTimesVector op without using the COp class, we had to make a distinction
between two types of support_code : the support code that was apply-specific and the support code that
wasn’t. The apply-specific code was defined in the c_support_code_apply () method and the ele-
ments defined in that code (global variables and functions) had to include the name of the Apply node in
their own names to avoid conflicts between the different versions of the apply-specific code. The code that
wasn’t apply-specific was simply defined in the c_support_code () method.

To make indentifiers that include the Apply node name use the APPLY_SPECIFIC (str) macro. In
the above example, this macro is used when defining the functions vector_elemwise_mult () and
vector_times_vector () as well as when calling function vector_elemwise_mult () from in-
side vector_ times_vector ().

When using the COp class, we still have to make the distinction between C code for each of the methods of
a C class. These sections of code are separated by #section <tag> markers. The tag determines the
name of the method this C code applies to with the rule that <tag> applies to c_<tag>. Unknown tags are
an error and will be reported. Duplicate tags will be merged together in the order the appear in the C files.

The rules for knowing if where a piece of code should be put can be sometimes tricky. The key thing to
remember is that things that can be shared between instances of the op should be apply-agnostic and go into
a section which does not end in _apply or _struct. The distinction of _apply and _struct mostly
hinghes on how you want to manange the lifetime of the object. Note that to use an apply-specific object,
you have to be in a apply-specific section, so some portions of the code that might seem apply-agnostic may
still be apply-specific because of the data they use (this does not include arguments).

In the above example, the function vector_same_shape () is apply-agnostic because it uses none
of the macros defined by the class COp and it doesn’t rely on any apply-specific code. The function
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vector_elemwise_mult () is apply-specific because it uses the macros defined by COp. Finally,
the function vector_times_vector () is apply-specific because it uses those same macros and also
because it calls vector_elemwise_mult () which is an apply-specific function.

Using GDB to debug Op’s C code

When debugging C code, it can be useful to use GDB for code compiled by Theano.

For this, you must enable this Theano: cmodule.remove_gxx_opt=True. For the GPU, you must add in this
second flag nvce.flags=-g (it slow down computation on the GPU, but it is enabled by default on the CPU).

Then you must start Python inside GDB and in it start your Python process (e.g. theano-nose):

Sgdb python
(gdb)r bin/theano-nose theano/

Quick guide to GDB.

Final Note

This tutorial focuses on providing C implementations to ops that manipulate Theano tensors. For more
information about other Theano types, you can refer to the section Alternate Theano Types.

Writing an Op to work on an ndarray in C

This section walks through a non-trivial example Op that does something pretty weird and unrealistic, that
is hard to express with existing Ops. (Technically, we could use Scan to implement the Op we’re about to
describe, but we ignore that possibility for the sake of example.)

The following code works, but important error-checking has been omitted for clarity. For example, when
you write C code that assumes memory is contiguous, you should check the strides and alignment.

import theano

class Fibby (theano.Op) :

mmn

An arbitrarily generalized Fibbonacci sequence

mmn

—props__ = ()

def make_node(self, x):
X_ = tensor.as_tensor_variable (x)
assert x_.ndim ==
return theano.Apply(self,
inputs=[x_],
outputs=[x_.type()])
# using x_.type() 1s dangerous, it copies x's broadcasting behaviour

def perform(self, node, inputs, output_storage):
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X, = 1inputs
y = output_storage[0][0] = x.copy()
for i in range (2, len(x)):

ylil = y[i-11 = y[i-2] + x[i]

def c_code(self, node, name, inames, onames, sub):
X, = 1names
y, = onames
fail = sub['fail']
return """
Py_XDECREF ( ) ;
= (PyArrayObject*)PyArray_FromArray (
, 0, NPY_ARRAY ENSURECOPY) ;
if (! )

{//New scope needed to make compilation work

dtype__ * y = (dtype_ *)PyArray_DATA ( ) ;

dtype_ * x = (dtype_ *)PyArray_DATA ( ) ;

for (int i = 2; i < PyArray_ DIMS( ) [0]; ++1)
ylil = y[i-1]»y[i-2] + x[i];

mew % locals()

def c_code_cache_version (self):
return (1,)

fibby = Fibby ()

In the first two lines of the C function, we make y point to a new array with the correct size for the output.
This is essentially simulating the line y = x.copy (). The variables % (x) s and % (y) s are set up by the

TensorType to be PyArrayOb ject pointers. TensorType also set up dtype_% (x) s to be a typdef to the
C type for x.

Py_XDECREF (% (y) s) ;
%(y)s = (PyArrayObject«)PyArray_FromArray (

o)

%$(x)s, 0, NPY_ARRAY ENSURECOPY);

The first line reduces the reference count of the data that y originally pointed to. The second line allocates
the new data and makes y point to it.

In C code for a theano op, numpy arrays are represented as PyArrayObject C structs. This is part of the
numpy/scipy C API documented at http://docs.scipy.org/doc/numpy/reference/c-api.types-and-structures.
html

TODO: NEEDS MORE EXPLANATION.

Writing an Optimization

fibby of a vector of zeros is another vector of zeros of the same size. Theano does not attempt to infer
this from the code provided via Fibby.perform or Fibby.c_code. However, we can write an opti-
mization that makes use of this observation. This sort of local substitution of special cases is common, and
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there is a stage of optimization (specialization) devoted to such optimizations. The following optimization
(fibby_of_zero) tests whether the input is guaranteed to be all zero, and if so it returns the input itself
as a replacement for the old output.

TODO: talk about OPTIMIZATION STAGES

from theano.tensor.opt import get_scalar_constant_value,
—NotScalarConstantError

# Remove any fibby(zeros(...))
@theano.tensor.opt.register_specialize
@theano.gof.local_optimizer ([fibby])
def fibby_of_zero(node):
if node.op == fibby:
x = node.inputs[0]
try:
if numpy.all (0 == get_scalar_constant_value(x)):
return [x]
except NotScalarConstantError:
pass

The register_specialize decorator is what activates our optimization, and tells Theano to use it
in the specialization stage. The 1ocal_optimizer decorator builds a class instance around our global
function. The [fibby] argument is a hint that our optimizer works on nodes whose . op attribute equals
fibby. The function here (fibby_of_zero) expects an Apply instance as an argument for parameter
node. It tests using function get_scalar_constant_value, which determines if a Variable (x) is
guaranteed to be a constant, and if so, what constant.

Test the optimization

Here is some code to test that the optimization is applied only when needed.

import numpy

import theano.tensor as T
from theano import function
from theano import tensor

# Test it does not apply when not needed
x = T.dvector ()
f = function([x], fibby (x))

# We call the function to make sure it runs.

# If you run in DebugMode, it will compare the C and Python outputs.
f (numpy .random.rand (5))

topo = f.maker.fgraph.toposort ()

assert len (topo) ==

assert isinstance (topo[0].op, Fibby)

# Test that the optimization gets applied.
f_zero = function([], fibby(T.zeros([5]1)))
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# If you run in DebugMode, it will compare the output before
# and after the optimization.
f_zero()

# Check that the optimization removes the Fibby Op.

# For security, the Theano memory interface ensures that the output
# of the function is always memory not aliased to the input.

# That is why there is a DeepCopyOp op.

topo = f_zero.maker.fgraph.toposort ()

assert len(topo) ==

assert isinstance (topo[0].op, theano.compile.ops.DeepCopyOp)

Overview of the compilation pipeline

The purpose of this page is to explain each step of defining and compiling a Theano function.

Definition of the computation graph

By creating Theano Variables using theano.tensor.lscalar or theano.tensor.dmatrix or
by using Theano functions such as theano.tensor.sin or theano.tensor. log, the user builds a
computation graph. The structure of that graph and details about its components can be found in the Graph
Structures article.

Compilation of the computation graph

Once the user has built a computation graph, she can use theano.function in order to make one or
more functions that operate on real data. function takes a list of input Variables as well as a list of output
Variables that define a precise subgraph corresponding to the function(s) we want to define, compile that
subgraph and produce a callable.

Here is an overview of the various steps that are done with the computation graph in the compilation phase:

Step 1 - Create a FunctionGraph

The subgraph given by the end user is wrapped in a structure called FunctionGraph. That structure defines
several hooks on adding and removing (pruning) nodes as well as on modifying links between nodes (for
example, modifying an input of an Apply node) (see the article about fg — Graph Container [doc TODO] for
more information).

FunctionGraph provides a method to change the input of an Apply node from one Variable to another and a
more high-level method to replace a Variable with another. This is the structure that Optimizers work on.

Some relevant Features are typically added to the FunctionGraph, namely to prevent any optimization from
operating inplace on inputs declared as immutable.
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Step 2 - Execute main Optimizer

Once the FunctionGraph is made, an optimizer is produced by the mode passed to function (the Mode
basically has two important fields, 1inker and opt imizer). That optimizer is applied on the Function-
Graph using its optimize() method.

The optimizer is typically obtained through optdb.

Step 3 - Execute linker to obtain a thunk

Once the computation graph is optimized, the linker is extracted from the Mode. It is then called with
the FunctionGraph as argument to produce a thunk, which is a function with no arguments that returns
nothing. Along with the thunk, one list of input containers (a theano.gof.Container is a sort of object that
wraps another and does type casting) and one list of output containers are produced, corresponding to the
input and output Variables as well as the updates defined for the inputs when applicable. To perform the
computations, the inputs must be placed in the input containers, the thunk must be called, and the outputs
must be retrieved from the output containers where the thunk put them.

Typically, the linker calls the toposort method in order to obtain a linear sequence of operations to
perform. How they are linked together depends on the Linker used. The CLinker produces a single block
of C code for the whole computation, whereas the OpWiseCLinker produces one thunk for each individual
operation and calls them in sequence.

The linker is where some options take effect: the strict flag of an input makes the associated input
container do type checking. The borrow flag of an output, if False, adds the output to a no_recycling
list, meaning that when the thunk is called the output containers will be cleared (if they stay there, as would
be the case if borrow was True, the thunk would be allowed to reuse (or “recycle”) the storage).

Note: Compiled libraries are stored within a specific compilation directory, which by default is set to
SHOME/ .theano/compiledir_xxx, where xxx identifies the platform (under Windows the default
location is instead $LOCALAPPDATA\Theano\compiledir_xxx). It may be manually set to a dif-
ferent location either by setting config.compilediror config.base_compiledir, either within
your Python script or by using one of the configuration mechanisms described in config.

The compile cache is based upon the C++ code of the graph to be compiled. So, if you change compila-
tion configuration variables, such as config.blas.ldflags, you will need to manually remove your
compile cache, using Theano/bin/theano-cache clear

Theano also implements a lock mechanism that prevents multiple compilations within the same compilation
directory (to avoid crashes with paralell execution of some scripts). This mechanism is currently enabled by
default, but if it causes any problem it may be disabled using the function theano.gof.compilelock.
set_lock_status(..).

Step 4 - Wrap the thunk in a pretty package

The thunk returned by the linker along with input and output containers is unwieldy. function hides that
complexity away so that it can be used like a normal function with arguments and return values.
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Theano vs. C

We describe some of the patterns in Theano, and present their closest analogue in a statically typed language
such as C:

Theano C

Apply function application / function call

Variable local function data / variable

Shared Variable | global function data / variable

Op operations carried out in computation / function definition
Type data types

For example:

int d = 0;

int main(int a) {

int b = 3;
int ¢ = £ (b)
d=Db + c;

return g(a, c);

Based on this code snippet, we can relate £ and g to Ops, a, b and c to Variables, d to Shared Variable,
g(a, c),f(b) andd b + c (taken as meaning the action of computing £, g or + on their respective
inputs) to Applies. Lastly, int could be interpreted as the Theano Type of the Variables a, b, ¢ and d.

Making the double type

Type’s contract

In Theano’s framework, a Type (gof. type. T'ype) is any object which defines the following methods.
To obtain the default methods described below, the Type should be an instance of Type or should be an
instance of a subclass of Type. If you will write all methods yourself, you need not use an instance of

Type.

Methods with default arguments must be defined with the same signature, i.e. the same default argument
names and values. If you wish to add extra arguments to any of these methods, these extra arguments must
have default values.

class PureType

filter (value, strict=False, allow_downcast=None)
This casts a value to match the Type and returns the cast value. If value is incompatible
with the Type, the method must raise an exception. If strict is True, £ilter must return a
reference to value (i.e. casting prohibited). If st rict is False, then casting may happen, but
downcasting should only be used in two situations:

eif allow_downcast is True
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*if allow_downcast is None and the default behavior for this type allows downcasting
for the given value (this behavior is type-dependent, you may decide what your own type
does by default)

We need to define £i1ter with three arguments. The second argument must be called strict
(Theano often calls it by keyword) and must have a default value of False. The third argument
must be called allow_downcast and must have a default value of None.

filter_inplace (value, storage, strict=False, allow_downcast=None)
If filter_inplace is defined, it will be called instead of filter() This is to allow reusing the old
allocated memory. As of this writing this is used only when we transfer new data to a shared
variable on the gpu.

storage will be the old value. i.e. The old numpy array, CudaNdarray, ...

is_valid_ wvalue (value)
Returns True iff the value is compatible with the Type. If filter (value, strict =
True) does not raise an exception, the value is compatible with the Type.

Default: True iff filter (value, strict=True) does notraise an exception.

values_eq(a, b)
Returns True iff a and b are equal.

Default: a == b

values_eq approx(a,b)
Returns True iff a and b are approximately equal, for a definition of “approximately” which
varies from Type to Type.

Default: values_eq(a, Db)

make_ wvariable (name=None)
Makes a Variable of this Type with the specified name, if name is not None. If name is None,
then the Variable does not have a name. The Variable will have its t ype field set to the Type
object.

Default: there is a generic definition of this in Type. The Variable’s t ype will be the object that
defines this method (in other words, self).

__call__ (name=None)
Syntactic shortcut to make_variable.

Default: make_variable

__eq___ (other)
Used to compare Type instances themselves

Default: object.__eq

__hash__ ()
Types should not be mutable, so it should be OK to define a hash function. Typically this
function should hash all of the terms involved in __eq___

Default: id (self)
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get_shape_info (0bj)
Optional. Only needed to profile the memory of this Type of object.

Return the information needed to compute the memory size of ob j.

The memory size is only the data, so this excludes the container. For an ndarray, this is the data,
but not the ndarray object and other data structures such as shape and strides.

get_shape_info () and get_size () work in tandem for the memory profiler.

get_shape_info () is called during the execution of the function. So it is better that it is not
too slow.

get_size () will be called on the output of this function when printing the memory profile.
Parameters obj — The object that this Type represents during execution
Returns Python object that sel1f.get_size () understands

get_size (shape_info)
Number of bytes taken by the object represented by shape_info.

Optional. Only needed to profile the memory of this Type of object.
Parameters shape_info — the output of the call to get_shape_info()
Returns the number of bytes taken by the object described by shape_info.

clone (dtype=None, broadcastable=None)
Optional, for TensorType-alikes.

Return a copy of the type with a possibly changed value for dtype and broadcastable (if they
aren’t None).

Parameters
* dtype — New dtype for the copy.
* broadcastable — New broadcastable tuple for the copy.

may_share_memory (a, b)
Optional to run, but mandatory for DebugMode. Return True if the Python objects a and b could
share memory. Return False otherwise. It is used to debug when Ops did not declare memory
aliasing between variables. Can be a static method. It is highly recommended to use and is
mandatory for Type in Theano as our buildbot runs in DebugMode.

For each method, the default is what Type defines for you. So, if you create an instance of Type
or an instance of a subclass of Type, you must define filter. You might want to override
values_eq_approx, as well as values_eq. The other defaults generally need not be overridden.

For more details you can go see the documentation for Type.

Additional definitions

For certain mechanisms, you can register functions and other such things to plus your type into theano’s
mechanisms. These are optional but will allow people to use you type with familiar interfaces.
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transfer()

To plug in additional options for the transfer target, define a function which takes a theano variable and
a target argument and returns eitehr a new transferred variable (which can be the same as the input if no
transfer is nessecary) or returns None if the transfer can’t be done.

Then register that function by calling register_transfer () with it as argument.

Defining double

We are going to base Type double on Python’s float. We must define filter and shall override
values_eq _approx.

filter

# Note that we shadow Python's function "~ filter ' with this
# definition.
def filter(x, strict=False, allow_downcast=None) :
if strict:
if isinstance(x, float):
return x
else:
raise TypeError ('Expected a float!"')
elif allow_downcast:
return float (x)
else: # Covers both the False and None cases.
x_float = float (x)
if x float == x:
return x_float
else:
raise TypeError ('The double type cannot accurately represent '
'value (of type ) : you must explicitly '
'allow downcasting if you want to do this.'
5 (x, type(x)))

If strict is True we need to return x. If strict is True and x is not a f1oat (for example, x could
easily be an int) then it is incompatible with our Type and we must raise an exception.

If strict is False then we are allowed to cast x to a £loat, so if x is an int it we will
return an equivalent float. However if this cast triggers a precision loss (x != float (x)) and
allow_downcast is not True, then we also raise an exception. Note that here we decided that the
default behavior of our type (when allow_downcast is set to None) would be the same as when
allow_downcast is False, i.e. no precision loss is allowed.

values_eq_approx

def values_eq_approx(x, y, tolerance=le-4):
return abs(x - y) / (abs(x) + abs(y)) < tolerance

The second method we define is values_eq_approx. This method allows approximate comparison be-
tween two values respecting our Type’s constraints. It might happen that an optimization changes the compu-
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tation graph in such a way that it produces slightly different variables, for example because of numerical in-
stability like rounding errors at the end of the mantissa. For instance,a + a + a + a + a + a might
not actually produce the exact same output as 6 * a (try with a=0.1), but with values_eq_approx we
do not necessarily mind.

We added an extra tolerance argument here. Since this argument is not part of the API, it must have a
default value, which we chose to be le-4.

Note: values_eqis never actually used by Theano, but it might be used internally in the future. Equality
testing in DebugMode is done using values_eq_approx.

Putting them together

What we want is an object that respects the aforementioned contract. Recall that Type defines default
implementations for all required methods of the interface, except £i1ter. One way to make the Type is to
instantiate a plain Type and set the needed fields:

from theano import gof

double = gof.Type()
double.filter = filter
double.values_eq_approx = values_ed_approx

Another way to make this Type is to make a subclass of gof.Type and define filter and
values_eq_approx in the subclass:

from theano import gof
class Double (gof.Type) :
def filter(self, x, strict=False, allow_downcast=None) :

# See code above.

def values_eq_approx(self, x, y, tolerance=le-4):
# See code above.

double = Double ()

double is then an instance of Type Double, which in turn is a subclass of Type.

There is a small issue with defining double this way. All instances of Double are technically the same
Type. However, different Double Type instances do not compare the same:

>>> doublel = Double ()
>>> double2 Double ()
>>> doublel == double2
False

Theano compares Types using == to see if they are the same. This happens in DebugMode. Also, Ops can
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(and should) ensure that their inputs have the expected Type by checking something like if x.type ==
lvector.

There are several ways to make sure that equality testing works properly:

1. Define Double.__eq__ so that instances of type Double are equal. For example:

def eq__(self, other):

return type (self) is Double and type (other) is Double

2. Override Double.___new___ to always return the same instance.
3. Hide the Double class and only advertise a single instance of it.

Here we will prefer the final option, because it is the simplest. Ops in the Theano code often define the
__eqg___method though.

Untangling some concepts

Initially, confusion is common on what an instance of Type is versus a subclass of Type or an instance of
Variable. Some of this confusion is syntactic. A Type is any object which has fields corresponding to the
functions defined above. The Type class provides sensible defaults for all of them except filter, so when
defining new Types it is natural to subclass Type. Therefore, we often end up with Type subclasses and it is
can be confusing what these represent semantically. Here is an attempt to clear up the confusion:

* An instance of Type (or an instance of a subclass) is a set of constraints on real data. It is akin to a
primitive type or class in C. It is a static annotation.

* An instance of Variable symbolizes data nodes in a data flow graph. If you were to parse the C
expression int x;, int would be a Type instance and x would be a Variable instance of that Type
instance. If you were to parse the C expression ¢ = a + b;, a, b and ¢ would all be Variable
instances.

* A subclass of Type is a way of implementing a set of Type instances that share structural similarities.
In the double example that we are doing, there is actually only one Type in that set, therefore the
subclass does not represent anything that one of its instances does not. In this case it is a singleton,
a set with one element. However, the TensorType class in Theano (which is a subclass of Type)
represents a set of types of tensors parametrized by their data type or number of dimensions. We could
say that subclassing Type builds a hierarchy of Types which is based upon structural similarity rather
than compatibility.

Final version

from theano import gof
class Double (gof.Type) :
def filter(self, x, strict=False, allow_downcast=None) :

if strict:
if isinstance(x, float):
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return x
else:
raise TypeError ('Expected a float!")
elif allow_downcast:
return float (x)
else: # Covers both the False and None cases.
x_float = float (x)
if x_float == x:
return x_float
else:
raise TypeError ('The double type cannot accurately represent
'value (of type ) : you must explicitly '
'allow downcasting if you want to do this.'
5 (%, type(x)))

def values_eqg_approx(self, x, y, tolerance=le-4):
return abs(x — y) / (abs(x) + abs(y)) < tolerance

def _ str_ (self):
return "double"

double = Double ()

We add one utility function, __str__. That way, when we print double, it will print out something
intelligible.

Making arithmetic Ops on double

Now that we have a double type, we have yet to use it to perform computations. We’ll start by defining
multiplication.

Op’s contract

An Op is any object which inherits from gof . Op. It has to define the following methods.

make_node ( *inputs)
This method is responsible for creating output Variables of a suitable symbolic Type to serve as
the outputs of this Op’s application. The Variables found in *inputs must be operated on using
Theano’s symbolic language to compute the symbolic output Variables. This method should put these
outputs into an Apply instance, and return the Apply instance.

This method creates an Apply node representing the application of the Op on the inputs provided. If
the Op cannot be applied to these inputs, it must raise an appropriate exception.

The inputs of the Apply instance returned by this call must be ordered correctly: a subsequent self.
make_node (xapply.inputs) must produce something equivalent to the first apply.

perform (node, inputs, output_storage)
This method computes the function associated to this Op. node is an Apply node created by the
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Op’s make_node method. inputs is a list of references to data to operate on using non-symbolic
statements, (i.e., statements in Python, Numpy). output_storage is a list of storage cells where
the variables of the computation must be put.

More specifically:

enode: This is a reference to an Apply node which was previously obtained via the Op‘s
make_node method. It is typically not used in simple Ops, but it contains symbolic infor-
mation that could be required for complex Ops.

einputs: This is a list of data from which the values stored in output_storage are to be
computed using non-symbolic language.

eoutput_storage: This is a list of storage cells where the output is to be stored. A stor-
age cell is a one-element list. It is forbidden to change the length of the list(s) contained in
output_storage. There is one storage cell for each output of the Op.

The data put in output_storage must match the type of the symbolic output. This is a
situation where the node argument can come in handy.

A function Mode may allow output_storage elements to persist between evaluations, or
it may reset output_storage cells to hold a value of None. It can also pre-allocate some
memory for the Op to use. This feature can allow per form to reuse memory between calls, for
example. If there is something preallocated in the output_storage, it will be of the good
dtype, but can have the wrong shape and have any stride pattern.

This method must be determined by the inputs. That is to say, if it is evaluated once on inputs A and
returned B, then if ever inputs C, equal to A, are presented again, then outputs equal to B must be
returned again.

You must be careful about aliasing outputs to inputs, and making modifications to any of the inputs.
See Views and inplace operations before writing a per f orm implementation that does either of these
things.

Instead (or in addition to) perform () You can also provide a C implementation of For more details, refer
to the documentation for Op.

__eq__ (other)

other is also an Op.

Returning True here is a promise to the optimization system that the other Op will produce exactly
the same graph effects (from perform) as this one, given identical inputs. This means it will produce
the same output values, it will destroy the same inputs (same destroy_map), and will alias outputs to
the same inputs (same view_map). For more details, see Views and inplace operations.

Note: If you set __props__, this will be automatically generated.

__hash__ ()

If two Op instances compare equal, then they must return the same hash value.

Equally important, this hash value must not change during the lifetime of self. Op instances should
be immutable in this sense.
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Note: If you set __props__, this will be automatically generated.

Optional methods or attributes

props___
Default: Undefined

Must be a tuple. Lists the name of the attributes which influence the computation performed. This will
also enable the automatic generation of appropriate __eq__, __hash__and __str__ methods. Should
be set to () if you have no attributes that are relevant to the computation to generate the methods.

New in version 0.7.

default_output
Default: None

If this member variable is an integer, then the default implementation of __call__ will return
node.outputs[self.default_output], where node was returned by make_node. Oth-
erwise, the entire list of outputs will be returned, unless it is of length 1, where the single element will
be returned by itself.

make_thunk (node, storage_map, compute_map, no_recycling)
This function must return a thunk, that is a zero-arguments function that encapsulates the computation
to be performed by this op on the arguments of the node.

Parameters
* node — Apply instance The node for which a thunk is requested.

* storage_map — dict of lists This maps variables to a one-element lists holding
the variable’s current value. The one-element list acts as pointer to the value and
allows sharing that “pointer” with other nodes and instances.

* compute_map — dict of lists This maps variables to one-element lists holding
booleans. If the value is O then the variable has not been computed and the value
should not be considered valid. If the value is 1 the variable has been computed
and the value is valid. If the value is 2 the variable has been garbage-collected
and is no longer valid, but shouldn’t be required anymore for this call.

* no_recycling - WRITEME WRITEME

The returned function must ensure that is sets the computed variables as computed in the com-
pute_map.

Defining this function removes the requirement for perform () or C code, as you will define the
thunk for the computation yourself.

__call__ (*inputs, **kwargs)
By default this is a convenience function which calls make node () with the supplied arguments
and returns the result indexed by default_output. This can be overridden by subclasses to do anything
else, but must return either a theano Variable or a list of Variables.
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If you feel the need to override __call__ to change the graph based on the arguments, you should
instead create a function that will use your Op and build the graphs that you want and call that instead
of the Op instance directly.

infer_shape (node, shapes)

This function is needed for shape optimization. shapes is a list with one tuple for each input of the
Apply node (which corresponds to the inputs of the op). Each tuple contains as many elements as the
number of dimensions of the corresponding input. The value of each element is the shape (number of
items) along the corresponding dimension of that specific input.

While this might sound complicated, it is nothing more than the shape of each input as symbolic
variables (one per dimension).

The function should return a list with one tuple for each output. Each tuple should contain the corre-
sponding output’s computed shape.

Implementing this method will allow Theano to compute the output’s shape without computing the
output itself, potentially sparing you a costly recomputation.

flops (inputs, outputs)

It is only used to have more information printed by the memory profiler. It makes it print the mega
flops and giga flops per second for each apply node. It takes as inputs two lists: one for the inputs and
one for the outputs. They contain tuples that are the shapes of the corresponding inputs/outputs.

str_ ()

This allows you to specify a more informative string representation of your Op. If an Op has parame-
ters, it is highly recommended to have the __str___ method include the name of the op and the Op’s
parameters’ values.

Note: If you set __props__, this will be automatically generated. You can still overide it for custom
output.

do_constant_folding (node)

Default: Return True

By default when optimizations are enabled, we remove during function compilation Apply nodes
whose inputs are all constants. We replace the Apply node with a Theano constant variable. This
way, the Apply node is not executed at each function call. If you want to force the execution of an op
during the function call, make do_constant_folding return False.

As done in the Alloc op, you can return False only in some cases by analyzing the graph from the
node parameter.

debug_perform (node, inputs, output_storage)

Undefined by default.

If you define this function then it will be used instead of C code or perform() to do the computation
while debugging (currently DebugMode, but others may also use it in the future). It has the same
signature and contract as perform().

This enables ops that cause trouble with DebugMode with their normal behaviour to adopt a different
one when run under that mode. If your op doesn’t have any problems, don’t implement this.
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If you want your op to work with gradient.grad() you also need to implement the functions described below.

Gradient

These are the function required to work with gradient.grad().

grad (inputs, output_gradients)
If the Op being defined is differentiable, its gradient may be specified symbolically in this method.
Both inputs and output_gradients are lists of symbolic Theano Variables and those must
be operated on using Theano’s symbolic language. The grad method must return a list containing
one Variable for each input. Each returned Variable represents the gradient with respect to that input
computed based on the symbolic gradients with respect to each output.

If the output is not differentiable with respect to an input then this method should be defined to return
a variable of type NullType for that input. Likewise, if you have not implemented the grad compu-
tation for some input, you may return a variable of type NullType for that input. theano.gradient
contains convenience methods that can construct the variable for you: theano.gradient.
grad_undefined () and theano.gradient.grad_not_implemented (), respectively.

If an element of output_gradient is of type theano.gradient.DisconnectedType, it means that the cost
is not a function of this output. If any of the op’s inputs participate in the computation of only
disconnected outputs, then Op.grad should return DisconnectedType variables for those inputs.

If the grad method is not defined, then Theano assumes it has been forgotten. Symbolic differentiation
will fail on a graph that includes this Op.

It must be understood that the Op’s grad method is not meant to return the gradient of the Op’s output.
theano.tensor.grad computes gradients; Op.grad is a helper function that computes terms that appear
in gradients.

If an Op has a single vector-valued output y and a single vector-valued input x, then the grad method
will be passed x and a second vector z. Define J to be the Jacobian of y with respect to x. The Op’s
grad method should return dot(J.T,z). When theano.tensor.grad calls the grad method, it will set z to
be the gradient of the cost C with respect to y. If this op is the only op that acts on x, then dot(J.T,z)
is the gradient of C with respect to x. If there are other ops that act on X, theano.tensor.grad will have
to add up the terms of x’s gradient contributed by the other op’s grad method.

In practice, an op’s input and output are rarely implemented as single vectors. Even if an op’s output
consists of a list containing a scalar, a sparse matrix, and a 4D tensor, you can think of these objects
as being formed by rearranging a vector. Likewise for the input. In this view, the values computed by
the grad method still represent a Jacobian-vector product.

In practice, it is probably not a good idea to explicitly construct the Jacobian, which might be very
large and very sparse. However, the returned value should be equal to the Jacobian-vector product.

So long as you implement this product correctly, you need not understand what theano.tensor.grad is
doing, but for the curious the mathematical justification is as follows:

In essence, the grad method must simply implement through symbolic Variables and operations the
chain rule of differential calculus. The chain rule is the mathematical procedure that allows one to
calculate the total derivative % of the final scalar symbolic Variable C with respect to a primitive sym-
bolic Variable x found in the list inputs. The grad method does this using output_gradients
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which provides the total derivative % of C with respect to a symbolic Variable that is returned by the

Op (this is provided in output_gradients), as well as the knowledge of the total derivative %

of the latter with respect to the primitive Variable (this has to be computed).

In mathematics, the total derivative of a scalar variable (C) with respect to a vector of scalar variables
(x), i.e. the gradient, is customarily represented as the row vector of the partial derivatives, whereas the
total derivative of a vector of scalar variables (f) with respect to another (x), is customarily represented
by the matrix of the partial derivatives, i.e.the jacobian matrix. In this convenient setting, the chain rule
instructs that the gradient of the final scalar variable C with respect to the primitive scalar variables in

x through those in f is simply given by the matrix product: % = % * %.

Here, the chain rule must be implemented in a similar but slightly more complex setting: Theano
provides in the list out put_gradients one gradient for each of the Variables returned by the Op.
Where f is one such particular Variable, the corresponding gradient found in output_gradients
and representing % is provided with a shape similar to f and thus not necessarily as a row vector of
scalars. Furthermore, for each Variable x of the Op’s list of input variables inputs, the returned
gradient representing % must have a shape similar to that of Variable x.

If the output list of the op is [fi,...fn], then the list output_gradients is
lgradys, (C), gradyg, (C), ..., grady, (C)]. If inputs consists of the list [x1, ..., ], then Op.grad
should return the list [grad,, (C), grad,,(C), ..., grad,,, (C)], where (grad,(Z)); = g—i (and 7 can
stand for multiple dimensions).

In other words, grad () does not return df 3 , but instead the appropriate dot product specified by the

dx
chain rule: j—q = %C .4 Both the partial differentiation and the multiplication have to be performed
x ifi dx;

by grad ().

Theano currently imposes the following constraints on the values returned by the grad method:
1.They must be Variable instances.
2.When they are types that have dtypes, they must never have an integer dtype.

The output gradients passed fo Op.grad will also obey these constraints.

Integers are a tricky subject. Integers are the main reason for having DisconnectedType, NullType or
zero gradient. When you have an integer as an argument to your grad method, recall the definition of
a derivative to help you decide what value to return:

I —Nimeo(f(z + €) — f(2))/e.

Suppose your function f has an integer-valued output. For most functions you’re likely to implement
in theano, this means your gradient should be zero, because f(x+epsilon) = f(x) for almost all x. (The
only other option is that the gradient could be undefined, if your function is discontinuous everywhere,
like the rational indicator function)

Suppose your function f has an integer-valued input. This is a little trickier, because you need to think
about what you mean mathematically when you make a variable integer-valued in theano. Most of the
time in machine learning we mean “f is a function of a real-valued x, but we are only going to pass
in integer-values of x”. In this case, f(x+epsilon) exists, so the gradient through f should be the same
whether X is an integer or a floating point variable. Sometimes what we mean is “f is a function of
an integer-valued x, and f is only defined where x is an integer.” Since f(x+epsilon) doesn’t exist, the
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gradient is undefined. Finally, many times in theano, integer valued inputs don’t actually affect the
elements of the output, only its shape.

If your function f has both an integer-valued input and an integer-valued output, then both rules have
to be combined:

oIf f is defined at (x+epsilon), then the input gradient is defined. Since f(x+epsilon) would be
equal to f(x) almost everywhere, the gradient should be O (first rule).

oIf f is only defined where x is an integer, then the gradient is undefined, regardless of what the
gradient with respect to the output is.

Examples:

1.f(x,y) = dot product between x and y. x and y are integers. Since the output is also an inte-
ger, f is a step function. Its gradient is zero almost everywhere, so Op.grad should return
zeros in the shape of x and y.

2.f(x,y) = dot product between x and y. x is floating point and y is an integer. In this case the
output is floating point. It doesn’t matter that y is an integer. We consider f to still be
defined at f(x,y+epsilon). The gradient is exactly the same as if y were floating point.

3.f(x,y) = argmax of x along axis y. The gradient with respect to y is undefined, because f(x,y)
is not defined for floating point y. How could you take an argmax along a fraActional axis?
The gradient with respect to x is 0, because f(x+epsilon, y) = f(x) almost everywhere.

4 f(x,y) = a vector with y elements, each of which taking on the value x The grad method
should return DisconnectedType()() for y, because the elements of f don’t depend
on y. Only the shape of f depends on y. You probably also want to implement a
connection_pattern method to encode this.

5.f(x) = int(x) converts float x into an int. g(y) = float(y) converts an integer y into a float. If
the final cost C = 0.5 * g(y) = 0.5 g(f(x)), then the gradient with respect to y will be 0.5,
even if y is an integer. However, the gradient with respect to x will be 0, because the output
of f is integer-valued.

connection_pattern (node) :
Sometimes needed for proper operation of gradient.grad().

Returns a list of list of bools.

Op.connection_pattern[input_idx][output_idx] is true if the elements of inputs[input_idx] have an
effect on the elements of outputs[output_idx].

The node parameter is needed to determine the number of inputs. Some ops such as Subtensor take
a variable number of inputs.

If no connection_pattern is specified, gradient.grad will assume that all inputs have some elements
connected to some elements of all outputs.

This method conveys two pieces of information that are otherwise not part of the theano graph:

1.Which of the op’s inputs are truly ancestors of each of the op’s outputs. Suppose an op has two
inputs, x and y, and outputs f(x) and g(y). y is not really an ancestor of f, but it appears to be so
in the theano graph.
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2.Whether the actual elements of each input/output are relevant to a computation. For example,
the shape op does not read its input’s elements, only its shape metadata. d shape(x) / dx should
thus raise a disconnected input exception (if these exceptions are enabled). As another example,
the elements of the Alloc op’s outputs are not affected by the shape arguments to the Alloc op.

Failing to implement this function for an op that needs it can result in two types of incorrect behavior:
1.gradient.grad erroneously raising a TypeError reporting that a gradient is undefined.
2.gradient.grad failing to raise a ValueError reporting that an input is disconnected.

Even if connection_pattern is not implemented correctly, if gradient.grad returns an expression, that
expression will be numerically correct.

R_op (inputs, eval_points)
Optional, to work with gradient.R_op().

This function implements the application of the R-operator on the function represented by your op.
Let assume that function is f, with input z, applying the R-operator means computing the Jacobian
of f and right-multiplying it by v, the evaluation point, namely: g—iv.

inputs are the symbolic variables corresponding to the value of the input where you want to evaluate
the jacobian, and eval_points are the symbolic variables corresponding to the value you want to
right multiply the jacobian with.

Same conventions as for the grad method hold. If your op is not differentiable, you can return None.
Note that in contrast to the method grad (), for R_op () you need to return the same number of
outputs as there are ouputs of the op. You can think of it in the following terms. You have all your
inputs concatenated into a single vector z. You do the same with the evaluation points (which are as
many as inputs and of the shame shape) and obtain another vector v. For each output, you reshape
it into a vector, compute the jacobian of that vector with respect to x and multiply it by v. As a last
step you reshape each of these vectors you obtained for each outputs (that have the same shape as the
outputs) back to their corresponding shapes and return them as the output of the R_op () method.

List of op with r op support.

Defining an Op: mul

We’ll define multiplication as a binary operation, even though a multiplication Op could take an arbitrary
number of arguments.

First, we’ll instantiate a mul Op:

from theano import gof
mul = gof.Op ()

make_node

This function must take as many arguments as the operation we are defining is supposed to take as inputs—
in this example that would be two. This function ensures that both inputs have the double type. Since
multiplying two doubles yields a double, this function makes an Apply node with an output Variable of type
double.
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def make_node (x, Vy):
if x.type != double or y.type != double:
raise TypeError ('mul only works on doubles')
return gof.Apply (mul, [x, y]l, [double()])
mul .make_node = make_node

The first two lines make sure that both inputs are Variables of the double type that we created in the
previous section. We would not want to multiply two arbitrary types, it would not make much sense (and
we’d be screwed when we implement this in C!)

The last line is the meat of the definition. There we create an Apply node representing the application of Op
mul to inputs x and y, giving a Variable instance of type double as the output.

Note: Theano relies on the fact that if you call the make_node method of Apply’s first argument on the
inputs passed as the Apply’s second argument, the call will not fail and the returned Apply instance will be
equivalent. This is how graphs are copied.

perform

This code actually computes the function. In our example, the data in input s will be instances of Python’s
built-in type £loat because this is the type that double.filter () will always return, per our own
definition. output_storage will contain a single storage cell for the multiplication’s variable.

def perform(node, inputs, output_storage):
X, y = inputs[0], inputs[1l]
z = output_storage[0]
z[0] = x » vy

mul.perform = perform

Here, z is a list of one element. By default, z == [None].

Note: It is possible that z does not contain None. If it contains anything else, Theano guarantees that
whatever it contains is what perform put there the last time it was called with this particular storage.
Furthermore, Theano gives you permission to do whatever you want with z ‘s contents, chiefly reusing it or
the memory allocated for it. More information can be found in the Op documentation.

Warning: We gave z the Theano type double in make_node, which means that a Python float
must be put there. You should not put, say, an int in z [ 0] because Theano assumes Ops handle typing

properly.

Trying out our new Op

In the following code, we use our new Op:
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>>> import theano
>>> x, y = double('x'"), double('y")

>>> z = mul (x, V)

>>> f = theano.function([x, vl, 2z)
>>> f (5, 6)

30.0

>>> f£(5.6, 6.7)
37.519999999999996

Note that there is an implicit call to double.filter () oneach argument, so if we give integers as inputs
they are magically cast to the right type. Now, what if we try this?

>>> x = double('x")

>>> 7z = mul (X, 2)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/u/breuleuo/hg/theano/theano/gof/op.py", line 207, in __call_
File "<stdin>", line 2, in make_node

AttributeError: 'int' object has no attribute 'type'

Automatic Constant Wrapping

Well, OK. We’d like our Op to be a bit more flexible. This can be done by modifying make_node to accept
Python int or float as x and/or y:

def make_node(x, vy):
if isinstance(x, (int, float)):
x = gof.Constant (double, x)
if isinstance(y, (int, float)):
y = gof.Constant (double, v)
if x.type != double or y.type != double:
raise TypeError ('mul only works on doubles')
return gof.Apply(mul, [x, y], [double()])
mul .make_node = make_node

Whenever we pass a Python int or float instead of a Variable as x or y, make_node will convert it to
Constant for us. gof .Constant is a Variable we statically know the value of.

>>> import numpy

>>> x = double('x")

>>> z = mul(x, 2)

>>> f = theano.function([x], z)
>>> £ (10)

20.0

>>> numpy.allclose(f£(3.4), 6.8)
True

Now the code works the way we want it to.

Note: Most Theano Ops follow this convention of up-casting literal make_node arguments to Constants.
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This makes typing expressions more natural. If you do not want a constant somewhere in your graph, you
have to pass a Variable (like double ('x"') here).

Final version

The above example is pedagogical. When you define other basic arithmetic operations add, sub and div,
code for make_node can be shared between these Ops. Here is revised implementation of these four
arithmetic operators:

from theano import gof

class BinaryDoubleOp (gof.Op) :

__props__ = ("name", "fn")
def _ init__ (self, name, fn):
self.name = name

self.fn = fn

def make_node(self, x, vy):
if isinstance(x, (int, float)):
x = gof.Constant (double, x)
if isinstance(y, (int, float)):
y = gof.Constant (double, vy)
if x.type != double or y.type != double:
raise TypeError (' only works on doubles' % self.name)
return gof.Apply(self, [x, vy], [double()])

def perform(self, node, inp, out):

X, y = inp
z, = out
z[0] = self.fn(x, vy)

def  str (self):
return self.name

add = BinaryDoubleOp (name="'add"',
fn=lambda x, y: x + V)

sub BinaryDoubleOp (name="sub"',

fn=lambda x, y: X — Vy)

mul = BinaryDoubleOp (name='mul',
fn=lambda x, y: x * V)

div = BinaryDoubleOp (name='div',
fn=lambda x, y: x / y)

Instead of working directly on an instance of Op, we create a subclass of Op that we can parametrize. All the
operations we define are binary. They all work on two inputs with type double. They all return a single
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Variable of type double. Therefore, make_node does the same thing for all these operations, except
for the Op reference self passed as first argument to Apply. We define per form using the function £n
passed in the constructor.

This design is a flexible way to define basic operations without duplicating code. The same way a Type
subclass represents a set of structurally similar types (see previous section), an Op subclass represents a
set of structurally similar operations: operations that have the same input/output types, operations that only
differ in one small detail, etc. If you see common patterns in several Ops that you want to define, it can be
a good idea to abstract out what you can. Remember that an Op is just an object which satisfies the contract
described above on this page and that you should use all the tools at your disposal to create these objects as
efficiently as possible.

Exercise: Make a generic DoubleOp, where the number of arguments can also be given as a parameter.

Views and inplace operations

Theano allows the definition of Ops which return a view on one of their inputs or operate inplace on one or
several inputs. This allows more efficient operations on numpy’s ndarray data type than would be possible
otherwise. However, in order to work correctly, these Ops need to implement an additional interface.

Theano recognizes views and inplace operations specially. It ensures that they are used in a consistent
manner and it ensures that operations will be carried in a compatible order.

An unfortunate fact is that it is impossible to return a view on an input with the double type or to operate
inplace on it (Python floats are immutable). Therefore, we can’t make examples of these concepts out of
what we’ve just built. Nonetheless, we will present the concepts:

Views

A “view” on an object x is an object y which shares memory with x in some way. In other words, changing
x might also change y and vice versa. For example, imagine a vector structure which contains two fields:
an integer length and a pointer to a memory buffer. Suppose we have:

x = vector {length: 256,
address: OxDEADBEEF}
y = vector {length: 224,

address: OxDEADBEEEF + 0x10}

z = vector {length: 256,
address: 0O0xCAFEBABE}

So x uses the memory range OxDEADBEEF - OxDEADBFEF, y the range OxDEADBEFF -
OxDEADBFDF and z the range 0xCAFEBABE - OxCAFEBRBBE. Since the ranges for x and y overlap,
y is considered to be a view of x and vice versa.

Suppose you had an Op which took x as input and returned y. You would need to tell Theano that y is a
view of x. For this purpose, you would set the view_map field as follows:
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myop.view_map = {0: [0]}

What this means is that the first output (position 0) is a view of the first input (position 0). Even though the
interface allows a list of inputs that are viewed by a given output, this feature is currently unsupported. Here
are more examples:

myop.view_map = {0: [0]} # first output is a view of first input
myop.view_map = {0: [1]} # first output is a view of second input
myop.view_map = {1: [0]} # second output is a view of first input
myop.view_map = {0: [0], # first output is a view of first input

1: [1]1} # #»AND* second output is a view of second input
myop.view_map = {0: [O0] # first output is a view of first input

14
1: [0]} # #ANDx second output is #*ALSO+ a view of first input

myop.view_map = {0: [0, 1]} # THIS IS NOT SUPPORTED YET! Only put a single_
—input number in the 1list!

Inplace operations

An inplace operation is one that modifies one or more of its inputs. For example, the expression x += y
where x and y are numpy . ndarray instances would normally represent an inplace operation on x.

Note: Inplace operations in Theano still work in a functional setting: they need to return the modified
input. Symbolically, Theano requires one Variable standing for the input before being modified and another
Variable representing the input after being modified. Therefore, code using inplace operations would look
like this:

from theano.tensor import dscalars, log
from theano.tensor.inplace import add_inplace

X, y = dscalars('x', 'yv'")
rl = log(x)

# r2 is x AFTER the add_inplace - x still represents the value before adding y
r2 = add_inplace (x, V)

# r3 is log(x) using the x from BEFORE the add_inplace

# r3 is the SAME as rl, even if we wrote this line after the add_inplace line
# Theano 1is actually going to compute r3 BEFORE r2

r3 = log(x)

# this is log(x) using the x from AFTER the add _inplace (so it's like log(x +_

—y))
rd = log(r2)

Needless to say, this goes for user-defined inplace operations as well: the modified input must figure in the
list of outputs you give to Apply in the definition of make_node.
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Also, for technical reasons but also because they are slightly confusing to use as evidenced by the previous
code, Theano does not allow the end user to use inplace operations by default. However, it does allow
optimizations to substitute them in in a later phase. Therefore, typically, if you define an inplace operation,
you will define a pure equivalent and an optimization which subsitutes one for the other. Theano will
automatically verify if it is possible to do so and will refuse the substitution if it introduces inconsistencies.

Take the previous definitions of x, y and z and suppose an Op which adds one to every byte of its input. If
we give x as an input to that Op, it can either allocate a new buffer of the same size as x (that could be z) and
set that new buffer’s bytes to the variable of the addition. That would be a normal, pure Op. Alternatively, it
could add one to each byte in the buffer x, therefore changing it. That would be an inplace Op.

Theano needs to be notified of this fact. The syntax is similar to that of view_map:

myop.destroy_map = {0: [0]}

What this means is that the first output (position 0) operates inplace on the first input (position 0).

myop.destroy_map = {0: [0]}
myop.destroy_map = {0: [1]}
myop.destroy_map = {1: [0]}

# first output operates inplace on first input
first output operates inplace on second input
# second output operates inplace on first input

He

=

myop.destroy_map = {0: [0]

’ first output operates inplace on first input
1: [1]1} # *ANDx second output operates inplace on second,

—input

H=

myop.destroy_map = {0: [0], first output operates inplace on first input
1: [0]} # #ANDx second output +ALSO* operates inplace on,
—first input

myop.destroy_map = {0: [0, 1]} # first output operates inplace on both the_
—first and second input
# unlike for views, the previous line is legal and supported

Destructive Operations

While some operations will operate inplace on their inputs, some might simply destroy or corrupt them. For
example, an Op could do temporary calculations right in its inputs. If that is the case, Theano also needs to
be notified. The way to notify Theano is to assume that some output operated inplace on whatever inputs are
changed or corrupted by the Op (even if the output does not technically reuse any of the input(s)’s memory).
From there, go to the previous section.

Warning:  Failure to correctly mark down views and inplace operations using view_map and
destroy_map can lead to nasty bugs. In the absence of this information, Theano might assume that
it is safe to execute an inplace operation on some inputs before doing other calculations on the previous
values of the inputs. For example, in the code: v = log(x); x2 = add_inplace(x, z) itis
imperative to do the logarithm before the addition (because after the addition, the original x that we
wanted to take the logarithm of is gone). If Theano does not know that add_inplace changes the
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value of x it might invert the order and that will certainly lead to erroneous computations.

You can often identify an incorrect view_map or destroy_map by using debugmode. Be sure to use
DebugMode when developing a new Op that uses ‘‘view_map‘‘ and/or ‘‘destroy_map ‘"

Inplace optimization and DebugMode

It is recommended that during the graph construction, all Ops are not inplace. Then an optimization replaces
them with inplace ones. Currently DebugMode checks all optimizations that were tried even if they got
rejected. One reason an inplace optimization can get rejected is when there is another Op that is already
being applied inplace on the same input. Another reason to reject an inplace optimization is if it would
introduce a cycle into the graph.

The problem with DebugMode is that it will trigger a useless error when checking a rejected inplace
optimization, since it will lead to wrong results. In order to be able to use DebugMode in more situa-
tions, your inplace optimization can pre-check whether it will get rejected by using the theano.gof.
destroyhandler.fast_inplace_check () function, that will tell which Ops can be performed
inplace. You may then skip the optimization if it is incompatible with this check. Note however that this
check does not cover all cases where an optimization may be rejected (it will not detect cycles).

Implementing some specific Ops
This page is a guide on the implementation of some specific types of Ops, and points to some examples of
such implementations.

For the random number generating Ops, it explains different possible implementation strategies.

Scalar/Elemwise/Reduction Ops

Implementing a Theano scalar Op allows that scalar operation to be reused by our elemwise operations on
tensors. If the scalar operation has C code, the elemwise implementation will automatically have C code
too. This will enable the fusion of elemwise operations using your new scalar operation. It can also reuse
the GPU elemwise code. It is similar for reduction operations.

For examples of how to add new scalar operations, you can have a look at those 2 pull requests, that add
Gammaln and Psi and Gamma scalar Ops.

Be careful about some possible problems in the definition of the grad method, and about dependencies
that may not be available. In particular, see the following fixes: Fix to grad() methods and impl() methods
related to SciPy.

SciPy Ops

We can wrap SciPy functions in Theano. But SciPy is an optional dependency. Here is some code that
allows the Op to be optional:
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try:
import scipy.linalg
imported_scipy = True
except ImportError:
# some ops (e.g. Cholesky, Solve, A Xinv_b) won't work
imported_scipy = False

class SomeOp (Op) :

def make_node(self, x):
assert imported_scipy, (
"SciPy not available. SciPy is needed for the SomeOp op.")

from nose.plugins.skip import SkipTest
class test_SomeOp (utt.InferShapeTester):

def test_infer_shape(self):
if not imported_scipy:
raise SkipTest ("SciPy needed for the SomeOp op.")

Sparse Ops

There are a few differences to keep in mind if you want to make an op that uses sparse inputs
or outputs, rather than the usual dense tensors. In particular, in the make_node () function, you
have to call theano.sparse.as_sparse_variable (x) on sparse input variables, instead of
as_tensor_variable (x).

Another difference is that you need to use SparseVariable and SparseType instead of
TensorVariable and TensorType.

Do not forget that we support only sparse matrices (so only 2 dimensions) and (like in SciPy) they do not
support broadcasting operations by default (although a few Ops do it when called manually). Also, we
support only two formats for sparse type: csr and csc. So in make_mode (), you can create output
variables like this:

out_format = inputs[0].format # or 'csr' or 'csc' if the output format 1is,,
SparseType (dtype=inputs[0] .dtype, format=out_format) .make_variable ()

See the sparse theano.sparse.basic.Cast op code for a good example of a sparse op with Python
code.

Note: From the definition of CSR and CSC formats, CSR column indices are not necessarily sorted.
Likewise for CSC row indices. Use EnsureSortedIndices if your code does not support it.

Also, there can be explicit zeros in your inputs. Use Remove0 or remove0 to make sure they aren’t
present in your input if you don’t support that.
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To remove explicit zeros and make sure indices are sorted, use clean.

Sparse Gradient

There are 2 types of gradients for sparse operations: normal gradient and st ructured gradient. Please
document what your op implements in its docstring. It is important that the user knows it, and it is not
always easy to infer from the code. Also make clear which inputs/outputs are sparse and which ones are
dense.

Sparse C code

Theano does not have a native C code interface for sparse matrices. The reason is simple: we use the SciPy
sparse matrix objects and they don’t have a C object. So we use a simple trick: a sparse matrix is made of
4 fields that are NumPy vector arrays: data, indices, indptr and shape. So to make an op with C
code that has sparse variables as inputs, we actually make an op that takes as input the needed fields of those
sparse variables.

You can extract the 4 fields with theano.sparse.basic.csm_properties(). You
can use theano.sparse.basic.csm _data (), theano.sparse.basic.csm_indices(),
theano.sparse.basic.csm _indptr () and theano.sparse.basic.csm _shape () to ex-
tract the individual fields.

You can look at the AddSD sparse op for an example with C code. It implements the addition of a sparse
matrix with a dense matrix.

Sparse Tests

You can reuse the test system for tensor variables. To generate the needed sparse variable and data, you can
use theano. sparse.tests.test_basic.sparse_random_inputs (). It takes many parame-
ters, including parameters for the format (csr or csc), the shape, the dtype, whether to have explicit O and
whether to have unsorted indices.

Random distribution

We have 3 base random number generators. One that wraps NumPy’s random generator, one that implements
MRG31k3p and one that wraps CURAND.

The fastest, but less developed, is CURAND. It works only on CUDA-enabled GPUs. It does not work on
the CPU and it has fewer random distributions implemented.

The recommended and 2nd faster is MRG. It works on the GPU and CPU and has more implemented
distributions.

The slowest is our wrapper on NumPy’s random generator.

We explain and provide advice on 3 possibles implementations of new distributions here:

6.2. How to provide help 197


https://github.com/Theano/Theano/blob/master/theano/sparse/basic.py#L1704

theano Documentation, Release 0.8.2

1. Extend our wrapper around NumPy random functions. See this PR as an example.

2. Extend MRG implementation by reusing existing Theano Op. Look into the theano/sandbox/
rng_mrg.py file and grep for all code about binomial(). This distribution uses the output of the
uniform distribution and converts it to a binomial distribution with existing Theano operations. The
tests go in theano/sandbox/test_rng_mrg.py

3. Extend MRG implementation with a new Op that takes a uniform sample as input. Look in the
theano/sandbox/{rng_mrg,multinomial}.py file and its test in theano/sandbox/
test_multinomal.py. This is recommended when current Theano ops aren’t well suited to
modify the uniform to the target distribution. This can happen in particular if there is a loop or
complicated condition.

Note: In all cases, you must reuse the same interface as NumPy for compatibility.

OpenMP Ops

To allow consistent interface of Ops that support OpenMP, we have some helper code. Doing this also allows
to enable/disable OpenMP globally or per op for fine-grained control.

Your Op needs to inherit from theano.gof.OpenMPOp. If it overrides the _ init_ ()
method, it must have an openmp=None parameter and must call super (MyOpClass, self).
_ _init_ (openmp=openmp).

The OpenMPOp class also implements c_compile_args and make_thunk. This makes it add the
correct g++ flags to compile with OpenMP. It also disables OpenMP and prints a warning if the version of
g++ does not support it.

The Theano flag openmp is currently False by default as we do not have code that gets sped up with it.
The only current implementation is ConvOp. It speeds up some cases, but slows down others. That is why
we disable it by default. But we have all the code to have it enabled by default if there is more than 1 core
and the environment variable OMP_NUM_THREADS is not 1. This allows Theano to respect the current
convention.

Numba Ops

Want C speed without writing C code for your new Op? You can use Numba to generate the C code for you!
Here is an example Op doing that.

Alternate Theano Types

Most ops in Theano are used to manipulate tensors. However, Theano also supports many other variable
types. The supported types are listed below, along with pointers to the relevant documentation.
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* TensorType : Theano type that represents a multidimensional array containing elements that all
have the same type. Variables of this Theano type are represented in C as objects of class PyArray-
Object.

* TypedList : Theano type that represents a typed list (a list where every element in the list has the same
Theano type). Variables of this Theano type are represented in C as objects of class PyListObject.

* Scalar : Theano type that represents a C primitive type. The C type associated with this Theano type
is the represented C primitive itself.

» SparseType : Theano type used to represent sparse tensors. There is no equivalent C type for this
Theano Type but you can split a sparse variable into its parts as TensorVariables. Those can then be
used as inputs to an op with C code.

* Generic : Theano type that represents a simple Python Object. Variables of this Theano type are
represented in C as objects of class PyObject.

* CDataType : Theano type that represents a C data type. The C type associated with this Theano
type depends on the data being represented.

Implementing double in C

The previous two sections described how to define a double 7Type and arithmetic operations on that Type,
but all of them were implemented in pure Python. In this section we will see how to define the double type
in such a way that it can be used by operations implemented in C (which we will define in the section after
that).

How does it work?

In order to be C-compatible, a Type must provide a C interface to the Python data that satisfy the constraints
it puts forward. In other words, it must define C code that can convert a Python reference into some type
suitable for manipulation in C and it must define C code that can convert some C structure in which the C
implementation of an operation stores its variables into a reference to an object that can be used from Python
and is a valid value for the Type.

For example, in the current example, we have a Type which represents a Python float. First, we will choose
a corresponding C type. The natural choice would be the primitive double type. Then, we need to write
code that will take a PyObject , check that it is a Python float and extract its value as a double.
Finally, we need to write code that will take a C double and will build a PyObject* of Python type
float that we can work with from Python. We will be using CPython and thus special care must be given
to making sure reference counts are updated properly!

The C code we will write makes use of CPython’s C API which you can find here.

What needs to be defined

In order to be C-compatible, a Type must define several additional methods, which all start with the c_
prefix. The complete list can be found in the documentation for gof. t ype. Type. Here, we’ll focus on
the most important ones:
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class CLinkerType

c_declare (name, sub, check_input=True)
This must return C code which declares variables. These variables will be available to operations
defined in C. You may also write typedefs.

c_init (name, sub)
This must return C code which initializes the variables declared in c_declare. Either this or
c_extract will be called.

c_extract (name, sub, check_input=True)
This must return C code which takes a reference to a Python object and initializes the variables
declared in c_declare to match the Python object’s data. Either this or c_init will be
called.

c_sync (name, sub)
When the computations are done, transfer the variables from the C structure we put them in to
the destination Python object. This will only be called for the outputs.

c_cleanup (name, sub)
When we are done using the data, clean up whatever we allocated and decrease the appropriate
reference counts.

c_headers ([c_compiler])
c_libraries ([c_compiler])
c_header_dirs ([c_compiler])
c_lib_dirs ([c_compiler])
Allows you to specify headers, libraries and associated directories.

These methods have two versions, one with a c_compiler argument and one without. The version
with c_compiler is tried first and if it doesn’t work, the one without is.

The c_compiler argument is the C compiler that will be used to compile the C code for the node
that uses this type.

c_compile_args ( [c_compiler] )
c_no_compile_args ( [c_compiler] )
Allows to specify special compiler arguments to add/exclude.

These methods have two versions, one with a c_compiler argument and one without. The version
with c_compiler is tried first and if it doesn’t work, the one without is.

The c_compiler argument is the C compiler that will be used to compile the C code for the node
that uses this type.

c_init code ()
Allows you to specify code that will be executed once when the module is initialized, be-
fore anything else is executed. For instance, if a type depends on NumPy’s C API, then
'import_array () ; ' has to be among the snippets returned by c_init_code ().

c_support_code ()
Allows to add helper functions/structs that the 7ype needs.
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c_compiler ()
Allows to specify a special compiler. This will force this compiler for the current compilation
block (a particular op or the full graph). This is used for the GPU code.

c_code_cache_version ()
Should return a tuple of hashable objects like integers. This specifies the version of the code. It
is used to cache the compiled code. You MUST change the returned tuple for each change in the
code. If you don’t want to cache the compiled code return an empty tuple or don’t implement it.

Each of these functions take two arguments, name and sub which must be used to parameterize the C code
they return. name is a string which is chosen by the compiler to represent a Variable of the Type in such a
way that there are no name conflicts between different pieces of data. Therefore, all variables declared in
c_declare should have a name which includes name. Furthermore, the name of the variable containing
a pointer to the Python object associated to the Variable is py_ <name>.

sub, on the other hand, is a dictionary containing bits of C code suitable for use in certain situations. For
instance, sub [ 'fail'] contains code that should be inserted wherever an error is identified.

c_declare and c_extract also accept a third check_input optional argument. If you want your
type to validate its inputs, it must only do it when check_input is True.

The example code below should help you understand how everything plays out:

Warning: If some error condition occurs and you want to fail and/or raise an Exception, you must
use the fail code contained in sub['fail'] (there is an example in the definition of c_extract
below). You must NOT use the return statement anywhere, ever, nor break outside of your own
loops or goto to strange places or anything like that. Failure to comply with this restriction could
lead to erratic behavior, segfaults and/or memory leaks because Theano defines its own cleanup system
and assumes that you are not meddling with it. Furthermore, advanced operations or types might do
code transformations on your code such as inserting it in a loop — in that case they can call your code-
generating methods with custom failure code that takes into account what they are doing!

Defining the methods

c_declare

def c_declare (name, sub):

return """

double ;

mtmno % dict (name = name)
double.c_declare = c_declare

Very straightforward. All we need to do is write C code to declare a double. That double will be named
whatever is passed to our function in the name argument. That will usually be some mangled name like
“VO07, “V2” or “V92” depending on how many nodes there are in the computation graph and what rank the
current node has. This function will be called for all Variables whose type is double.

You can declare as many variables as you want there and you can also do typedefs. Make sure that the name
of each variable contains the name argument in order to avoid name collisions (collisions will happen if you
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don’t parameterize the variable names as indicated here). Also note that you cannot declare a variable called
py_<name> or storage_<name> because Theano already defines them.

What you declare there is basically the C interface you are giving to your Type. If you wish people to
develop operations that make use of it, it’s best to publish it somewhere.

c_init

def c_init (name, sub):

return """
= 0.0;
TS dict (name = name)
double.c_init = c_init

This function has to initialize the double we declared previously to a suitable value. This is useful if we
want to avoid dealing with garbage values, especially if our data type is a pointer. This is not going to be
called for all Variables with the double type. Indeed, if a Variable is an input that we pass from Python,
we will want to extract that input from a Python object, therefore it is the c_extract method that will be
called instead of c_init. You can therefore not assume, when writing c_ext ract, that the initialization
has been done (in fact you can assume that it hasn’t been done).

c_init will typically be called on output Variables, but in general you should only assume that either
c_init or c_extract has been called, without knowing for sure which of the two.

c_extract

def c_extract (name, sub):
return """
if (!PyFloat_Check (py_ )) A
PyErr_SetString (PyExc_TypeError, "expected a float");

}
= PyFloat_AsDouble (py_ ) ;
" s dict (name = name, fail = sub['fail'])
double.c_extract = c_extract

This method is slightly more sophisticated. What happens here is that we have a reference to a Python
object which Theano has placed in py_% (name) s where % (name) s must be substituted for the name
given in the inputs. This special variable is declared by Theano as PyObject+ py_$% (name) s where
PyObject« is a pointer to a Python object as defined by CPython’s C API. This is the reference that
corresponds, on the Python side of things, to a Variable with the double type. It is what the end user will
give and what he or she expects to get back.

In this example, the user will give a Python £1oat. The first thing we should do is verify that what we got
is indeed a Python f1loat. The PyFloat_Check function is provided by CPython’s C API and does this
for us. If the check fails, we set an exception and then we insert code for failure. The code for failure is in
sub["fail"] and it basically does a goto to cleanup code.

If the check passes then we convert the Python float into a double using the PyFloat_AsDouble function
(yet again provided by CPython’s C API) and we put it in our double variable that we declared previously.

c_sync
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def c_sync(name, sub):

return """

Py_XDECREF (py_ )

Py_ = PyFloat_FromDouble ( ) ;

if (!py_ ) Ao
printf ("PyFloat_FromDouble failed on: £\\n", ) ;
Py_XINCREF (Py_None) ;
Py_ = Py_None;

}

mnw % dict (name = name)

double.c_sync = c_sync

This function is probably the trickiest. What happens here is that we have computed some operation on
doubles and we have put the variable into the double variable % (name) s. Now, we need to put this data
into a Python object that we can manipulate on the Python side of things. This Python object must be put
into the py_ % (name) s variable which Theano recognizes (this is the same pointer we get in c_extract).

Now, that pointer is already a pointer to a valid Python object (unless you or a careless implementer did
terribly wrong things with it). If we want to point to another object, we need to tell Python that we don’t
need the old one anymore, meaning that we need to decrease the previous object’s reference count. The
first line, Py_XDECREF (py_% (name) s) does exactly this. If it is forgotten, Python will not be able to
reclaim the data even if it is not used anymore and there will be memory leaks! This is especially important
if the data you work on is large.

Now that we have decreased the reference count, we call PyFloat_FromDouble on our double variable
in order to convert it to a Python £1oat. This returns a new reference which we assign to py_ % (name) s.
From there Theano will do the rest and the end user will happily see a Python float come out of his
computations.

The rest of the code is not absolutely necessary and it is basically “good practice”.
PyFloat_FromDouble can return NULL on failure. NULL is a pretty bad reference to have and
neither Python nor Theano like it. If this happens, we change the NULL pointer (which will cause us
problems) to a pointer to None (which is not a NULL pointer). Since None is an object like the others, we
need to increase its reference count before we can set a new pointer to it. This situation is unlikely to ever
happen, but if it ever does, better safe than sorry.

Warning: I said this already but it really needs to be emphasized that if you are going to change the
py_% (name) s pointer to point to a new reference, you must decrease the reference count of whatever
it was pointing to before you do the change. This is only valid if you change the pointer, if you are not
going to change the pointer, do NOT decrease its reference count!

c_cleanup

def c_cleanup (name, sub):
return ""
double.c_cleanup = c_cleanup

We actually have nothing to do here. We declared a double on the stack so the C language will reclaim it
for us when its scope ends. We didn’t malloc () anything so there’s nothing to free (). Furthermore,
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the py_% (name) s pointer hasn’t changed so we don’t need to do anything with it. Therefore, we have
nothing to cleanup. Sweet!

There are however two important things to keep in mind:

First, note that c_sync and c_cleanup might be called in sequence, so they need to play nice together.
In particular, let’s say that you allocate memory in c_init or c_extract for some reason. You might
want to either embed what you allocated to some Python object in c_sync or to free it in c_cleanup. If
you do the former, you don’t want to free the allocated storage so you should set the pointer to it to NULL
to avoid that c_cleanup mistakenly frees it. Another option is to declare a variable in c_declare that
you set to true in c_sync to notify c_cleanup that c_sync was called.

Second, whenever you use % (fail) s in c_extract or in the code of an operation, you can count on
c_cleanup being called right after that. Therefore, it’s important to make sure that c_cleanup doesn’t
depend on any code placed after a reference to $ (fail) s. Furthermore, because of the way Theano blocks
code together, only the variables declared in c_declare will be visible in c_cleanup!

What the generated C will look like

c_init and c_extract will only be called if there is a Python object on which we want to apply com-
putations using C code. Conversely, c_sync will only be called if we want to communicate the values we
have computed to Python, and c_ cleanup will only be called when we don’t need to process the data with
C anymore. In other words, the use of these functions for a given Variable depends on the the relationship
between Python and C with respect to that Variable. For instance, imagine you define the following function
and call it:

X, Y, z = double('x'"), double('y'), double('z")
a = add(x, vy)

b = mul(a, z)

f = function([x, vy, z], b)

£(1.0, 2.0, 3.0)

Using the CLinker, the code that will be produced will look roughly like this:

// BEGIN defined by Theano

PyObject* py_x = ...;

PyObject* py.yv = ...;

PyObject* py_z = ...;

PyObject* py_a = ...; // note: this reference won't actually be used for,
—anything

PyObject* py_b = ...;

// END defined by Theano

double x; //c declare for x

X = ...; //c_extract for x

{
double y; //c_declare for y
y = ...; //c extract for y
{

double z; //c declare for z
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z = ...; //c _extract for z
{

double a; //c _declare for a
a = 0; //c_init for a
{
double b; //c declare for b
b =0; //c_init for b
{
a=x +vy; //c_code for add
{

b =a x z; //c_code for mul
labelmul:
//c_cleanup for mul
}
labeladd:
//c_cleanup for add
}
labelb:
py_.b = ...; //c_sync for b
//c_cleanup for b
}
labela:
//c_cleanup for a
}
labelz:
//c_cleanup for z
}
labely:
//c_cleanup for y
}
labelx:
//c_cleanup for x

It’s not pretty, but it gives you an idea of how things work (note that the variable names won’t be x, y, z,
etc. - they will get a unique mangled name). The fail code runs a goto to the appropriate label in order
to run all cleanup that needs to be done. Note which variables get extracted (the three inputs %, y and z),
which ones only get initialized (the temporary variable a and the output b) and which one is synced (the
final output b).

The C code above is a single C block for the whole graph. Depending on which /inker is used to process
the computation graph, it is possible that one such block is generated for each operation and that we transit
through Python after each operation. In that situation, a would be synced by the addition block and extracted
by the multiplication block.

Final version

from theano import gof

class Double (gof.Type) :
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def filter(self, x, strict=False, allow_downcast=None) :
if strict and not isinstance(x, float):
raise TypeError ('Expected a float!')
return float (x)

def values_eq_approx(self, x, y, tolerance=le-4):
return abs(x - y) / (x + y) < tolerance

def @ str (self):
return "double"

def c_declare(self, name, sub):

return mmon
double % (name) s;
T % dict (name = name)

def c_init (self, name, sub):

return """
% (name)s = 0.0;
T % dict (name = name)

def c_extract (self, name, sub):

return mnmn

if (!'PyFloat_Check (py_% (name)s)) {
PyErr_SetString (PyExc_TypeError, "expected a float");
$(fail)s

}

¢ (name)s = PyFloat_AsDouble (py_% (name)s) ;

"% dict (sub, name = name)

def c_sync(self, name, sub):

return """

Py_XDECREF (py_% (name) s) ;

py_% (name)s = PyFloat_FromDouble (% (name)s) ;

if (!'py_% (name)s) |
printf ("PyFloat_FromDouble failed on: %2f\\n", % (name)s);
Py_XINCREF (Py_None) ;
py_% (name)s = Py_None;

}

Twn % dict (name = name)

def c_cleanup(self, name, sub):
return ""

double = Double ()

DeepCopyOp

We have an internal Op called DeepCopyOp. It is used to make sure we respect the user vs Theano memory
region as described in the tutorial. Theano has a Python implementation that calls the object’s copy () or
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deepcopy () method for Theano types for which it does not know how to generate C code.

You can implement c¢_code for this op. You register it like this:

theano.compile.ops.register_deep_copy_op_c_code (YOUR_TYPE_CLASS, THE_C_CODE,
—version=())

In your C code, you should use %(iname)s and %(oname)s to represent the C variable names of the
DeepCopyOp input and output respectively. See an example for the type CudaNdarrayType (GPU
array) in the file theano/sandbox/cuda/type.py. The version parameter is what is returned by Deep-
CopyOp.c_code_cache_version(). By default, it will recompile the c code for each process.

ViewOp

We have an internal Op called ViewOp. It is used for some verification of inplace/view Ops. Its C imple-
mentation increments and decrements Python reference counts, and thus only works with Python objects.
If your new type represents Python objects, you should tell ViewOp to generate C code when working with
this type, as otherwise it will use Python code instead. This is achieved by calling:

theano.compile.ops.register_view_op_c_code (YOUR_TYPE_CLASS, THE_C_CODE,
—version=())

In your C code, you should use %(iname)s and %(oname)s to represent the C variable names
of the ViewOp input and output respectively. See an example for the type CudaNdarrayType
(GPU array) in the file theano/sandbox/cuda/type.py. The version parameter is what is returned by
ViewOp.c_code_cache_version(). By default, it will recompile the c code for each process.

Shape and Shape _i

We have 2 generic Ops, Shape and Shape_i, that return the shape of any Theano Variable that has a shape
attribute (Shape_i returns only one of the elements of the shape).

theano.compile.ops.register_shape_c_code (YOUR_TYPE_CLASS, THE_C_CODE,
—version=())

theano.compile.ops.register_shape_i_c_code (YOUR_TYPE_CLASS, THE_C_CODE, CHECK_
—INPUT, version=())

The C code works as the ViewOp. Shape_i has the additional i parameter that you can use with % (i) s.

In your CHECK_INPUT, you must check that the input has enough dimensions to be able to access the i-th
one.

Implementing the arithmetic Ops in C

Now that we have set up our doub1le type properly to allow C implementations for operations that work on
it, all we have to do now is to actually define these operations in C.
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How does it work?

Before a C Op is executed, the variables related to each of its inputs will be declared and will be filled
appropriately, either from an input provided by the end user (using c_extract) or it might simply have been
calculated by another operation. For each of the outputs, the variables associated to them will be declared
and initialized.

The operation then has to compute what it needs to using the input variables and place the variables in the
output variables.

What needs to be defined

There are less methods to define for an Op than for a Type:

class Op

c_code (node, name, input_names, output_names, sub)
This must return C code that carries the computation we want to do.

sub is a dictionary of extras parameters to the c_code method. It contains the following values:
sub['fail']

A string of code that you should execute (after ensuring that a python exception is set)
if your C code needs to raise an exception.

sub [ 'params']

(optional) The name of the variable which holds the context for the node. This will
only appear if the op has requested a context by having a get_params () method
that return something other than None.

c_code_cleanup (node, name, input_names, output_names, sub)
This must return C code that cleans up whatever c_code allocated and that we must free.

Default: The default behavior is to do nothing.

c_headers ( [c_compiler] )
Returns a list of headers to include in the file. ‘Python.h’ is included by default so you don’t
need to specify it. Also all of the headers required by the Types involved (inputs and outputs)
will also be included.

The c_compiler' parameter is the C compiler that will be used to compile the code for the node.
You may get multiple calls with different C compilers.

c¢_header dirs ( [c_compiler] )
Returns a list of directories to search for headers (arguments to -I).

! There are actually two versions of this method one with a ¢_compiler parameter and one without. The calling code will try the
version with ¢c_compiler and try the version without if it does not work. Defining both versions is pointless since the one without
c_compiler will never get called.

Note that these methods are not specific to a single apply node so they may get called more than once on the same object with
different values for c_compiler.
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The c_compiler' parameter is the C compiler that will be used to compile the code for the node.
You may get multiple calls with different C compilers.

c_libraries( [c_compiler] )
Returns a list of library names that your op needs to link to. All ops are automatically linked
with ‘python’ and the libraries their types require. (arguments to -1)

The c_compiler' parameter is the C compiler that will be used to compile the code for the node.
You may get multiple calls with different C compilers.

c_lib_dirs ([c_compiler])
Returns a list of directory to search for libraries (arguments to -L).

The c_compiler! parameter is the C compiler that will be used to compile the code for the node.
You may get multiple calls with different C compilers.

c_compile_args ( [c_compiler] )
Allows to specify additional arbitrary arguments to the C compiler. This is not usually required.

The c_compiler! parameter is the C compiler that will be used to compile the code for the node.
You may get multiple calls with different C compilers.

c_no_compile_args ( [c_compiler] )
Returns a list of C compiler arguments that are forbidden when compiling this Op.

The c_compiler' parameter is the C compiler that will be used to compile the code for the node.
You may get multiple calls with different C compilers.

c_init_code ()
Allows you to specify code that will be executed once when the module is initialized, before
anything else is executed. This is for code that will be executed once per Op.

c_init_code_apply (node, name)
Allows you to specify code that will be executed once when the module is initialized, before
anything else is executed and is specialized for a particular apply of an Op.

c_init_code_struct (node, name, sub)
Allows you to specify code that will be inserted in the struct constructor of the Op. This is for
code which should be executed once per thunk (Apply node, more or less).

sub is a dictionary of extras parameters to the c_code_init_code_struct method. It contains the
following values:

sub['fail']
A string of code that you should execute (after ensuring that a python exception is set)
if your C code needs to raise an exception.

sub|[ 'params']

(optional) The name of the variable which holds the context for the node. This will
only appear if the op has requested a context by having a get_params () method
that return something other than None.
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c_support_code ()
Allows you to specify helper functions/structs that the Op needs. That code will be reused for
each apply of this op. It will be inserted at global scope.

c_support_code_apply (node, name)
Allows you to specify helper functions/structs specialized for a particular apply of an Op. Use
c_support_code () if the code is the same for each apply of an op. It will be inserted at
global scope.

c_support_code_struct (node, name)
Allows you to specify helper functions of variables that will be specific to one particular thunk.
These are inserted at struct scope.

Note You cannot specify CUDA kernels in the code returned by this since that isn’t
supported by CUDA. You should place your kernels in ¢_support_code () or
c_support_code_apply () and call them from this code.

c_cleanup_code_struct (node, name)
Allows you to specify code that will be inserted in the struct destructor of the Op. This is
for cleaninp up allocations and stuff like this when the thunk is released (when you “free” a
compiled function using this op).

infer_ shape (node, (i0_shapes, il_shapes, ...))
Allow optimizations to lift the Shape op over this op. An example of why this is good is when
we only need the shape of a variable: we will be able to obtain it without computing the variable
itself.

Must return a list where each element is a tuple representing the shape of one output.

For example, for the matrix-matrix product infer_shape will have as inputs (node, ((x0,x1),
(y0,y1))) and should return [(x0, y1)]. Both the inputs and the return value may be Theano
variables.

c_code cache version ()
Must return a tuple of hashable objects like integers. This specifies the version of the code. It is
used to cache the compiled code. You MUST change the returned tuple for each change in the
code. If you don’t want to cache the compiled code return an empty tuple or don’t implement it.

c_code_cache_version_apply (node)
Overrides ¢_code _cache_version () if defined, but otherwise has the same contract.

python_constant_folding (node)
Optional. If present this method will be called before doing constant folding of a node, with
that node as a parameter. If it return True, we will not generate ¢ code when doing constant
folding of this node. This is useful when the compilation of the ¢ code will be longer then the
computation in python (e.g. Elemwise of scalars).

In addition, this allow to lower the number of compiled module and disk access. Particularly
useful when the file system load is high or when theano compilation directory is shared by many
process (like on a network file server on a cluster).

get_params (node)
(optional) If defined, should return the runtime params the op needs. These parameters will
be passed to the C code through the variable named in sub/’params’]. The variable is also
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available for use in the code returned by ¢_init_code_struct (). If it returns None this is
considered the same as if the method was not defined.

If this method is defined and does not return None, then the Op must have a params_type property
with the Type to use for the params variable.

f16_ok
(optional) If this attribute is absent or evaluates to False, C code will be disabled for the op if
any of its inputs or outputs contains float16 data. This is added as a check to make sure we don’t
compute wrong results since there is no hardware float16 type so special care must be taken to
make sure operations are done correctly.

If you don’t intend to deal with float16 data you can leave this undefined.

This attribute is internal and may go away at any point during developpment if a better solution
is found.

The name argument is currently given an invalid value, so steer away from it. As was the case with Type,
sub['fail'] provides failure code that you must use if you want to raise an exception, after setting the
exception message.

The node argument is an Apply node representing an application of the current Op on a list of inputs,
producing a list of outputs. input_names and output_names arguments contain as many strings as
there are inputs and outputs to the application of the Op and they correspond to the name that is passed
to the type of each Variable in these lists. For example, if node . inputs[0] .type == double, then
input_names[0] is the name argument passed to double.c_declare etc. when the first input is
processed by Theano.

In a nutshell, input_names and output_names parameterize the names of the inputs your operation
needs to use and the outputs it needs to put variables into. But this will be clear with the examples.

Defining the methods

We will be defining C code for the multiplication Op on doubles.

c_code

def c_code (node, name, input_names, output_names, sub):

X_name, y_name = input_names[0], input_names[1]
output_name = output_names[0]
return """

mnno g locals ()
mul.c_code = c_code

And that’s it. As we enter the scope of the C code we are defining in the method above, many variables are
defined for us. Namely, the variables x_name, y_name and output_name are all of the primitive C double
type and they were declared using the C code returned by double.c_declare.

Implementing multiplication is as simple as multiplying the two input doubles and setting the output double
to what comes out of it. If you had more than one output, you would just set the variable(s) for each output
to what they should be.
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Warning: Do NOT use C’s return statement to return the variable(s) of the computations. Set the
output variables directly as shown above. Theano will pick them up for you.

c_code_cleanup

There is nothing to cleanup after multiplying two doubles. Typically, you won’t need to define this method
unless you malloc() some temporary storage (which you would free() here) or create temporary Python
objects (which you would Py_XDECREF() here).

Final version

As before, I tried to organize the code in order to minimize repetition. You can check that mul produces the
same C code in this version that it produces in the code I gave above.

from theano import gof

class BinaryDoubleOp (gof.Op) :

__props__ = ("name", "fn", "ccode")
def _ init__ (self, name, fn, ccode):
self.name = name
self.fn = fn
self.ccode = ccode

def make_node(self, x, vy):
if isinstance(x, (int, float)):
x = gof.Constant (double, x)
if isinstance(y, (int, float)):
y = gof.Constant (double, vy)
if x.type != double or y.type != double:
raise TypeError (' only works on doubles' % self.name)
return gof.Apply(self, [x, vy], [double()])

def perform(self, node, inp, out):

X, y = inp
z, = out
z[0] = self.fn(x, vy)

def str__ (self):

return self.name

def c_code(self, node, name, inp, out, sub):
X, y = inp
z, = out
return self.ccode % locals()

add = BinaryDoubleOp (name='"add',
fn=lambda x, y: x + vy,
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ccode=" = + ;M)

sub BinaryDoubleOp (name="'sub',
fn=lambda x, y: x - vy,

ccode=" = - ;™)

mul = BinaryDoubleOp (name='mul',
fn=lambda x, y: x * Yy,

ccode=" = * ;M)
div = BinaryDoubleOp (name='div',

fn=lambda x, y: x / vy,

ccode=" = / ;M)

Using Op params
The Op params is a facility to pass some runtime parameters to the code of an op without modifying it. It
can enable a single instance of C code to serve different needs and therefore reduce compilation.

The code enables you to pass a single object, but it can be a struct or python object with multiple values if
you have more than one value to pass.

We will first introduce the parts involved in actually using this functionality and then present a simple
working example.

The params type

You can either reuse an existing type such as Generic or create your own.

Using a python object for your op parameters (Genexric) can be annoying to access from C code since you
would have to go through the Python-C API for all accesses.

Making a purpose-built class may require more upfront work, but can pay off if you reuse the type for a lot
of Ops, by not having to re-do all of the python manipulation.

Defining a params type

Note: This section is only relevant if you decide to create your own type.

The first thing you need to do is to define a Theano Type for your params object. It doesn’t have to be
complete type because only the following methods will be used for the type:

e filter
¢ __eq
e hash
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* values_eq
Additionaly if you want to use your params with C code, you need the following methods:
e ¢ declare
e Cc init
* C_extract
* ¢ _cleanup

You can also define other convenience methods such as ¢_headers if you need any special things.

Registering the params with your Op

To declare that your Op uses params you have to set the class attribute params_type to an instance of
your params Type.

Note: If you want to have multiple parameters you have to bundle those inside a single object and use that
as the params type.

For example if we decide to use an int as the params the following would be appropriate:

class MyOp (Op) :
params_type = Generic()

After that you need to define a get_params () method on your class with the following signature:

def get_params (self, node)

This method must return a valid object for your Type (an object that passes £ilter ()). The node param-
eter is the Apply node for which we want the params. Therefore the params object can depend on the inputs
and outputs of the node.

Note: Due to implementation restrictions, None is not allowed as a params object and will be taken to mean
that the Op doesn’t have parameters.

Since this will change the expected signature of a few methods, it is strongly discouraged to have your
get_params () method return None.

Signature changes from having params

Having declared a params for your Op will affect the expected signature of perform (). The new expected
signature will have an extra parameter at the end which corresponds to the params object.
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Warning: If you do not account for this extra parameter, the code will fail at runtime if it tries to run
the python version.

Also, for the C code, the sub dictionary will contain an extra entry ‘params’ which will map to the variable
name of the params object. This is true for all methods that recieve a sub parameter, so this means that you
can use your params in the ¢_code and ¢_init_code_struct method.

A simple example

This is a simple example which uses a params object to pass a value. This Op will multiply a scalar input
by a fixed floating point value.

Since the value in this case is a python float, we chose Generic as the params type.

from theano import Op
from theano.gof.type import Generic
from theano.scalar import as_scalar

class MulOp (Op) :

params_type = Generic()
__props__ = ('mul',)
def _ init_ (self, mul):

self.mul = float (mul)

def get_params(self, node):
return self.mul

def make_node(self, inp):
inp = as_scalar (inp)
return Apply(self, [inp], [inp.type()])

def perform(self, node, inputs, output_storage, params):
# Here params 1s a python float so this is ok
output_storage[0] [0] = inputs[0] =* params

def c_code(self, node, name, inputs, outputs, sub):
return (" = * PyFloat_AsDouble ( y; "%
dict (z=outputs[0], x=inputs[0], p=sub|['params']))

A more complex example

This is a more complex example which actually passes multiple values. It does a linear combination of two
values using floating point weights.

from theano import Op
from theano.gof.type import Generic
from theano.scalar import as_scalar
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class ab(object) :
def _ _init__ (self, alpha, beta):
self.alpha = alpha
self.beta = beta

class Mix (Op) :
params_type = Generic ()
__props__ = ('alpha', 'beta')

def _ _init__ (self, alpha, beta):
self.alpha = alpha
self.beta = beta

def get_params (self, node):
return ab (alpha=self.alpha, beta=self.beta)

def make_node(self, x, vy):
x = as_scalar (x)
y = as_scalar(y)
return Apply(self, [x, v], [x.type()])

def c_support_code_struct (self, node, name):
return mnmn
double alpha_ % (name) s;
double beta_ % (name) s;
twr S dict (name=name)

def c_init_code_struct (self, node, name, sub):

return """{
PyObject *tmp;
tmp = PyObject_GetAttrString(%(p)s, "alpha");
if (tmp == NULL)

$(fail)s
alpha_% (name)s = PyFloat_AsDouble (tmp) ;
Py_DECREF (2 (tmp) s) ;
if (PyErr_Occurred())

%(fail)s
tmp = PyObject_GetAttrString (% (p)s, "beta");
if (tmp == NULL)

$(fail)s
beta_?% (name)s = PyFloat_AsDouble (tmp) ;
Py_DECREF (tmp) ;
if (PyErr_Occurred())

% (fail)s
prm" % dict (name=name, p=sub['params'], fail=sub['fail'])

def c_code(self, node, name, inputs, outputs, sub):
return mmn
%(z)s = alpha_%(name)s * %(x)s + beta_% (name)s * %(y)s;
mTww % dict (name=name, z=outputs[0], x=inputs[0], y=inputs[1l])
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Graph optimization

In this section we will define a couple optimizations on doubles.

Todo

This tutorial goes way too far under the hood, for someone who just wants to add yet another pattern to the
libraries in tensor.opt for example.

We need another tutorial that covers the decorator syntax, and explains how to register your optimization
right away. That’s what you need to get going.

Later, the rest is more useful for when that decorator syntax type thing doesn’t work. (There are optimiza-
tions that don’t fit that model).

Note: The optimization tag cxx_only is used for optimizations that insert Ops which have no Python
implementation (so they only have C code). Optimizations with this tag are skipped when there is no C++
compiler available.

Global and local optimizations

First, let’s lay out the way optimizations work in Theano. There are two types of optimizations: global
optimizations and local optimizations. A global optimization takes a Funct ionGraph object (a Func-
tionGraph is a wrapper around a whole computation graph, you can see its documentation for more
details) and navigates through it in a suitable way, replacing some Variables by others in the process. A
local optimization, on the other hand, is defined as a function on a single Apply node and must return either
False (to mean that nothing is to be done) or a list of new Variables that we would like to replace the
node’s outputs with. A Navigator is a special kind of global optimization which navigates the computation
graph in some fashion (in topological order, reverse-topological order, random order, etc.) and applies one
or more local optimizations at each step.

Optimizations which are holistic, meaning that they must take into account dependencies that might be all
over the graph, should be global. Optimizations that can be done with a narrow perspective are better defined
as local optimizations. The majority of optimizations we want to define are local.

Global optimization

A global optimization (or optimizer) is an object which defines the following methods:

class Optimizer

apply (fgraph)
This method takes a FunctionGraph object which contains the computation graph and does mod-
ifications in line with what the optimization is meant to do. This is one of the main methods of
the optimizer.
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add_requirements (fgraph)
This method takes a FunctionGraph object and adds features to it. These features are “plugins”
that are needed for the apply method to do its job properly.

optimize (fgraph)
This is the interface function called by Theano.

Default: this is defined by Optimizer as add_requirement (fgraph);
apply (fgraph).

See the section about FunctionGraph to understand how to define these methods.

Local optimization

A local optimization is an object which defines the following methods:

class LocalOptimizer

transform (node)
This method takes an Apply node and returns either False to signify that no changes are to
be done or a list of Variables which matches the length of the node’s outputs list. When the
LocalOptimizer is applied by a Navigator, the outputs of the node passed as argument to the
LocalOptimizer will be replaced by the list returned.

One simplification rule

For starters, let’s define the following simplification:

xy
Y

T

We will implement it in three ways: using a global optimization, a local optimization with a Navigator and
then using the PatternSub facility.

Global optimization

Here is the code for a global optimization implementing the simplification described above:

import theano
from theano import gof
from theano.gof import toolbox

class Simplify(gof.Optimizer):
def add_requirements (self, fgraph):
fgraph.attach_feature (toolbox.ReplaceValidate ())
def apply(self, fgraph):
for node in fgraph.toposort () :
if node.op == true_div:
X, y = node.inputs
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z = node.outputs[0]
if x.owner and x.owner.op == mul:
a, b = x.owner.inputs
if y ==
fgraph.replace_validate(z, b)
elif y ==

fgraph.replace_validate(z, a)

simplify = Simplify ()

Todo

What is add_requirements? Why would we know to do this? Are there other requirements we might want
to know about?

Here’s how it works: first, in add_requirements, we add the ReplaceValidate FunctionGraph
Features located in toolbox — [doc TODQO]. This feature adds the replace_validate method to
fgraph, which is an enhanced version of replace that does additional checks to ensure that we are not
messing up the computation graph (note: if ReplacevValidate was already added by another optimizer,
extend will do nothing). In a nutshell, toolbox.ReplaceValidate grants access to fgraph.
replace_validate, and fgraph.replace_validate allows us to replace a Variable with an-
other while respecting certain validation constraints. You can browse the list of FunctionGraph Feature List
and see if some of them might be useful to write optimizations with. For example, as an exercise, try to
rewrite Simplify using NodeFinder. (Hint: you want to use the method it publishes instead of the call to
toposort!)

Then, in apply we do the actual job of simplification. We start by iterating through the graph in topological
order. For each node encountered, we check if it’s a div node. If not, we have nothing to do here. If so, we
putin x, y and z the numerator, denominator and quotient (output) of the division. The simplification only
occurs when the numerator is a multiplication, so we check for that. If the numerator is a multiplication
we put the two operands in a and b, so we can now say that z == (axb) /y. If y==a then z==b and
if y==b then z==a. When either case happens then we can replace z by either a or b using fgraph.
replace_validate - else we do nothing. You might want to check the documentation about Variable
and Apply to get a better understanding of the pointer-following game you need to get ahold of the nodes of
interest for the simplification (x, v, z, a, b, etc.).

Test time:

>>> from theano.scalar import float64, add, mul, true_div

>>> x = float6d ('x")

>>> y = float64d ('y")

>>> z = floated ('z")

>>> a = add(z, mul (true_div(mul(y, x), y), true_div(z, Xx)))
>>> e = gof.FunctionGraph([x, vy, z], [al)

>>> e

[add (z, mul (true_div(mul(y, x), y), true_div(z, x)))]
>>> simplify.optimize (e)

>>> e

[add(z, mul (x, true_div(z, x)))]
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Cool! It seems to work. You can check what happens if you put many instances of x—yy in the graph. Note
that it sometimes won’t work for reasons that have nothing to do with the quality of the optimization you
wrote. For example, consider the following:

>>> x = float6d ('x")

>>> y = float64 ('y")

>>> z = floatoed ('z")

>>> a = true_div (mul (add(y, z), x), add(y, z))
>>> e = gof.FunctionGraph([x, vy, z], [al)

>>> e

[true_div (mul (add(y, z x), add(y, z))]
>>> simplify.optimize (
>>> e

[true_div (mul (add(y, z), x), add(y, z))]

),
e)

Nothing happened here. The reason is: add (y, z) != add(y, z). Thatis the case for efficiency
reasons. To fix this problem we first need to merge the parts of the graph that represent the same computation,
using the MergeOptimizer defined in theano.gof.opt.

>>> from theano.gof.opt import MergeOptimizer

>>> MergeOptimizer () .optimize (e)
(0, ..., None, None, {}, 1, 0)
>>> e

[true_div (mul (¥x1 —-> add(y, z), x), =*1)]
>>> simplify.optimize (e)
>>> e

[x]

Once the merge is done, both occurrences of add (y, z) are collapsed into a single one and is used
as an input in two places. Note that add (x, y) and add (y, x) are still considered to be different
because Theano has no clue that add is commutative. You may write your own global optimizer to identify
computations that are identical with full knowledge of the rules of arithmetics that your Ops implement.
Theano might provide facilities for this somewhere in the future.

Note: FunctionGraph is a Theano structure intended for the optimization phase. It is used internally
by function and is rarely exposed to the end user. You can use it to test out optimizations, etc. if you are
comfortable with it, but it is recommended to use the function frontend and to interface optimizations with
optdb (we’ll see how to do that soon).

Local optimization

The local version of the above code would be the following:

class LocalSimplify (gof.LocalOptimizer):
def transform(self, node):
if node.op == true_div:
X, y = node.inputs
if x.owner and x.owner.op == mul:
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a, b = x.owner.inputs
if vy == a:

return [b]
elif y ==

return [a]
return False
def tracks(self):
# This should be needed for the EquilibriumOptimizer
# but it isn't now
# TODO: do this and explain it
return [] # that's not what you should do

local_simplify = LocalSimplify ()

Todo

Fix up previous example... it’s bad and incomplete.

The definition of transform is the inner loop of the global optimizer, where the node is given as argument. If
no changes are to be made, False must be returned. Else, a list of what to replace the node’s outputs with
must be returned. This list must have the same length as node.ouputs. If one of node.outputs don’t have
clients(it is not used in the graph), you can put None in the returned list to remove it.

In order to apply the local optimizer we must use it in conjunction with a Navigator. Basically, a Navigator
is a global optimizer that loops through all nodes in the graph (or a well-defined subset of them) and applies
one or several local optimizers on them.

>>> x = float64d ('x")

>>> y = float64d ('y")

>>> z = float6d('z")

>>> a = add(z, mul (true_div(mul(y, x), y), true_div(z, x)))
>>> e = gof.FunctionGraph([x, vy, z], [al)

>>> e

[add (z, mul (true_div(mul(y, x), vy), true_div(z, x)))]

>>> simplify = gof.TopoOptimizer (local_ simplify)

>>> simplify.optimize (e)

(<theano.gof.opt.TopoOptimizer object at Ox...>, 1, 5, 3, ..., ..., ...)
>>> e

[add (z, mul (x, true_div(z, x)))]

OpSub, OpRemove, PatternSub

Theano defines some shortcuts to make LocalOptimizers:

OpSub (opl, op2)
Replaces all uses of op! by op2. In other words, the outputs of all Apply involving opl by the outputs
of Apply nodes involving op2, where their inputs are the same.

OpRemove (op)

6.2. How to provide help 221




theano Documentation, Release 0.8.2

Removes all uses of op in the following way: if y = op (x) then y is replaced by x. op must have
as many outputs as it has inputs. The first output becomes the first input, the second output becomes
the second input, and so on.

PatternSub (patternl, pattern2)
Replaces all occurrences of the first pattern by the second pattern. See PatternSub.

from theano.gof.opt import OpSub, OpRemove, PatternSub

# Replacing add by mul (this is not recommended for primarily
# mathematical reasons):
add_to_mul = OpSub(add, mul)

# Removing identity
remove_identity = OpRemove (identity)

# The "simplify" operation we've been defining in the past few

# sections. Note that we need two patterns to account for the

# permutations of the arguments to mul.

local_simplify 1 = PatternSub((true_div, (mul, 'x', 'v'), 'v'),
va)

local_simplify 2 = PatternSub((true_div, (mul, 'x', 'v'), 'x'"),
'v')

Note: OpSub, OpRemove and PatternSub produce local optimizers, which means that everything we
said previously about local optimizers apply: they need to be wrapped in a Navigator, etc.

Todo

wtf is a navigator?

When an optimization can be naturally expressed using OpSub, OpRemove or PatternSub, it is highly
recommended to use them.

WRITEME: more about using PatternSub (syntax for the patterns, how to use constraints, etc. - there’s some
decent doc at Pat ternSub for those interested)

The optimization database (optdb)

Theano exports a symbol called optdb which acts as a sort of ordered database of optimizations. When
you make a new optimization, you must insert it at the proper place in the database. Furthermore, you can
give each optimization in the database a set of tags that can serve as a basis for filtering.

The point of optdb is that you might want to apply many optimizations to a computation graph in many
unique patterns. For example, you might want to do optimization X, then optimization Y, then optimization
Z. And then maybe optimization Y is an EquilibriumOptimizer containing LocalOptimizers A, B and C
which are applied on every node of the graph until they all fail to change it. If some optimizations act up,
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we want an easy way to turn them off. Ditto if some optimizations are very CPU-intensive and we don’t
want to take the time to apply them.

The optdb system allows us to tag each optimization with a unique name as well as informative tags such as
‘stable’, ‘buggy’ or ‘cpu_intensive’, all this without compromising the structure of the optimizations.

Definition of optdb

optdb is an object which is an instance of SequenceDB, itself a subclass of DB. There exist (for now)
two types of DB, SequenceDB and EquilibriumDB. When given an appropriate Query, DB objects build an
Optimizer matching the query.

A SequenceDB contains Optimizer or DB objects. Each of them has a name, an arbitrary number of tags
and an integer representing their order in the sequence. When a Query is applied to a SequenceDB, all
Optimizers whose tags match the query are inserted in proper order in a SequenceOptimizer, which is
returned. If the SequenceDB contains DB instances, the Query will be passed to them as well and the
optimizers they return will be put in their places.

An EquilibriumDB contains LocalOptimizer or DB objects. Each of them has a name and an arbitrary
number of tags. When a Query is applied to an EquilibriumDB, all LocalOptimizers that match the query
are inserted into an EquilibriumOptimizer, which is returned. If the SequenceDB contains DB instances, the
Query will be passed to them as well and the LocalOptimizers they return will be put in their places (note
that as of yet no DB can produce LocalOptimizer objects, so this is a moot point).

Theano contains one principal DB object, opt db, which contains all of Theano’s optimizers with proper
tags. It is recommended to insert new Optimizers in it. As mentioned previously, optdb is a SequenceDB,
s0, at the top level, Theano applies a sequence of global optimizations to the computation graphs.

Query

A Query is built by the following call:

theano.gof.Query (include, require=None, exclude=None, subquery=None)

class Query

include
A set of tags (a tag being a string) such that every optimization obtained through this Query must
have one of the tags listed. This field is required and basically acts as a starting point for the
search.

require
A set of tags such that every optimization obtained through this Query must have all of these
tags.

exclude
A set of tags such that every optimization obtained through this Query must have none of these
tags.
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subquery
optdb can contain sub-databases; subquery is a dictionary mapping the name of a sub-database
to a special Query. If no subquery is given for a sub-database, the original Query will be used
again.

Furthermore, a Query object includes three methods, including, requiring and excluding which
each produce a new Query object with include, require and exclude sets refined to contain the new
[WRITEME]

Examples

Here are a few examples of how to use a Query on optdb to produce an Optimizer:

from theano.gof import Query
from theano.compile import optdb

# This is how the optimizer for the fast_run mode is defined
fast_run = optdb.query (Query (include=["'fast_run']))

# This is how the optimizer for the fast_compile mode is defined
fast_compile = optdb.query (Query (include=["'fast_compile']))

This is the same as fast_run but no optimizations will replace
any operation by an inplace version. This assumes, of course,
that all inplace operations are tagged as 'inplace' (as they
should!)

fast_run_no_inplace = optdb.query (Query (include=['fast_run'],
exclude=["inplace']))

Sk R H

Registering an Optimizer

Let’s say we have a global optimizer called simplify. We can add it to optdb as follows:

# optdb.register (name, optimizer, order, *tags)
optdb.register('simplify', simplify, 0.5, 'fast_run')

Once this is done, the FAST_RUN mode will automatically include your optimization (since you gave it the
‘fast_run’ tag). Of course, already-compiled functions will see no change. The ‘order’ parameter (what it
means and how to choose it) will be explained in optdb structure below.

Registering a LocalOptimizer

LocalOptimizers may be registered in two ways:
* Wrap them in a Navigator and insert them like a global optimizer (see previous section).
* Put them in an EquilibriumDB.

Theano defines two EquilibriumDBs where you can put local optimizations:
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canonicalize ()
This contains optimizations that aim to simplify the graph:

*Replace rare or esoterical operations with their equivalents using elementary operations.

*Order operations in a canonical way (any sequence of multiplications and divisions can be rewrit-
ten to contain at most one division, for example; x*x can be rewritten x * x2; etc.)

*Fold constants (Constant (2) *Constant (2) becomes Constant (4))

specialize ()
This contains optimizations that aim to specialize the graph:

*Replace a combination of operations with a special operation that does the same thing (but
better).

For each group, all optimizations of the group that are selected by the Query will be applied on the graph
over and over again until none of them is applicable, so keep that in mind when designing it: check carefully
that your optimization leads to a fixpoint (a point where it cannot apply anymore) at which point it returns
False to indicate its job is done. Also be careful not to undo the work of another local optimizer in the
group, because then the graph will oscillate between two or more states and nothing will get done.

optdb structure

optdb contains the following Optimizers and sub-DBs, with the given priorities and tags:

Order | Name Description

0 mergel First merge operation

1 canonicalize Simplify the graph

2 specialize Add specialized operations
49 merge2 Second merge operation
49.5 add_destroy_handler | Enable inplace optimizations
100 merge3 Third merge operation

The merge operations are meant to put together parts of the graph that represent the same computation.
Since optimizations can modify the graph in such a way that two previously different-looking parts of the
graph become similar, we merge at the beginning, in the middle and at the very end. Technically, we only
really need to do it at the end, but doing it in previous steps reduces the size of the graph and therefore
increases the efficiency of the process.

See previous section for more information about the canonicalize and specialize steps.

The add_destroy_handler step is not really an optimization. It is a marker. Basically:

Warning: Any optimization which inserts inplace operations in the computation graph must appear
after the add_destroy_handler “optimizer”. In other words, the priority of any such optimization
must be >= 50. Failure to comply by this restriction can lead to the creation of incorrect computation
graphs.
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The reason the destroy handler is not inserted at the beginning is that it is costly to run. It is cheaper to run
most optimizations under the assumption there are no inplace operations.

Navigator

WRITEME

Profiling Theano function compilation

You find that compiling a Theano function is taking too much time? You can get profiling information about
Theano optimization. The normal Theano profiler will provide you with very high-level information. The
indentation shows the included in/subset relationship between sections. The top of its output look like this:

Function profiling

Message: PATH_TO_A_FILE:23
Time in 0 calls to Function.__call__: 0.000000e+00s
Total compile time: 1.131874e+01s
Number of Apply nodes: 50
Theano Optimizer time: 1.152431e+00s
Theano validate time: 2.790451e-02s
Theano Linker time (includes C, CUDA code generation/compiling): 7.
—-893991e-02s
Import time 1.153541e-02s
Time in all call to theano.grad() 4.732513e-02s

Explanations:
* Total compile time: 1.131874e+01s gives the total time spent inside theano.function.
* Number of Apply nodes: 50 means that after optimization, there are 50 apply node in the
graph.

* Theano Optimizer time: 1.152431e+00s means that we spend 1.15s in the theano.
function phase where we optimize (modify) the graph to make it faster / more stable numerically
/ work on GPU /...

* Theano validate time: 2.790451e-02s means that we spent 2.8e-2s in the validate
subset of the optimization phase.

* Theano Linker time (includes C, CUDA code generation/compiling) :
7.893991e-02s means that we spent 7.9e-2s in linker phase of theano.function.

e Import time 1.153541e-02s is a subset of the linker time where we import the compiled
module.

* Time in all call to theano.grad() 4.732513e-02s tells that we spent a total of
4.7e-2s in all calls to theano.grad. This is outside of the calls to theano. function.

The linker phase includes the generation of the C code, the time spent by g++ to compile and the time
needed by Theano to build the object we return. The C code generation and compilation is cached, so the
first time you compile a function and the following ones could take different amount of execution time.
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Detailed profiling of Theano optimizer

You can get more detailed profiling information about the Theano optimizer phase by setting to True the
Theano flags config.profile optimizer (this require config.profile to be True as well).

This will output something like this:

Optimizer Profile
SeqOptimizer OPT_FAST_RUN time 1.152s for 123/50 nodes before/after
—optimization
0.028s for fgraph.validate()
0.131s for callback

time - (name, class, index) - validate time
0.751816s — ('canonicalize', 'EquilibriumOptimizer', 4) - 0.004s
EquilibriumOptimizer canonicalize

time 0.751s for 14 passes

nb nodes (start, end, max) 108 81 117
time io_toposort 0.029s

time in local optimizers 0.687s

time in global optimizers 0.010s

0 - 0.050s 27 (0.000s in global opts, 0.002s io_toposort) - 108 nodes,,
—— ('local_dimshuffle_1lift', 9) ('local_upcast_elemwise_constant_inputs', 5)_,
— ('local_shape_to_shape_i', 3) ('local_fill_sink', 3) ('local_fill to_alloc',
— 2)

1 - 0.288s 26 (0.002s in global opts, 0.002s io_toposort) - 117 nodes,
—— ('local_dimshuffle_1lift', 8) ('local fill_sink', 4) ('constant_folding', |
—4) ('local_useless_elemwise', 3) ('local_subtensor_make_vector', 3)

2 — 0.044s 13 (0.002s in global opts, 0.003s io_toposort) - 96 nodes -
— ('constant_folding', 4) ('local_dimshuffle_1lift', 3) ('local_fill sink',
—3) ('local_useless_elemwise', 1) ('local_fill to_alloc', 1)

3 - 0.045s 11 (0.000s in global opts, 0.002s io_toposort) - 91 nodes -
— ('constant_folding', 3) ('local fill_to_alloc', 2) ('local_dimshuffle_1lift
"', 2) ('local_mul_canonizer', 2) ('MergeOptimizer',6 1)

4 - 0.035s 8 (0.002s in global opts, 0.002s io_toposort) - 93 nodes —
—~('local_fill sink', 3) ('local dimshuffle_lift', 2) ('local_fill to_alloc',
—1) ('MergeOptimizer', 1) ('constant_folding', 1)

5 - 0.035s 6 (0.000s in global opts, 0.002s io_toposort) - 88 nodes —_
—~('"local_fill_sink', 2) ('local_dimshuffle_1lift', 2) ('local_fill_to_alloc',
1) ('local_mul_canonizer', 1)

6 — 0.038s 10 (0.001ls in global opts, 0.002s io_toposort) - 95 nodes -
— ('local_fill sink', 3) ('local dimshuffle_1lift', 3) ('constant_folding',
—2) ('local_fill_to_alloc', 1) ('MergeOptimizer', 1)

7 - 0.032s 5 (0.001ls in global opts, 0.002s io_toposort) - 91 nodes -
—('local_fill_sink', 3) ('MergeOptimizer', 1) ('local_dimshuffle_lift', 1)

8 — 0.034s 5 (0.000s in global opts, 0.002s io_toposort) - 92 nodes —
—('local_fill sink', 3) ('MergeOptimizer', 1) ('local_greedy_distributor', 1)

9 - 0.031s 6 (0.001s in global opts, 0.002s io_toposort) - 90 nodes —_
—~('local_fill_sink', 2) ('local_fill to_alloc', 1) ('MergeOptimizer', 1) (
—'local_dimshuffle_lift', 1) ('local_greedy_distributor', 1)

10 - 0.032s 5 (0.000s in global opts, 0.002s io_toposort) - 89 nodes —_
— ('local_dimshuffle_1ift', 2) ('local_ fill_to_alloc', 1) ('MergeOptimizer', |
—1) ('local_ fill_sink', 1)
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11 - 0.030s 5 (0.000s in global opts, 0.002s io_toposort)

- 88 nodes -,

— ('local_dimshuffle_1lift', 2) ('local_fill_to_alloc', 1) ('MergeOptimizer', |

o1

)

('constant_folding', 1)
12 - 0.026s 1 (0.000s in global opts, 0.003s io_toposort)

— ('"MergeOptimizer', 1)

—with

13 - 0.031s 0 (0.000s in global opts, 0.003s io_toposort)
times - times applied - nb node created - name:
0.263s — 15 - 0 - constant_folding

.096s - 2 - 14 - local_greedy_distributor

.066s = 4 - 19 - local mul_canonizer

.046s - 28 = 57 = local_fill_sink

.042s - 35 - 78 - local_dimshuffle_lift

0
0
0
0
0.018s - 5 - 15 - local_upcast_elemwise_constant_inputs
0.010s - 11 - 4 - MergeOptimizer
0.009s — 4 - 0 - local_useless_elemwise
0.005s = 11 - 2 - local_fill to_alloc
0.004s - 3 - 6 - local_neg_to_mul
0.002s = 1 - 3 - local_lift_transpose_through_dot
0.002s = 3 - 4 - local_shape_to_shape_1i
0.002s = 2 - 4 - local_subtensor_lift
0.001ls = 3 = 0 - local_subtensor_make_vector
0.001ls = 1 - 1 - local_sum_all_to_none
0.131s - in 62 optimization that where not used (display
a runtime > 0)
.050s - local_add_canonizer
.018s - local_mul_=zero
.016s - local_one_minus_erf
.010s - local_func_inv

.006s - local_0_dot_x
.005s - local_track_shape_1i

.004s - local_mul_switch_sink

.004s - local_fill_cut

.004s - local_one_minus_erf2

.003s - local_remove_switch_const_cond
.003s - local_cast_cast

.002s - local_IncSubtensor_serialize
.001ls - local_sum _div_dimshuffle

.001ls - local_div_switch_sink

.001ls - local_dimshuffle_no_inplace_at_canonicalize
.001ls - local_cut_useless_reduce

.001s - local_reduce_join

.000s - local_sum_sum

.000s - local_useless_alloc

.000s - local_reshape_chain

.000s - local_useless_subtensor

.000s - local_reshape_lift
.000s - local_flatten_ 1lift

O O O O OO O O OO OO OO OO0 OoOoooooo

- 81 nodes -,

- 81 nodes -

only those,

.000s - local_useless_slice
.000s - local_subtensor_of_alloc
.000s - local_subtensor_of_dot
0.000s - local_subtensor_merge
0.101733s - ('elemwise_fusion', 'SegOptimizer', 13) - 0.000s
SegOptimizer elemwise_fusion time 0.102s for 78/50 nodes before/
fter—optimization
228 Chapter 6. Help!




theano Documentation, Release 0.8.2

0.000s for fgraph.validate()
.004s for callback
0.095307s - ('composite_elemwise_fusion', 'FusionOptimizer', 1) - 0.

o

—000s
FusionOptimizer
nb_iter 3
nb_replacement 10
nb_inconsistency_replace 0
validate_time 0.000249624252319
callback_time 0.00316381454468
time_toposort 0.00375390052795
0.006412s - ('local_add_mul_fusion', 'FusionOptimizer', 0) - 0.000s
FusionOptimizer
nb_iter 2
nb_replacement 3
nb_inconsistency_replace 0
validate_time 6.43730163574e-05
callback_time 0.000783205032349
time_toposort 0.0035240650177
0.090089s - ('inplace_elemwise_optimizer', 'FromFunctionOptimizer', 30) -
—0.019s
0.048993s - ('BlasOpt', 'SegOptimizer', 8) - 0.000s
SegOptimizer BlasOpt time 0.049s for 81/80 nodes before/after,
—optimization
0.000s for fgraph.validate()
0.003s for callback

0.035997s - ('gemm_optimizer', 'GemmOptimizer', 1) - 0.000s
GemmOptimizer
nb_iter 2

nb_replacement 2
nb_replacement_didn_t_remove 0
nb_inconsistency_make 0
nb_inconsistency_replace 0
time_canonicalize 0.00720071792603
time_factor_can 9.05990600586e-06
time_factor_list 0.00128507614136
time_toposort 0.00311398506165
validate_time 4.60147857666e-05
callback_time 0.00174236297607
0.004569s - ('local_dot_to_dot22', 'TopoOptimizer', 0) - 0.000s
TopoOptimizer
nb_node (start, end, changed) (81, 81, 5)
init io_toposort 0.00139284133911
loop time 0.00312399864197
callback_time 0.00172805786133
0.002283s - ('local_dot22_to_dot22scalar', 'TopoOptimizer', 2) - 0.000s
TopoOptimizer
nb_node (start, end, changed) (80, 80, 0)
init io_toposort 0.00171804428101
loop time 0.000502109527588
callback_time 0.0
0.002257s - ('local_gemm to_gemv', 'EquilibriumOptimizer', 3) - 0.000s
EquilibriumOptimizer local_gemm_to_gemv
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time 0.002s for 1 passes
nb nodes (start, end, max) 80 80 80
time io_toposort 0.001s
time in local optimizers 0.000s
time in global optimizers 0.000s
0 - 0.002s 0 (0.000s in global opts, 0.001ls io_toposort) - 80,
—nodes -
0.002227s - ('use_c_blas', 'TopoOptimizer', 4) - 0.000s
TopoOptimizer
nb_node (start, end, changed) (80, 80, 0)
init io_toposort 0.0014750957489
loop time 0.00068998336792
callback_time 0.0
0.001632s - ('use_scipy_ger', 'TopoOptimizer', 5) - 0.000s
TopoOptimizer
nb_node (start, end, changed) (80, 80, 0)
init io_toposort 0.00138401985168
loop time 0.000202178955078
callback_time 0.0
0.031740s - ('specialize', 'EquilibriumOptimizer', 9) - 0.000s
EquilibriumOptimizer specialize
time 0.031s for 2 passes
nb nodes (start, end, max) 80 78 80
time io_toposort 0.003s
time in local optimizers 0.022s
time in global optimizers 0.004s

0 - 0.017s 6 (0.002s in global opts, 0.001ls io_toposort) - 80 nodes -
— ('constant_folding', 2) ('local_mul_to_sqgr', 1) ('local_elemwise_alloc', 1)
—('local_div_to_inv', 1) ('local_mul_specialize', 1)
1 - 0.014s 0 (0.002s in global opts, 0.001ls io_toposort) - 78 nodes -
times - times applied - nb node created - name:
0.003s = 1 - 1 - local_mul_specialize
0.002s — 1 - 2 - local_elemwise_alloc
0.002s - 2 - 0 - constant_folding
0.001ls = 1 - 1 - local_div_to_inv
0.00ls = 1 - 1 - local_mul_to_sgr
0.01l6s - in 69 optimization that where not used (display only those
—with a runtime > 0)
0.004s - crossentropy_to_crossentropy_with_softmax_with_lbias
0.002s - local_one_minus_erf
0.002s - Elemwise{sub,no_inplace} (z, Elemwise{mul,no_inplace} (alpha_
—subject to <function <lambda> at 0x7f475e4da050>, SparseDot(x, y))) —-> Usmm

—{no_inplace} (Elemwise{neg,no_inplace} (alpha), x, vy, 2z)
0.002s - local_add_specialize

0.001ls - local_func_inv

0.001ls - local_useless_elemwise
0.001ls - local_abs_merge

0.001ls - local_track_shape_1i
0.000s - local_one_minus_erf2
0.000s - local_sum_mul_by_scalar
0.000s - local_elemwise_sub_zeros
0.000s - local_cast_cast

0.000s - local_alloc_unary
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0.000s - Elemwise{log,no_inplace} (Softmax(x)) -> <function make_out_
—pattern at 0x7£47619a8410> (x)

.000s - local_sum_div_dimshuffle

.000s - local_sum_alloc

.000s - local_dimshuffle_1lift

.000s - local_reduce_broadcastable

.000s - local_grad_log_erfc_neg

.000s - local_advanced_indexing_crossentropy_onehot

.000s - local_log_erfc
.000s - local_loglp

.000s - local_log_add

.000s - local_useless_alloc
.000s - local_neg_neg

.000s - local_neg_div_neg

O O O O O OO O oo oo

To understand this profile here is some explanation of how optimizations work:

* Optimizations are organized in an hierarchy. At the top level, there is a SeqOptimizer (Sequence
Optimizer). It contains other optimizers, and applies them in the order they were specified. Those
sub-optimizers can be of other types, but are all global optimizers.

* Each Optimizer in the hierarchy will print some stats about itself. The information that it prints
depends of the type of the optimizer.

* The SeqOptimizer will print some stats at the start:

Optimizer Profile
SeqOptimizer OPT_FAST_RUN time 1.152s for 123/50 nodes,
—before/after optimization
0.028s for fgraph.validate()
0.131s for callback
time — (name, class, index) - validate time

Then it will print, with some additional indentation, each sub-
—optimizer's profile

information. These sub-profiles are ordered by the time they,
—~took to execute,

not by their execution order.

— OPT_FAST_RUN is the name of the optimizer
— 1.152s is the total time spent in that optimizer

— 123/50 means that before this optimization, there were 123 apply node in the function graph,
and after only 50.

— 0.028s means it spent that time calls to fgraph.validate ()

— 0.131s means it spent that time for callbacks. This is a mechanism that can trigger other execu-
tion when there is a change to the FunctionGraph.

— time - (name, class, index) - validate time tells how the information for
each sub-optimizer get printed.

6.2. How to provide help 231




theano Documentation, Release 0.8.2

— All other instances of SeqOptimizer are described like this. In particular, some sub-
optimizer from OPT_FAST_RUN that are also SeqOptimizer.

* The SeqOpt imizer will print some stats at the start:

0.751816s - ('canonicalize', 'EquilibriumOptimizer', 4) - 0.004s
EquilibriumOptimizer canonicalize

time 0.751ls for 14 passes

nb nodes (start, end, max) 108 81 117

time io_toposort 0.029s

time in local optimizers 0.687s

time in global optimizers 0.010s

0 - 0.050s 27 (0.000s in global opts, 0.002s io_toposort) -
108 nodes - ('local_dimshuffle_1lift', 9) ('local_upcast_
—elemwise_constant_inputs', 5) ('local_shape_to_shape_i', 3) (
—~'"local_fill_sink', 3) ('local fill_to_alloc', 2)

1 - 0.288s 26 (0.002s in global opts, 0.002s io_toposort) -
117 nodes - ('local dimshuffle_1ift', 8) ('local_fill sink',
—4) ('constant_folding', 4) ('local_useless_elemwise', 3) (
—'"local_subtensor_make_vector', 3)

2 - 0.044s 13 (0.002s in global opts, 0.003s io_toposort) -
96 nodes - ('constant_folding', 4) ('local_dimshuffle_1lift"',
—3) ('local_fill_sink', 3) ('local_useless_elemwise', 1) (
—~'"local_fill_to_alloc', 1)

3 - 0.045s 11 (0.000s in global opts, 0.002s io_toposort) - _,
91 nodes - ('constant_folding', 3) ('local_fill_to_alloc', 2) (
—'"local_dimshuffle_1lift', 2) ('local_mul_canonizer', 2) (

— 'MergeOptimizer', 1)

4 - 0.035s 8 (0.002s in global opts, 0.002s io_toposort) -
93 nodes - ('local fill _sink', 3) ('local_dimshuffle_1lift', 2)
—('local_fill _to_alloc', 1) ('MergeOptimizer', 1) ('constant_
—~folding', 1)

5 - 0.035s 6 (0.000s in global opts, 0.002s io_toposort) -
88 nodes - ('local fill_sink', 2) ('local_dimshuffle_1lift', 2)
—('local_fill to_alloc', 1) ('local_mul_canonizer',6 1)

6 — 0.038s 10 (0.001ls in global opts, 0.002s io_toposort) -
—95 nodes - ('local_fill_sink', 3) ('local_dimshuffle_1lift"', 3)
— ('constant_folding', 2) ('local_fill to_alloc', 1) (

— 'MergeOptimizer', 1)

7 - 0.032s 5 (0.001ls in global opts, 0.002s io_toposort) -
—91 nodes - ('local_fill_sink', 3) ('MergeOptimizer', 1) (
—'local_dimshuffle_lift', 1)

8 - 0.034s 5 (0.000s in global opts, 0.002s io_toposort) -
92 nodes - ('local_ fill_sink', 3) ('MergeOptimizer', 1) (
—'local_greedy_distributor', 1)

9 - 0.031s 6 (0.001ls in global opts, 0.002s io_toposort) -,
90 nodes - ('local fill sink', 2) ('local_fill to_alloc', 1) (
— 'MergeOptimizer', 1) ('local_dimshuffle_1lift', 1) ('local_
—greedy_distributor', 1)

10 - 0.032s 5 (0.000s in global opts, 0.002s io_toposort) -
89 nodes - ('local_dimshuffle_ 1lift', 2) ('local_fill to_alloc',
—~ 1) ('MergeOptimizer', 1) ('local_fill sink', 1)

11 - 0.030s 5 (0.000s in global opts, 0.002s io_toposort) -,
88 nodes - ('local_dimshuffle 1ift', 2) ('local_fill to_alloc',
= 1) ("MergeOptimizer*, 1) (tconstant_fording*, 1)

[}

—

—

—

[}

—

—

[}

—
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12

- 0.026s 1 (0.000s in global opts, 0.003s io_toposort)

—~81 nodes -
13 - 0.031ls 0 (0.000s in global opts, 0.003s io_toposort)
—81 nodes -

—only those

('"MergeOptimizer', 1)

times - times applied - nb node created - name:

0.263s — 15 - 0 - constant_folding

0.096s - 2 - 14 - local_greedy_distributor

0.066s — 4 - 19 - local_mul_canonizer

0.046s - 28 - 57 - local_fill_sink

0.042s - 35 - 78 - local_dimshuffle_ 1lift

0.018s - 5 - 15 - local_upcast_elemwise_constant_inputs
0.010s - 11 - 4 - MergeOptimizer

0.009s = 4 - 0 - local_useless_elemwise

0.005s - 11 - 2 - local_fill to_alloc

0.004s - 3 - 6 - local_neg_to_mul

0.002s = 1 - 3 - local_lift_transpose_through_dot
0.002s - 3 - 4 - local_shape_to_shape_1i

0.002s - 2 - 4 - local_subtensor_lift

0.001ls = 3 = 0 - local_subtensor_make_vector

0.00ls = 1 - 1 - local_sum _all_to_none

0.131s - in 62 optimization that where not used (display,,

with a runtime > 0)

—

—

0.050s - local_add_canonizer
0.018s - local_mul_zero
0.016s - local_one_minus_erf
0.010s - local_func_inv
0.006s - local_0O_dot_x
0.005s - local_track_shape_i
0.004s - local_mul_switch_sink
0.004s - local_fill cut
0.004s - local_one_minus_erf?2
0.003s - local_remove_switch_const_cond
0.003s - local_cast_cast
0.002s - local_IncSubtensor_serialize
0.001ls - local_sum_div_dimshuffle
0.001ls - local_div_switch_sink
0.001ls - local_dimshuffle_no_inplace_at_canonicalize
0.001s - local_cut_useless_reduce
0.001ls - local_reduce_join
0.000s - local_sum_sum
0.000s - local_useless_alloc
0.000s - local_reshape_chain
0.000s - local_useless_subtensor
0.000s - local_reshape_lift
0.000s - local_flatten_lift
0.000s - local_useless_slice
0.000s - local_subtensor_of alloc
0.000s - local_subtensor_of_ dot
0.000s - local_subtensor_merge
— 0.751816s - ('canonicalize', 'EquilibriumOptimizer', 4) - O.

004s This line is from SeqOpt imizer, and indicates information related to a sub-optimizer
It means that this sub-optimizer took a total of .7s. Its name is 'canonicalize'. Itis an
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Tips

EquilibriumOptimizer. It was executed at index 4 by the SeqOptimizer. It spent
0.004s in the validate phase.

All other lines are from the profiler of the EquilibriumOptimizer.

An EquilibriumOptimizer does multiple passes on the Apply nodes from the graph, try-
ing to apply local and global optimizations. Conceptually, it tries to execute all global opti-
mizations, and to apply all local optimizations on all nodes in the graph. If no optimization got
applied during a pass, it stops. So it tries to find an equilibrium state where none of the opti-
mizations get applied. This is useful when we do not know a fixed order for the execution of the
optimization.

time 0.751s for 14 passes means that it took .7s and did 14 passes over the graph.

nb nodes (start, end, max) 108 81 117 means that at the start, the graph had
108 node, at the end, it had 81 and the maximum size was 117.

Then it prints some global timing information: it spent 0.029s in io_toposort, all local
optimizers took 0.687s together for all passes, and global optimizers took a total of 0.010s.

Then we print the timing for each pass, the optimization that got applied, and the number of time
they got applied. For example, in pass 0, the 1ocal_dimshuffle_1ift optimizer changed
the graph 9 time.

Then we print the time spent in each optimizer, the number of times they changed the graph and
the number of nodes they introduced in the graph.

Optimizations with that pattern local_op_lift means that a node with that op will be replaced by
another node, with the same op, but will do computation closer to the inputs of the graph. For
instance, local_op (f (x) ) getting replaced by £ (local_op (x)).

Optimization with that pattern local_op_sink is the opposite of [ift. For instance
f(local_op(x)) getting replaced by local_op (f (x)).

Local optimizers can replace any arbitrary node in the graph, not only the node it received as
input. For this, it must return a dict. The keys being nodes to replace and the values being the
corresponding replacement.

This is useful to replace a client of the node received as parameter.

Reusing outputs

WRITEME

Don’t defi

ne new Ops unless you have to

It is usually not useful to define Ops that can be easily implemented using other already existing Ops.

For exampl
function:

e, instead of writing a “sum_square_difference” Op, you should probably just write a simple
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from theano import tensor as T

def sum_square_difference(a, b):
return T.sum((a — b)**2)

Even without taking Theano’s optimizations into account, it is likely to work just as well as a custom
implementation. It also supports all data types, tensors of all dimensions as well as broadcasting, whereas a
custom implementation would probably only bother to support contiguous vectors/matrices of doubles...

Use Theano’s high order Ops when applicable

Theano provides some generic Op classes which allow you to generate a lot of Ops at a lesser effort. For
instance, Elemwise can be used to make elementwise operations easily whereas DimShuffle can be used to
make transpose-like transformations. These higher order Ops are mostly Tensor-related, as this is Theano’s
specialty.

Op Checklist

Use this list to make sure you haven’t forgotten anything when defining a new Op. It might not be exhaustive
but it covers a lot of common mistakes.

WRITEME

Unit Testing

Theano relies heavily on unit testing. Its importance cannot be stressed enough!
Unit Testing revolves around the following principles:

* ensuring correctness: making sure that your Op, Type or Optimization works in the way you intended
it to work. It is important for this testing to be as thorough as possible: test not only the obvious cases,
but more importantly the corner cases which are more likely to trigger bugs down the line.

* test all possible failure paths. This means testing that your code fails in the appropriate manner, by
raising the correct errors when in certain situations.

* sanity check: making sure that everything still runs after you’ve done your modification. If your
changes cause unit tests to start failing, it could be that you’ve changed an API on which other users
rely on. It is therefore your responsibility to either a) provide the fix or b) inform the author of your
changes and coordinate with that person to produce a fix. If this sounds like too much of a burden...
then good! APIs aren’t meant to be changed on a whim!

This page is in no way meant to replace tutorials on Python’s unittest module, for this we refer the reader to
the official documentation. We will however adress certain specificities about how unittests relate to theano.
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Unittest Primer

A unittest is a subclass of unittest.TestCase, with member functions with names that start with the
string test. For example:

import unittest

class MyTestCase (unittest.TestCase) :
def testO(self):
pass
# test passes cleanly

def testl(self):
self.assertTrue (2+2 == 5)
# raises an exception, causes test to fail

def test2(self):
assert 2+2 ==
# causes error in test (basically a failure, but counted separately)

def test2 (self):
assert 2+2 ==
# this test has the same name as a previous one,
# so this is the one that runs.

How to Run Unit Tests ?

Two options are available:

theano-nose

The easiest by far is to use theano-nose which is a command line utility that recurses through a given
directory, finds all unittests matching a specific criteria and executes them. By default, it will find & execute
tests case in test*.py files whose method name starts with ‘test’.

theano—-nose is a wrapper around nosetests. You should be able to execute it if you installed Theano
using pip, or if you ran “python setup.py develop” after the installation. If theano-nose is not found by
your shell, you will need to add Theano/bin to your PATH environment variable.

Note: In Theano versions <= 0.5, theano-nose was not included. If you are working with such a
version, you can call nosetests instead of theano—nose in all the examples below.

Running all unit tests

cd Theano/
theano—nose
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Running unit tests with standard out

theano-nose -s

Running unit tests contained in a specific .py file

theano—nose <filename>.py

Running a specific unit test

theano-nose <filename>.py:<classname>.<method_name>

Using unittest module

To launch tests cases from within python, you can also use the functionality offered by the unittest
module. The simplest thing is to run all the tests in a file using unittest.main (). Python’s built-in
unittest module uses metaclasses to know about all the unittest.TestCase classes you have created.
This call will run them all, printing ‘. for passed tests, and a stack trace for exceptions. The standard footer
code in theano’s test files is:

if name == ' main '

unittest.main ()

You can also choose to run a subset of the full test suite.

To run all the tests in one or more TestCase subclasses:

suite = unittest.TestLoader ()
suite = suite.loadTestsFromTestCase (MyTestCaseO)
suite suite.loadTestsFromTestCase (MyTestCasel)

unittest.TextTestRunner (verbosity=2) .run(suite)

To run just a single MyTestCase member test function called test0:

MyTestCase ('test0'") .debug ()

Folder Layout

“tests” directories are scattered throughout theano. Each tests subfolder is meant to contain the unittests
which validate the .py files in the parent folder.

Files containing unittests should be prefixed with the word “test”.

Optimally every python module should have a unittest file associated with it, as shown below. Unittests
testing functionality of module <module>.py should therefore be stored in tests/test_<module>.py:

Theano/theano/tensor/basic.py
Theano/theano/tensor/elemwise.py
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Theano/theano/tensor/tests/test_basic.py
Theano/theano/tensor/tests/test_elemwise.py

How to Write a Unittest

Test Cases and Methods

Unittests should be grouped “logically” into test cases, which are meant to group all unittests operating
on the same element and/or concept. Test cases are implemented as Python classes which inherit from
unittest. TestCase

Test cases contain multiple test methods. These should be prefixed with the word “test”.

Test methods should be as specific as possible and cover a particular aspect of the problem. For example,
when testing the TensorDot Op, one test method could check for validity, while another could verify that the
proper errors are raised when inputs have invalid dimensions.

Test method names should be as explicit as possible, so that users can see at first glance, what functionality
is being tested and what tests need to be added.

Example:

import unittest

class TestTensorDot (unittest.TestCase) :
def test_validity(self):
# do stuff

def test_invalid_dims (self) :
# do more stuff

Test cases can define a special setUp method, which will get called before each test method is executed. This
is a good place to put functionality which is shared amongst all test methods in the test case (i.e initializing
data, parameters, seeding random number generators — more on this later)

import unittest

class TestTensorDot (unittest.TestCase) :
def setUp(self):
# data which will be used 1in various test methods
self.avals = numpy.array ([[1,5,3]1,02,4,1]11)
self.bvals = numpy.array([[2,3,1,81,1[4,2,1,11,11,4,8,511)

Similarly, test cases can define a tearDown method, which will be implicitely called at the end of each test
method.
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Checking for correctness

When checking for correctness of mathematical expressions, the user should preferably compare theano’s
output to the equivalent numpy implementation.

Example:

class TestTensorDot (unittest.TestCase) :
def setUp(self):

def test_validity(self):
a = T.dmatrix('a')
b = T.dmatrix('b")

c = T.dot (a, b)

f = theano.function([a, bl, I[c])

cmp = f(self.avals, self.bvals) == numpy.dot (self.avals, self.bvals)
self.assertTrue (numpy.all (cmp))

Avoid hard-coding variables, as in the following case:

self.assertTrue (numpy.all (f(self.avals, self.bvals) == numpy.array([[25, 25
—30, 281, [21, 18, 14, 2511)))

o

This makes the test case less manageable and forces the user to update the variables each time the input is
changed or possibly when the module being tested changes (after a bug fix for example). It also constrains
the test case to specific input/output data pairs. The section on random values covers why this might not be
such a good idea.

Here is a list of useful functions, as defined by TestCase:
* checking the state of boolean variables: assert, assertTrue, assertFalse
* checking for (in)equality constraints: assertEqual, assertNotEqual

* checking for (in)equality constraints up to a given precision (very useful in theano): assertAlmostE-
qual, assertNotAlmostEqual

Checking for errors

On top of verifying that your code provides the correct output, it is equally important to test that it fails in
the appropriate manner, raising the appropriate exceptions, etc. Silent failures are deadly, as they can go
unnoticed for a long time and a hard to detect “after-the-fact”.

Example:

import unittest
class TestTensorDot (unittest.TestCase) :

def test_3D_dot_fail(self):
def func() :
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a = T.TensorType('float64d', (False,False,False)) # create 3d_
—~tensor
b = T.dmatrix ()
c = T.dot(a,b) # we expect this to fail
# above should fail as dot operates on 2D tensors only
self.assertRaises (TypeError, func)

Useful function, as defined by TestCase:

¢ assertRaises

Test Cases and Theano Modes

When compiling theano functions or modules, a mode parameter can be given to specify which linker and
optimizer to use.

Example:

from theano import function

f = function([a,b], [c],mode="FAST_RUN")

Whenever possible, unit tests should omit this parameter. Leaving out the mode will ensure that unit tests
use the default mode. This default mode is set to the configuration variable config.mode, which defaults
to ‘FAST_RUN’, and can be set by various mechanisms (see config).

In particular, the enviromnment variable THEANO_FLAGS allows the user to easily switch the mode in
which unittests are run. For example to run all tests in all modes from a BASH script, type this:

'mode=FAST_COMPILE' theano-nose
'mode=FAST_RUN' theano-nose
'mode=DebugMode' theano-nose

LAGS
THEANO_FLAG!
THEANO_FLAG

THEANO_F S
S
S

Using Random Values in Test Cases

numpy.random is often used in unit tests to initialize large data structures, for use as inputs to the function
or module being tested. When doing this, it is imperative that the random number generator be seeded at the
be beginning of each unit test. This will ensure that unittest behaviour is consistent from one execution to
another (i.e always pass or always fail).

Instead of using numpy . random. seed to do this, we encourage users to do the following:

from theano.tests import unittest_tools

class TestTensorDot (unittest.TestCase):
def setUp(self):
unittest_tools.seed_rng()
# OR ... call with an explicit seed
unittest_tools.seed_rng(234234) #use only 1if really necessary!
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The behaviour of seed_rng is as follows:
 If an explicit seed is given, it will be used for seeding numpy’s rng.
e If not, it will use config.unittests.rseed (its default value is 666).

* If config.unittests.rseed is set to “random”, it will seed the rng with None, which is equivalent to
seeding with a random seed.

The main advantage of using unittest_tools.seed_rng is that it allows us to change the seed used in the
unitests, without having to manually edit all the files. For example, this allows the nightly build to run
theano-nose repeatedly, changing the seed on every run (hence achieving a higher confidence that the vari-
ables are correct), while still making sure unittests are deterministic.

Users who prefer their unittests to be random (when run on their local machine) can simply set config.
unittests.rseedto ‘random’ (see config).

Similarly, to provide a seed to numpy.random.RandomState, simply use:

import numpy

rng = numpy.random.RandomState (unittest_tools.fetch_seed())

# OR providing an explicit seed

rng = numpy.random.RandomState (unittest_tools.fetch_seed(1231)) #again not,
—recommended

Note that the ability to change the seed from one nosetest to another, is incompatible with the method of
hard-coding the baseline variables (against which we compare the theano outputs). These must then be
determined “algorithmically”. Although this represents more work, the test suite will be better because of
it.

Creating an Op UnitTest

A few tools have been developed to help automate the development of unitests for Theano Ops.

Validating the Gradient

The verify_grad function can be used to validate that the grad function of your Op is properly im-
plemented. verify_grad is based on the Finite Difference Method where the derivative of function f at
point x is approximated as:

of fla+4) - fz—A)

9r ~ limaso 2A

verify_grad performs the following steps:

* approximates the gradient numerically using the Finite Difference Method
* calculate the gradient using the symbolic expression provided in the grad function
* compares the two values. The tests passes if they are equal to within a certain tolerance.

Here is the prototype for the verify_grad function.
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def verify_grad(fun, pt, n_tests=2, rng=None, eps=1.0e-7, abs_tol=0.0001, rel_
—to0l=0.0001) :

verify_grad raises an Exception if the difference between the analytic gradient and numerical gradient
(computed through the Finite Difference Method) of a random projection of the fun’s output to a scalar
exceeds both the given absolute and relative tolerances.

The parameters are as follows:

* fun: a Python function that takes Theano variables as inputs, and returns a Theano variable. For
instance, an Op instance with a single output is such a function. It can also be a Python function that
calls an op with some of its inputs being fixed to specific values, or that combine multiple ops.

* pt: the list of numpy.ndarrays to use as input values
e n_tests: number of times to run the test

* rng: random number generator used to generate a random vector u, we check the gradient of
sum(u*fn) at pt

* eps: stepsize used in the Finite Difference Method
* abs_tol: absolute tolerance used as threshold for gradient comparison
* rel_tol: relative tolerance used as threshold for gradient comparison

In the general case, you can define fun as you want, as long as it takes as inputs Theano symbolic variables
and returns a sinble Theano symbolic variable:

def test_verify_ exprgrad() :
def fun(x,y,z):

return (x + tensor.cos(y)) / (4 x z)xx2
x_val = numpy.asarray ([[1], [1.1], [1.21])
y_val = numpy.asarray([0.1, 0.2])
z_val = numpy.asarray (2)
rng = numpy.random.RandomState (42)

tensor.verify_grad(fun, [x_val, y_val, z_val], rng=rng)

Here is an example showing how to use verify_grad on an Op instance:

def test_flatten_outdimNone () :
# Testing gradient w.r.t. all inputs of an op (in this example the op
# being used is Flatten(), which takes a single input).
a_val = numpy.asarray([[0,1,2],[3,4,5]], dtype='floated")
rng = numpy.random.RandomState (42)
tensor.verify_grad(tensor.Flatten(), [a_vall, rng=rng)

Here is another example, showing how to verify the gradient w.r.t. a subset of an Op’s inputs. This is useful
in particular when the gradient w.r.t. some of the inputs cannot be computed by finite difference (e.g. for
discrete inputs), which would cause verify_grad to crash.

242 Chapter 6. Help!




theano Documentation, Release 0.8.2

def test_crossentropy_softmax_grad() :

op = tensor.nnet.crossentropy_softmax_argmax_lhot_with_bias

def op_with_fixed_ y_idx(x, b):
# Input 'y_idx' of this Op takes integer values, so we fix them
# to some constant array.
# Although this op has multiple outputs, we can return only one.
# Here, we return the first output only.
return op(x, b, y_idx=numpy.asarray ([0, 2]))[0]

x_val = numpy.asarray([[-1, O, 11, [3, 2, 1]1], dtype='floated")
b_val = numpy.asarray([l, 2, 3], dtype='float64d")

rng = numpy.random.RandomState (42)

tensor.verify_grad(op_with_ fixed_y_idx, [x_val, b_vall], rng=rng)

Note: Although verify_gradisdefinedin theano.tensor.basic, unittests should use the version
of verify_grad defined in theano.tests.unittest_tools. This is simply a wrapper function
which takes care of seeding the random number generator appropriately before calling theano.tensor.
basic.verify_grad

makeTester and makeBroadcastTester

Most Op unittests perform the same function. All such tests must verify that the op generates the proper
output, that the gradient is valid, that the Op fails in known/expected ways. Because so much of this is com-
mon, two helper functions exists to make your lives easier: makeTester and makeBroadcastTester
(defined in module theano.tensor.tests.test_basic).

Here is an example of makeTester generating testcases for the Dot product op:

from numpy import dot
from numpy.random import rand

from theano.tensor.tests.test_basic import makeTester

DotTester = makeTester (name = 'DotTester',
op = dot,
expected = lambda x, y: numpy.dot (x, V),
checks = {},

good = dict (correctl = (rand(5, 7), rand(7, 5)),
correct2 = (rand(5, 7), rand(7, 9)),
correct3 = (rand(5, 7), rand(7))),

bad_build = dict (),
bad_runtime = dict (badl (rand (5, 7), rand(5, 7)),
bad2 = (rand (5, 7), rand(8, 3)

grad = dict())

In the above example, we provide a name and a reference to the op we want to test. We then provide in the
expected field, a function which makeTester can use to compute the correct values. The following
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five parameters are dictionaries which contain:

* checks: dictionary of validation functions (dictionary key is a description of what each function
does). Each function accepts two parameters and performs some sort of validation check on each
op-input/op-output value pairs. If the function returns False, an Exception is raised containing the
check’s description.

* good: contains valid input values, for which the output should match the expected output. Unittest
will fail if this is not the case.

* bad_build: invalid parameters which should generate an Exception when attempting to build the graph
(call to make_node should fail). Fails unless an Exception is raised.

* bad_runtime: invalid parameters which should generate an Exception at runtime, when trying to com-
pute the actual output values (call to perform should fail). Fails unless an Exception is raised.

* grad: dictionary containing input values which will be used in the call to verify_grad

makeBroadcastTester is a wrapper function for makeTester. If an inplace=True parameter is
passed to it, it will take care of adding an entry to the checks dictionary. This check will ensure that inputs
and outputs are equal, after the Op’s perform function has been applied.

Extending Theano: FAQ and Troubleshooting

| wrote a new Op/Type, and weird stuff is happening...

First, check the Op’s contract and the Type’s contract and make sure you’re following the rules. Then try
running your program in Using DebugMode. DebugMode might catch something that you’re not seeing.

| wrote a new optimization, but it’s not getting used...

Remember that you have to register optimizations with the The optimization database (optdb) for them to
get used by the normal modes like FAST_COMPILE, FAST_RUN, and DebugMode.

| wrote a new optimization, and it changed my results even though I'm pretty sure it is
correct.

First, check the Op’s contract and make sure you’re following the rules. Then try running your program in
Using DebugMode. DebugMode might catch something that you’re not seeing.

6.2.6 Developer Start Guide
Contributing

You want to contribute to Theano? That is great! This page explain our workflow and some resource for
doing so.
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Looking for an idea for a first contribution? Check the github issues with a label easy fix. They are
good starter. It is recommanded that you write on the issue you want to work on it. This help make sure it is
up to date and see if nobody else is working on it. Also, we can sometimes provides more information about
it. There is also the label NeedSomeoneToFinish that is interesting to check. The difficulty level is variable.

Resources

See Community for a list of Theano resources. The following groups/mailing-lists are especially useful to
Theano contributors: theano-dev, theano-buildbot, and theano-github.

To get up to speed, you’ll need to

* Learn some non-basic Python to understand what’s going on in some of the trickier files (like ten-
SOr.pYy).

* Go through the NumPy documentation.
* Learn to write reStructuredText for Sphinx.

¢ Learn about how unittest and nose work

Requirements for Quality Contributions

* All the code should be properly tested.

* The code should be compatible with Python 2.6 and above, as well as Python 3.3 and above (using six
if needed).

All the code should respect the PEP8 Code Style Guide.

* The docstrings of all the classes and functions should respect the PEP257 rules and follow the Numpy
docstring standard.

Each point will be referred to more in detail in the following.

Unit tests

When you submit a pull request, your changes will automatically be tested via Travis-CI. This will post the
results of the tests with a little icon next to your commit. A yellow circle means the tests are running. A red
X means the tests failed and a green circle means the tests passed.

Just because the tests run automatically does not mean you shouldn’t run them yourself to make sure every-
thing is all right. You can run only the portion you are modifying to go faster and have travis to make sure
there are no global impacts.

Also, if you are changing GPU code, travis doesn’t test that, because there are no GPUs on the test nodes.
To run the test suite with the default options, you can follow the instructions of Testing your installation.

Each night we execute all the unit tests automatically, with several sets of options. The result is sent by
email to the theano-buildbot mailing list.
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For more detail, see The nightly build/tests process.

To run all the tests with the same configuration as the buildbot, run this script:

theano/misc/do_nightly_build

This script accepts arguments that it forwards to nosetests. You can run only some tests or enable pdb by
giving the equivalent nosetests parameters.

Setting up your Editor for PEP8

Here are instructions for Vim and Emacs. If you have similar instructions for other text editors or IDE, please
let us know and we will update this documentation.

Vim

Detection of warnings and errors is done by the pep8 script (or flake8, that also checks for other things, like
syntax errors). Syntax highlighting and general integration into Vim is done by the Syntastic plugin for Vim.

To setup VIM:

1. Install flake8 (if not already installed) with:

pip install flakeS8

Note: You can use easy_install instead of pip, and pep8 instead of £1lake8 if you prefer.
The important thing is that the f1ake8 or pep8 executable ends up in your SPATH.

2. Install vundle with:

git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/
—Vundle.vim

3. Edit ~/ .vimrc and add the lines:

set nocompatible " be iMproved, required
filetype off " required

" set the runtime path to include Vundle and initialize
set rtp+=~/.vim/bundle/Vundle.vim

call vundleifbegin ()

Plugin 'gmarik/Vundle.vim' " let Vundle manage Vundle (required!)
Plugin 'scrooloose/syntastic'
Plugin 'jimf/vim-pep8-text-width'

call vundle#end ()
" Syntastic settings

" You can run checkers explicitly by calling :SyntasticCheck
—<Cchecker
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let g:syntastic_python_checkers = ['flake8'] "use one of the,
—following checkers:

" flake8, pyflakes,
—pylint, python (native checker)
let g:syntastic_enable_highlighting = 1 "highlight errors and_

—swarnings

let g:syntastic_style_error_symbol = ">>" "error symbol

let g:syntastic_warning_symbol = ">>" "warning symbol

let g:syntastic_check_on_open = 1

let g:syntastic_auto_jump = 0 "do not jump to errors when_,
—~detected

4. Openanew vimandrun :PluginInstall to automatically install the plugins. When the installa-
tion is done, close the installation “window” with : g. From now on Vim will check for PEPS errors
and highlight them whenever a file is saved.

A few useful commands

* Open the list of errors: : 1open, that can be abbreviated in : 1op (denoted : lop [en]).

Close that list: : 1cl [ose].
e Nexterror: : lne[xt].
e Previous error: : 1p[revious].
Once you fix errors, messages and highlighting will still appear in the fixed file until you save it again.

We can also configure the ~/.vimrc to make it easier to work with Syntastic. For instance, to add a
summary in the status bar, you can add:

set statusline+=%{SyntasticStatuslineFlag() }

To bind F2 and F3 to navigate to previous and next error, you can add:

map <F2> :lprevious<CR>
map <F3> :lnext<CR>

You can prefix those by autocmd FileType python if you want these bindings to work only on
Python files.

Emacs

There is an excellent system to configure emacs for Python: emacs-for-python. It gathers many emacs
config into one, and modifies them to behave together nicely. You can use it to check for pep8 compliance
and for Python syntax errors.

To install it on Linux, you can do like this:
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cd
git clone https://github.com/gabrielelanaro/emacs-for-python.git ~/.emacs.d/
—emacs—for-python

Then in your ~/ . emacs file, add this:

;; Mandatory

(load-file "~/.emacs.d/emacs-for-python/epy-init.el")

(add-to-1list 'load-path "~/.emacs.d/emacs—for-python/") ,;,; tell where to load,
—the various files

;; Each of them enables different parts of the system.

;; Only the first two are needed for pep8, syntax check.

(require 'epy-setup) ;; It will setup other loads, it is required!
(require 'epy-python) ,;,; If you want the python facilities [optionall]
(require 'epy-completion) ,;,; If you want the autocompletion settings_

— [optional]

(require 'epy-editing) ,;; For configurations related to editing [optionall]
;; [newer version of emacs-for-python]

(require 'epy-nose) ;; For shortcut to call nosetests [optional]

;; Define f10 to previous error
;; Define fl1l to next error
(require 'epy-bindings) ;,; For my suggested keybindings [optional]

;7 Some shortcut that do not collide with gnome-terminal,
;; otherwise, "epy-bindings" define f10 and fll for them.
(global-set—-key [f2] 'flymake-goto-prev-error)
(global-set—-key [£3] 'flymake—-goto-next-error)

;7 Next two lines are the checks to do. You can add more if you wish.
(epy—setup-checker "pyflakes %f") ,;; For python syntax check
(epy—setup-checker "pep8 -r %f") ,;; For pep8 check

Note: The script highlights problematic lines. This can make part of the line not readable depending on the
background. To replace the line highlight by an underline, add this to your emacs configuration file:

;; Make lines readable when there is an warning [optional] (custom-set-faces ‘(flymake-errline ((((class
color)) (runderline “red”)))) ‘(flymake-warnline ((((class color)) (:underline “yellow”)))))

Documentation and docstrings

* The documentation and the API documentation are generated using Sphinx.

* The documentation should be written in reStructuredText and the docstrings of all the classes and
functions should respect the PEP257 rules and follow the Numpy docstring standard.

* Split the docstrings in sections, according to the Allowed docstring sections in Napoleon
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* To cross-reference other objects (e.g. reference other classes or methods) in the docstrings, use the
cross-referencing objects syntax. :py can be omitted, see e.g. this stackoverflow answer.

* See Documentation Documentation AKA Meta-Documentation, for some information on how to gen-
erate the documentation.

A Docstring Example

Here is an example on how to add a docstring to a class.

import theano

class DoubleOp (theano.Op) :

mmrn

Double each element of a tensor.

Parameters

x : tensor
Input tensor

Returns

tensor

a tensor of the same shape and dtype as the input with all
values doubled.

See Also

:class: ~theano.tensor.elemwise.Elemwise : You can use this to replace

this example. Just execute 'x % 2  with x being a Theano variable.
versionadded:: 0.6

mmn

This is how it will show up for files that we auto-list in the library documentation:

class theano.misc.doubleop.DoubleOp (use_c_code="tusr/bin/g++")
Double each element of a tensor.

Parameters x (tensor) — Input tensor

Returns a tensor of the same shape and dtype as the input with all values doubled.

Return type tensor
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Notes

this is a test note
See also:

Elemwise : You can use this to replace this example. Just execute x * 2 with X being a Theano
variable.

New in version 0.6.

Installation and configuration

To obtain developer access: register with GitHub and create a fork of Theano.

This will create your own Theano project on GitHub, referred later as “YourProfile/Theano”, or “origin”,
from which you will be able to contribute to the original Theano/Theano, also called “central”.

Create a local copy

Clone your fork locally with

git clone git@github.com:YOUR_GITHUB_LOGIN/Theano.git

For this URL to work, you must set your public ssh keys inside your github account setting.
From your local repository, your own fork on GitHub will be called “origin”.

Then, add a reference to the original (“central”’) Theano repository with

git remote add central git://github.com/Theano/Theano.git

You can choose another name than “central” to reference Theano/Theano (for instance, NumPy uses “up-
stream”), but this documentation will stick to “central.”

You can then test your installation of Theano by following the steps of 7Testing your installation.

Using your local copy

To update your library to the latest revision, you should have a local branch that tracks central/master. You
can add one (named “trunk’ here) with:

git fetch central
git branch trunk central/master

Once you have such a branch, in order to update it, do:

git checkout trunk
git pull
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Keep in mind that this branch should be “read-only”: if you want to patch Theano, you should work in
another branch, like described in the Development Workflow section below.

Configure Git

On your local machine, you need to configure git with basic informations:

git config —--global user.email you@yourdomain.example.com
git config —--global user.name "Your Name Comes Here"

You can also instruct git to use color in diff. For this, you need to add those lines in the file ~/.gitconfig

[color]
branch = auto
diff = auto
interactive = auto
status = auto

Development Workflow

Start a new local branch

When working on a new feature in your own fork, start from an up-to-date copy of the master branch (the
principal one) of the central repository (Theano/Theano on GitHub):

git fetch central
git checkout -b my_shiny_feature central/master

Note: This last line is a shortcut for:

git branch my_shiny_feature central/master
git checkout my_shiny_ feature

Submit your changes to the central repository

Once your code is ready for others to review, you need to commit all the changes and then push your branch
to your github fork first:

git commit —-a -m "your message here"

git push -u origin my_shiny_feature

Then, go to your fork’s github page on the github website, select your feature branch and hit the “Pull
Request” button in the top right corner. This will signal the maintainers that you wish to submit your
changes for inclusion in central/master. If you don’t get any feedback, bug us on the theano-dev mailing list.
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Address reviewer comments

Your pull request will be reviewed by members of the core development team. If your branch is not directly
accepted, the reviewers will use GitHub’s system to add “notes”, either general (on the entire commit), or
“line notes”, relative to a particular line of code. In order to have the pull request accepted, you may have to
answer the reviewer’s questions, you can do that on GitHub.

You may also have to edit your code to address their concerns. Some of the usual requests include fixing
typos in comments, adding or correcting comments, adding unit tests in the test suite. In order to do that,
you should continue your edits in the same branch you used (in this example, “my_shiny_feature”). For
instance, if you changed your working branch, you should first:

git checkout my_shiny_feature

Then, edit your code, and test it appropriately (see Requirements for Quality Contributions below), and push
it again to your GitHub fork, like the first time (except the —u option is only needed the first time):

git push origin my_shiny_feature

The pull request to the central repository will then be automatically updated by GitHub. However, the
reviewers will not be automatically notified of your revision, so it is advised to reply to the comments on
GitHub, to let them know that you have submitted a fix.

More Advanced Git Usage
You can find information and tips in the numpy development page. Here are a few.
Cleaning up branches

When your pull request has been merged, you can delete the branch from your GitHub fork’s list of branches.
This is useful to avoid having too many branches staying there. Deleting this remote branch is achieved with:

git push origin :my_shiny_feature

This lines pushes to the “origin” repository (your fork of Theano on GitHub), into the branch
“my_shiny_feature”, an empty content (that’s why there is nothing before the colon), effectively remov-
ing it.

The branch will still be present in your local clone of the repository. If you want to delete it from there, too,
you can run:

git branch -d my_shiny_feature

Amending a submitted pull request

If you want to fix a commit already submitted within a pull request (e.g. to fix a small typo), before the pull
request is accepted, you can do it like this to keep history clean:
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git checkout my_shiny_feature
git commit —--amend
git push origin my_shiny_feature:my_shiny_feature

Do not abuse that command, and please use it only when there are only small issues to be taken care of.
Otherwise, it becomes difficult to match the comments made by reviewers with the new modifications. In
the general case, you should stick with the approach described above.

Cleaning up history

Sometimes you may have commits in your feature branch that are not needed in the final pull request. There
is a page that talks about this. In summary:

* Commits to the trunk should be a lot cleaner than commits to your feature branch; not just for ease of
reviewing but also because intermediate commits can break blame (the bisecting tool).

* git merge —squash will put all of the commits from your feature branch into one commit.

* There are other tools that are useful if your branch is too big for one squash.

Add another distant repository

To collaborate with another user on some feature he is developing, and that is not ready for inclusion in
central, the easiest way is to use a branch of their Theano fork (usually on GitHub).

Just like we added Theano/Theano as a remote repository, named “central”, you can add (on your local
machine) a reference to their fork as a new remote repository. REPO_NAME is the name you choose to
name this fork, and GIT_REPO_PATH is the URL of the fork in question.

git remote add REPO_NAME GIT_REPO_PATH

Then, you can create a new local branch (LOCAL_BRANCH_NAME) based on a specific branch (RE-
MOTE_BRANCH_NAME) from the remote repository (REPO_NAME):

git checkout -b LOCAL_BRANCH_NAME REPO_NAME/REMOTE_BRANCH_NAME

Other tools that can help you

 cProfile: time profiler that work at function level.

* Yep: A module for profiling compiled extensions.

* autopep8: A tool that automatically formats Python code to conform to the PEP 8 style guide.
e line_profiler: Line-by-line profiler.

* memory_profiler: memory profiler

* runsnake: Gui for cProfile(time profiler) and Meliae(memory profiler)
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* Guppy: Supports object and heap memory sizing, profiling and debugging.
* hub: A tool that adds github commands to the git command line.

* git pull-requests: Another tool for git/github command line.

6.2.7 Optimizations

Theano applies many kinds of graph optimizations, with different objectives:

* simplifying and standardizing the form of the expression graph (e.g. merge, add canonicaliza-
tion ),

* reducing the maximum memory footprint (e.g. inplace_elemwise),
* increasing execution speed (e.g. constant folding).

The optimizations are listed in roughly chronological order. The table below gives a quick summary of the
optimizations included in the default modes. The descriptions are brief and point to further reading.

If you would like to add an additional optimization, refer to Graph optimization in the guide to extending
Theano.

Note: This list is partial.

The print_summary method allows several OpDBs and optimizers to list the executed optimizations. This
makes it possible to have an up-to-date list.

python -c ‘import theano; theano.compile.FAST_RUN.optimizer.print_summary()’

python -c ‘import theano; theano.compile. FAST_COMPILE.optimizer.print_summary()’
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Optimization FAST_RUN | FAST_COMPILE | Stabilization
merge X
constant folding X

shape promotion

fill cut

inc_subtensor srlz.

reshape_chain

const. elimination

add canonical.

mul canonical.

dot22
sparse_dot

sum_scalar_mul

neg_neg

neg_div_neg

add specialize

mul specialize

pow specialize

inplace_setsubtensor

gemm

inplace_elemwise

inplace_random

elemwise fusion
GPU transfer
local_log_softmax

R R R R R R R R R R R R e R A R A R R R E R R R R R R R N B N B B ol Bl

local_remove_all_assert

merge A simple optimization in which redundant Apply nodes are combined. For example, in
function ([x,y], [(x+y)=*2, (x+y)=3]) the merge optimization will ensure that x and
y are only added once.

This optimization is very useful because it frees users to write highly redundant mathematical code.
Theano will make sure to compute just what is necessary.

See MergeOptimizer.

constant folding When all the inputs to an expression are constant, then the expression can be pre-
computed at compile-time.

See opt .constant_folding()

shape promotion Theano often knows how to infer the shape of an output from the shape of its inputs.
Without this optimization, it would otherwise have to compute things (e.g. 1og (x) ) just to find out
the shape of it!

See opt .local_shape_lift_x* ()

fill cat Fill(a,b) means to make a tensor of the shape of a full of the value . Often when fills are used
with elementwise operations (e.g. f) they are un-necessary: * £ (fill(a,b), c) -> f(b, c)
*f(fill(a, b), fill(c, d), e) —> fill(a, fill(c, f£(b, d, e)))
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See opt.local_fill_cut(),opt.local_fill_sink ()

inc_subtensor serialization Incrementing a small subregion of a large tensor can be done quickly using
an inplace operation, but if two increments are being done on the same large tensor, then only one of
them can be done inplace. This optimization reorders such graphs so that all increments can be done
inplace.

inc_subensor (a,b,idx) + inc_subtensor (a,c,idx) —>
inc_subtensor (inc_subtensor (a,b, idx), c, 1dx)

See local_IncSubtensor_serialize ()

reshape_chain This optimizes graphs like reshape (reshape (x, shapel), shape2) ->
reshape (x, shape?2)

See local_reshape_chain ()

constant elimination Many constants indicate special cases, such as pow (x, 1) -> x. Theano recog-
nizes many of these special cases.

See local_mul_specialize (), local_mul_specialize (),:func:local_mul_specialize

add canonicalization Rearrange expressions of additions and subtractions to a canonical form:
(a+b+c+.)—(z+z+y+...)

See Canonizer, local_add_canonizer
mul canonicalization Rearrange expressions of multiplication and division to a canonical form:

axbxcx...

Zk T kY k...
See Canonizer, local_mul_canonizer

dot22 This simple optimization replaces dot(matrix, matrix) with a special dof22 op that only works for
matrix multiplication. This op is implemented with a call to GEMM, and sometimes replaced entirely
by the gemm optimization.

See local_dot_to_dot22 ()

sparse_dot Theano has a sparse matrix multiplication algorithm that is faster in many cases than scipy’s
(for dense matrix output). This optimization swaps scipy’s algorithm for ours.

See local structured_dot ()

sum_scalar_ mul  This optimizes graphs like sum(scalar » tensor) -> scalar *
sum (tensor)

See local_sum_mul_by_scalar ()
neg _neg Composition of two negatives can be cancelled out.
See local_neg_neg()
neg_div_neg Matching negatives in both the numerator and denominator can both be removed.

See local_neg_div_neg()
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add specialization This optimization simplifies expressions involving the addition of zero.
See local_add_specialize()

mul specialization Several special cases of mul() exist, and this optimization tries to recognize them. Some
examples include: * mul (x, x) > x**2 *mul (x,0) -> zeros_like (x) *mul (x, -1) ->
neg (x)

See local_mul_specialize ()

pow specialization Several special cases of pow() exist, and this optimization tries to recognize them.
Some examples include: * pow (x,2) ->x**2 ¥ pow (x, 0) ->ones_like (x) *pow(x, -0.
5) ->inv(sqgrt (x))

See local_pow_specialize ()

inplace_setsubtensor In order to be a pure Op, setsubtensor must copy its entire input, and modify just
the subtensor in question (possibly a single element). It is much more efficient to modify that element
inplace.

See local_inplace_setsubtensor ()

gemm Numerical libraries such as MKL and ATLAS implement the BLAS-level-3 interface, and provide
a function GEMM that implements Z < oA - B + 57, for matrices A, B and Z, and scalars «;, 3.

This optimization tries to rearrange a variety of linear algebra expressions into one or more instances
of this motif, and replace them each with a single Gemm Op.

See GemmOptimizer

inplace_elemwise When one of the inputs to an elementwise expression has the same type and shape as
the output, and is no longer needed for computation after the elemwise expression is evaluated, then
we can reuse the storage of the input to store the output.

See insert_inplace_optimizer ()

inplace_random Typically when a graph uses random numbers, the RandomState is stored in a shared
variable, used once per call and, updated after each function call. In this common case, it makes sense
to update the random number generator in-place.

See random_make_inplace ()

elemwise fusion This optimization compresses subgraphs of computationally cheap elementwise opera-
tions into a single Op that does the whole job in a single pass over the inputs (like loop fusion). This
is a win when transfer from main memory to the CPU (or from graphics memory to the GPU) is a
bottleneck.

See FusionOptimizer

GPU transfer The current strategy for choosing which expressions to evaluate on the CPU and which to
evaluate on the GPU is a greedy one. There are a number of Ops *TODO* with GPU implementations
and whenever we find a graph copying data from GPU to CPU in order to evaluate an expression that
could have been evaluated on the GPU, we substitute the GPU version of that Op for the CPU version.
Likewise if we are copying the output of a Op with a GPU implementation to the GPU, then we
substitute the GPU version for the CPU version. In this way, if all goes well, this procedure will result
in a graph with the following form:
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1. copy non-shared inputs to GPU
2. carry out most/all computations on the GPU
3. copy output back to CPU

When using a GPU, shared () will default to GPU storage for ‘float32’ ndarray arguments, and
these shared variables act as seeds for the greedy algorithm.

See theano.sandbox.cuda.opt.* ().

local_log_softmax This is a stabilization optimization. It can happen due to rounding errors that the

softmax probability of one value gets to 0. Taking the log of 0 would generate -inf that will probably
generate NaN later. We return a closer answer.

local_remove_all_assert This is an unsafe optimization. For the fastest possible Theano, this optimization

can be enabled by setting opt imizer_including=local_remove_all_assert which will
remove all assertions in the graph for checking user inputs are valid. Use this optimization if you are
sure everthing is valid in your graph.

See unsafe_optimization

6.2.8 APl Documentation

This documentation covers Theano module-wise. This is suited to finding the Types and Ops that you can
use to build and compile expression graphs.

compile — Transforming Expression Graphs to Functions

shared - defines theano.shared

class theano.compile.sharedvalue.SharedVariable

Variable with Storage that is shared between functions that it appears in. These variables are meant to
be created by registered shared constructors (see shared_constructor ()).

The user-friendly constructor is shared ()

value
Read/write access to the [non-symbolic] value/data associated with this SharedVariable.

Changes to this value will be visible to all functions using this Shared Variable.
__init__ (self, name, type, value, strict, container=None)
Parameters
* name (None or str)- The name for this variable.
* type — The Type for this Variable.

e value — A value to associate with this variable (a new container will be cre-
ated).
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* strict — True -> assignments to self.value will not be casted or copied,
so they must have the correct type or an exception will be raised.

e container — The container to use for this variable. This should instead of the
value parameter. Using both is an error.

container
A container to use for this Shared Variable when it is an implicit function parameter.

Type class:Container

theano.compile.sharedvalue.shared (value, name=None, strict=False, al-

low_downcast=None, **kwargs)
Return a SharedVariable Variable, initialized with a copy or reference of value.

This function iterates over constructor functions to find a suitable SharedVariable subclass. The
suitable one is the first constructor that accept the given value. See the documentation of
shared constructor () for the definition of a contructor function.

This function is meant as a convenient default. If you want to use a specific shared variable construc-
tor, consider calling it directly.

theano.shared is a shortcut to this function.
theano.compile.sharedvalue.constructors

A list of shared variable constructors that will be tried in reverse order.

Notes

By passing kwargs, you effectively limit the set of potential constructors to those that can accept those
kwargs.

Some shared variable have borrow as extra kwargs. See for details.

Some shared variable have broadcastable as extra kwargs. As shared variable shapes can change,
all dimensions default to not being broadcastable, even if value has a shape of 1 along some dimen-
sion. This parameter allows you to create for example a row or column 2d tensor.

theano.compile.sharedvalue.shared constructor (cfor)
Append ctor to the list of shared constructors (see shared()).

Each registered constructor ct or will be called like this:

ctor (value, name=name, strict=strict, *xkwargs)

If it do not support given value, it must raise a TypeError.

function - defines theano.function
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Guide

This module provides function (), commonly accessed as theano.function, the interface for compiling
graphs into callable objects.

You’ve already seen example usage in the basic tutorial... something like this:

>>>
>>>
>>>
>>>

import theano

x = theano.tensor.dscalar()
f = theano.function([x], 2*x)
f(4)

array (8.0)

The idea here is that we’ve compiled the symbolic graph (2*x) into a function that can be called on a
number and will do some computations.

The behaviour of function can be controlled in several ways, such as Tn, Out, mode, updates, and
givens. These are covered in the tutorial examples and tutorial on modes.

Reference

class theano.compile. function.In

A class for attaching information to function inputs.

variable
A variable in an expression graph to use as a compiled-function parameter

name
A string to identify an argument for this parameter in keyword arguments.

value
The default value to use at call-time (can also be a Container where the function will find a value
at call-time.)

update
An expression which indicates updates to the Value after each function call.

mutable
True means the compiled-function is allowed to modify this argument. False means it is not
allowed.

borrow
True indicates that a reference to internal storage may be returned, and that the caller is aware
that subsequent function evaluations might overwrite this memory.

strict
If False, a function argument may be copied or cast to match the type required by the parameter
variable. If True, a function argument must exactly match the type required by variable.

allow_downcast
True indicates that the value you pass for this input can be silently downcasted to fit the right
type, which may lose precision. (Only applies when strict is False.)
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autoname
True means that the name is set to variable.name.

implicit
True means that the input is implicit in the sense that the user is not allowed to provide a value
for it. Requires ‘value’ to be set. False means that the user can provide a value for this input.

__dinit_  (self, variable, name=None, value=None, update=None, mutable=None,
strict=False, allow_downcast=None, autoname=True, implicit=None, bor-

___ row=None, shared=Fualse)
Initialize attributes from arguments.

class theano.compile. function.Out
A class for attaching information to function outputs

variable
A variable in an expression graph to use as a compiled-function output

borrow
True indicates that a reference to internal storage may be returned, and that the caller is aware
that subsequent function evaluations might overwrite this memory.

__dinit__ (variable, borrow=False)
Initialize attributes from arguments.

theano.compile. function.function (inputs, outputs, mode=None, updates=None,
givens=None, no_default_updates=False,
accept_inplace=False, name=None, re-
build_strict=True, allow_input_downcast=None,

profile=None, on_unused_input="raise’)
Return a callable object that will calculate outputs from inputs.

Parameters

* params (list of either Variable or In instances, but
not shared variables.) — the returned Function instance will have
parameters for these variables.

* outputs (list of Variables or Out instances) - expressions to
compute.

* mode (None, string or Mode instance.) — compilation mode

* updates (iterable over pairs (shared variable,
new_expression) List, tuple or dict.) — expressions for new
SharedVariable values

* givens (iterable over pairs (Varl, Var2) of Variables.
List, tuple or dict. The Varl and Var2 in each pair
must have the same Type.) — specific substitutions to make in the
computation graph (Var2 replaces Varl).

* no_default_updates (either bool or list of Variables)-if
True, do not perform any automatic update on Variables. If False (default), per-

6.2. How to provide help 261



theano Documentation, Release 0.8.2

form them all. Else, perform automatic updates on all Variables that are neither in
updates norin no_default_updates.

* name — an optional name for this function. The profile mode will print the time
spent in this function.

* rebuild_strict — True (Default) is the safer and better tested setting, in
which case givens must substitute new variables with the same Type as the vari-
ables they replace. False is a you-better-know-what-you-are-doing setting, that
permits givens to replace variables with new variables of any Type. The conse-
quence of changing a Type is that all results depending on that variable may have
a different Type too (the graph is rebuilt from inputs to outputs). If one of the new
types does not make sense for one of the Ops in the graph, an Exception will be
raised.

* allow_input_downcast (Boolean or None)- True means that the val-
ues passed as inputs when calling the function can be silently downcasted to fit the
dtype of the corresponding Variable, which may lose precision. False means that
it will only be cast to a more general, or precise, type. None (default) is almost
like False, but allows downcasting of Python float scalars to floatX.

e profile (None, True, or ProfileStats instance) - accumulate
profiling information into a given ProfileStats instance. If argument is True then a
new ProfileStats instance will be used. This profiling object will be available via
self.profile.

* on_unused_input — What to do if a variable in the ‘inputs’ list is not used in
the graph. Possible values are ‘raise’, ‘warn’, and ‘ignore’.

Return type Function instance

Returns a callable object that will compute the outputs (given the inputs) and update the
implicit function arguments according to the updates.

Inputs can be given as variables or In instances. In instances also have a variable, but they attach
some extra information about how call-time arguments corresponding to that variable should be used.
Similarly, Out instances can attach information about how output variables should be returned.

The default is typically ‘FAST_RUN’ but this can be changed in theano.config. The mode argument
controls the sort of optimizations that will be applied to the graph, and the way the optimized graph
will be evaluated.

After each function evaluation, the updates mechanism can replace the value of any SharedVariable
[implicit] inputs with new values computed from the expressions in the updates list. An exception
will be raised if you give two update expressions for the same SharedVariable input (that doesn’t
make sense).

If a SharedVariable is not given an update expression, but has a default_update member
containing an expression, this expression will be used as the update expression for this variable.
Passing no_default_updates=True to function disables this behavior entirely, passing
no_default_updates=[sharedvarl, sharedvar2] disables it for the mentioned vari-
ables.
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Regarding givens: Be careful to make sure that these substitutions are independent, because behaviour
when Varl of one pair appears in the graph leading to Var2 in another expression is undefined (e.g.
with {a: x, b: a + 1}). Replacements specified with givens are different from optimiza-
tions in that Var2 is not expected to be equivalent to Varl.

theano.compile. function.function_dump (filename, inputs, outputs=None,
mode=None, updates=None, givens=None,
no_default_updates=False, ac-
cept_inplace=False, name=None,
rebuild_strict=True, al-
low_input_downcast=None, pro-
file=None, on_unused_input=None,

extra_tag_to_remove=None)
This is helpful to make a reproducable case for problem during Theano compilation.

Ex:
replace theano.function(...) by theano.function_dump( ‘filename.pkl’, ...).

If you see this, you where probably asked to use this function to help debug a particular case dur-
ing the compilation of a Theano function. function_dump allows to easily reproduce your compi-
lation without asking any code. It pickle all the objects and parameters needed to reproduce a call
to theano.function(). This include shared variables and there values. If you do not want that, you
can set to replace shared variables values by zeros by calling set_value(...) on them before calling
Sfunction_dump.

To load such a dump and do the compilation:

>>> from six.moves import cPickle

>>> import theano

>>> d = cPickle.load (open ("func_dump.bin", "rb"))
>>> f = theano.function (**d)

Note: The parameter extra_tag_to_remove, is passed to the StripPickler used. To pickle graph made
by Blocks, it must be: [’annotations’, ‘replacement_of’, ‘aggregation_scheme’, ‘roles’]

class theano.compile. function_module.Function (fn, input_storage, output_storage,
indices, outputs, defaults, un-
pack_single, return_none, out-

put_keys, maker)
Type of the functions returned by theano.function or theano.FunctionMaker.create.

Function is the callable object that does computation. It has the storage of inputs and outputs, performs
the packing and unpacking of inputs and return values. It implements the square-bracket indexing so
that you can look up the value of a symbolic node.

Functions are copyable via { { {fn.copy()}}} and {{{copy.copy(fn)}}}. When a function is copied, this
instance is duplicated. Contrast with self.maker (instance of FunctionMaker) that is shared between
copies. The meaning of copying a function is that the containers and their current values will all be
duplicated. This requires that mutable inputs be copied, whereas immutable inputs may be shared
between copies.

A Function instance is hashable, on the basis of its memory address (its id).

6.2. How to provide help 263



theano Documentation, Release 0.8.2

A Function instance is only equal to itself.

A Function instance may be serialized using the pickle or cPickle modules. This will save all default
inputs, the graph, and WRITEME to the pickle file.

A Function instance have a t rust_input field that default to False. When True, we don’t do extra
check of the input to give better error message. In some case, python code will still return the good
results if you pass a python or numpy scalar instead of a numpy tensor. C code should raise an error
if you pass an object of the wrong type.

finder
inv_finder

copy (share_memory=False, swap=None, delete_updates=False, name=None, profile=None)
Copy this function. Copied function will have separated maker and fgraph with original function.
User can choose whether to separate storage by changing the share_memory arguments.

Parameters

* share_memory (boolean) — When True, two function share intermediate
storages(storages except input and output storages). Otherwise two functions
will only share partial storages and same maker. If two functions share memory
and allow_gc=False, this will increase executing speed and save memory.

* swap (dict) — Dictionary that map old SharedVariables to new SharedVari-
ables. Default is None. NOTE: The shared variable swap in only done in the
new returned function, not in the user graph.

* delete_updates (boolean) — If True, Copied function will not have up-
dates.

* name (string) — If provided, will be the name of the new Function. Other-
wise, it will be old + ” copy”

* profile - as theano.function profile parameter
Returns
Return type Copied theano.Function

free ()
When allow_gc = False, clear the Variables in storage_map

Note: *TODO* Freshen up this old documentation

io - defines theano.function [TODO]

Inputs

The inputs argument to theano. function is a list, containing the Variable instances for which
values will be specified at the time of the function call. But inputs can be more than just Variables. In
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instances let us attach properties to Variables to tell function more about how to use them.

class theano.compile.io.In (object)

__init__ (variable, name=None, value=None, update=None, mutable=False, strict=False,

autoname=True, implicit=None)
variable: a Variable instance. This will be assigned a value before running the function, not

computed from its owner.

name: Any type. (If autoname_input==True, defaults to variable.name). If name
is a valid Python identifier, this input can be set by kwarg, and its value can be accessed by
self.<name>. The default value is None.

3

value: literal or Container. The initial/default value for this input. If update is
None*‘‘, this input acts just like an argument with a default value in Python. If update is
not None, changes to this value will “stick around”, whether due to an update or a user’s
explicit action.

update: Variable instance. This expression Variable will replace value after each function
call. The default value is None, indicating that no update is to be done.

mutable: Bool (requires value). If True, permit the compiled function to modify the Python
object being used as the default value. The default value is False.

strict: Bool (default: False ). True means that the value you pass for this input must have
exactly the right type. Otherwise, it may be cast automatically to the proper type.

autoname: Bool. If set to True, if name is None and the Variable has a name, it will be
taken as the input’s name. If autoname is set to False, the name is the exact value passed as
the name parameter (possibly None).

implicit: Bool or None (default: None) True: This input is implicit in the sense that the
user is not allowed to provide a value for it. Requires value to be set.

False: The user can provide a value for this input. Be careful when value is a container,
because providing an input value will overwrite the content of this container.

None: Automatically choose between True or False depending on the situation. It will
be set to False in all cases except if value is a container (so that there is less risk of
accidentally overwriting its content without being aware of it).

Value: initial and default values

A non-None value argument makes an In() instance an optional parameter of the compiled function. For
example, in the following code we are defining an arity-2 function inc.

>>>
>>>

import theano.tensor as T
from theano import function

>>> from theano.compile.io import In

>>> u, x, s = T.scalars('u', 'x', 's'")

>>> inc = function([u, In(x, value=3), In(s, update=(s+xxu), value=10.0)]1, [])
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Since we provided a value for s and x, we can call it with just a value for u like this:

>>> inc(5) # update s with 10+3#5
[]

>>> print (inc[s])

25.0

The effect of this call is to increment the storage associated to s in inc by 15.

If we pass two arguments to inc, then we override the value associated to x, but only for this one function
call.

>>> inc (3, 4) # update s with 25 + 3%*4

[]

>>> print (inc[s])

37.0

>>> print (inc[x]) # the override value of 4 was only temporary
3.0

If we pass three arguments to inc, then we override the value associated with x and u and s. Since s‘s
value is updated on every call, the old value of s will be ignored and then replaced.

>>> inc (3, 4, 7) # update s with 7 + 3%*4
[]

>>> print (inc([s])

19.0

We can also assign to inc [s] directly:

>>> inc[s] = 10
>>> inc[s]
array (10.0)

Input Argument Restrictions

The following restrictions apply to the inputs to theano. function:

* Every input list element must be a valid In instance, or must be upgradable to a valid In instance.
See the shortcut rules below.

* The same restrictions apply as in Python function definitions: default arguments and keyword argu-
ments must come at the end of the list. Un-named mandatory arguments must come at the beginning
of the list.

* Names have to be unique within an input list. If multiple inputs have the same name, then the function
will raise an exception. [*Which exception?]

* Two In instances may not name the same Variable. I.e. you cannot give the same parameter multiple
times.

If no name is specified explicitly for an In instance, then its name will be taken from the Variable’s name.
Note that this feature can cause harmless-looking input lists to not satisfy the two conditions above. In such
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cases, Inputs should be named explicitly to avoid problems such as duplicate names, and named arguments
preceding unnamed ones. This automatic naming feature can be disabled by instantiating an In instance
explicitly with the aut oname flag set to False.

Access to function values and containers

For each input, theano. function will create a Container if value was not already a Container
(orif implicit was False). At the time of a function call, each of these containers must be filled with
a value. Each input (but especially ones with a default value or an update expression) may have a value
between calls. The function interface defines a way to get at both the current value associated with an input,
as well as the container which will contain all future values:

* The value property accesses the current values. It is both readable and writable, but assignments
(writes) may be implemented by an internal copy and/or casts.

* The container property accesses the corresponding container. This property accesses is a read-
only dictionary-like interface. It is useful for fetching the container associated with a particular input
to share containers between functions, or to have a sort of pointer to an always up-to-date value.

Both value and container properties provide dictionary-like access based on three types of keys:
* integer keys: you can look up a value/container by its position in the input list;
* name keys: you can look up a value/container by its name;
* Variable keys: you can look up a value/container by the Variable it corresponds to.

In addition to these access mechanisms, there is an even more convenient method to access values by index-
ing a Function directly by typing £n [<name>], as in the examples above.

To show some examples of these access methods...

>>> from theano import tensor as T, function

>>> a, b, ¢ = T.scalars('xys') # set the internal names of graph nodes
>>> # Note that the name of c¢ is 's', not 'c'!

>>> fn = function([a, b, ((c, c+atb), 10.0)1, [1)

>>> # the value associated with ¢ is accessible in 3 ways

>>> fn['s'] is fn.value[c]

True

>>> fn['s'] is fn.container[c].value
True

>>> fn['s']
array (10.0)
>>> fn(l, 2)
[]

>>> fn['s']
array (13.0)
>>> fn['s']
>>> fn (1, 0)
[]

= 99.0
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>>> fn['s']
array (100.0)

>>> fn.value([c] 99.0

>>> fn(1,0)

[]

>>> fn['s']

array (100.0)

>>> fn['s'] == fn.value[c]

True

>>> fn['s'] == fn.container[c].value
True

Input Shortcuts

Every element of the inputs list will be upgraded to an In instance if necessary.
* a Variable instance r will be upgraded like In (r)
* atuple (name, r) willbe In(r, name=name)
e atuple (r, val) willbe In(r, value=value, autoname=True)
e atuple ((r,up), val) willbe In(r, value=value, update=up, autoname=True)
* atuple (name, r, val) willbe In(r, name=name, value=value)

* atuple (name, (r,up), val) willbe In(r, name=name, value=val, update=up,
autoname=True)

Example:

>>> import theano
>>> from theano import tensor as T
>>> from theano.compile.io import In

>>> x = T.scalar()

>>> vy T.scalar('y")

>>> z = T.scalar('z")

>>> w = T.scalar('w'")

>>> fn = theano.function (inputs=[x, vy, In(z, value=42), ((w, wtx), 0)],
outputs=x + y + z)

>>> # the first two arguments are required and the last two are

>>> # optional and initialized to 42 and 0, respectively.

>>> # The last argqument, w, 1s updated with w + x each time the

>>> # function is called.

>>> fn (1) # illegal because there are two required arguments

Traceback (most recent call last):

TypeError: Missing required input: y
>>> fn(l, 2) # legal, z is 42, w goes 0 -> 1 (because w <- w + Xx)
array (45.0)
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>>> fn(l, y=2) # legal, z is 42, w goes 1 —-> 2
array (45.0)
>>> fn(x=1, y=2) # illegal because x was not named

Traceback (most recent call last):

TypeError: Unknown input or state: x. The function has 3 named inputs (y, 2z,
—w), and 1 unnamed input which thus cannot be accessed through keyword
—argument (use 'name=...' in a variable's constructor to give it a name).
>>> fn(l, 2, 3) # legal, z is 3, w goes 2 -> 3

array (6.0)

>>> fn(l, z=3, y=2) # legal, z is 3, w goes 3 —-> 4

array (6.0)

>>> fn(l, 2, w=400) # legal, z is 42 again, w goes 400 —-> 401
array (45.0)

>>> fn(l, 2) # legal, z is 42, w goes 401 —> 402
array (45.0)

In the example above, z has value 42 when no value is explicitly given. This default value is potentially
used at every function invocation, because z has no update or storage associated with it.

Outputs

The outputs argument to function can be one of
* None, or
e a Variable or Out instance, or
* a list of Variables or Out instances.

An Out instance is a structure that lets us attach options to individual output Variable instances, similarly
to how In lets us attach options to individual input Variable instances.

Out(variable, borrow=False) returns an Out instance:
* borrow

If True, a reference to function’s internal storage is OK. A value returned for this output might be
clobbered by running the function again, but the function might be faster.

Default: False

If asingle Variable or Out instance is given as argument, then the compiled function will return a single
value.

If a list of Variable or Out instances is given as argument, then the compiled function will return a list
of their values.

>>> import numpy
>>> from theano.compile.io import Out
>>> x, y, s = T.matrices('xys")

6.2. How to provide help 269




theano Documentation, Release 0.8.2

>>> # print a list of 2 ndarrays

>>> fnl = theano.function([x], [x+x, Out ((x+x).T, borrow=True)])
>>> fnl (numpy.asarray ([[1,01,[0,111))
l[array ([[ 2., 0.7,

[ 0., 2.11), array([[ 2., 0.1,

[ 0., 2.11)]

>>> # print a list of 1 ndarray

>>> fn2 = theano.function([x], [x+x])
>>> fn2 (numpy.asarray ([[1,0]1,10,111))
[array ([[ 2., 0.7,

[ 0., 2.11)]1

>>> # print an ndarray

>>> fn3 = theano.function([x], outputs=x+x)
>>> fn3 (numpy.asarray ([[1,0],[0,111))
array ([[ 2., 0.],

[ 0., 2.11)

ops — Some Common Ops and extra Ops stuff

This file contains auxiliary Ops, used during the compilation phase and Ops building class
(FromFunctionOp) and decorator (as_op ()) that help make new Ops more rapidly.

class theano.compile.ops.FromFunctionOp (fn, itypes, otypes, infer_shape)
Build a basic Theano Op around a function.

Since the resulting Op is very basic and is missing most of the optional functionalities, some opti-
mizations may not apply. If you want to help, you can supply an infer_shape function that computes
the shapes of the output given the shapes of the inputs.

Also the gradient is undefined in the resulting op and Theano will raise an error if you attempt to get
the gradient of a graph containing this op.

class theano.compile.ops.OutputGuard (use_c_code="/ust/bin/g++’)
This op is used only internally by Theano.

Only the AddDestroyHandler optimizer tries to insert them in the graph.

This Op is declared as destructive while it is not destroying anything. It returns a view. This is used
to prevent destruction of the output variables of a Theano function.

There is a mechanism in Theano that should prevent this, but the use of OutputGuard adds a safeguard:
it may be possible for some optimization run before the add_destroy_handler phase to bypass this
mechanism, by making in-place optimizations.

TODO: find a current full explanation.

class theano.compile.ops.Rebroadcast (*axis)
Change the input’s broadcastable fields in some predetermined way.

See also:
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unbroadcast, addbroadcast, patternbroadcast

Notes

Works inplace and works for CudaNdarrayType.

Example

Rebroadcast((0, True), (1, False))(x) would make x broadcastable in axis 0 and not broadcastable in
axis 1.

class theano.compile.ops.Shape (use_c_code="/usr/bin/g++")
L{Op} to return the shape of a matrix.

Notes

Non-differentiable.

class theano.compile.ops.Shape_i (i)
L{Op} to return the shape of a matrix.

Notes

Non-differentiable.

class theano.compile.ops.SpecifyShape (use_c_code="/usr/bin/g++")
L{Op} that puts into the graph the user-provided shape.

In the case where this op stays in the final graph, we assert the shape. For this the output of this op
must be used in the graph. This is not the case most of the time if we only take the shape of the output.
Maybe there are other optimizations that will mess with this.

Notes

Maybe in the future we will never do the assert!
We currently don’t support specifying partial shape information.
TODO : test this op with sparse and cuda ndarray. Do C code for them too.

class theano.compile.ops.ViewOp (use_c_code="/usr/bin/g++")
Returns an inplace view of the input. Used internally by Theano.

theano.compile.ops.as_op (itypes, otypes, infer_shape=None)
Decorator that converts a function into a basic Theano op that will call the supplied function as its
implementation.

It takes an optional infer_shape parameter that should be a callable with this signature:
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def infer_shape(node, input_shapes): ... return output_shapes

Here input_shapes and output_shapes are lists of tuples that represent the shape of the corresponding
inputs/outputs.

This should not be used when performance is a concern since the very basic nature of the resulting
Op may interfere with certain graph optimizations.

Examples

@as_op(itypes=[theano.tensor.fmatrix, theano.tensor.fmatrix], otypes=[theano.tensor.fmatrix])
def numpy_dot(a, b): return numpy.dot(a, b)

theano.compile.ops.register deep_copy_op_c_code (typ, code, version=())
Tell DeepCopyOp how to generate C code for a Theano Type.

Parameters

* typ (Theano type)— It must be the Theano class itself and not an instance of
the class.

* code (C code)—Deep copies the Theano type ‘typ’. Use %(iname)s and %(on-
ame)s for the input and output C variable names respectively.

* version — A number indicating the version of the code, for cache.

theano.compile.ops.register_ rebroadcast_c_code (typ, code, version=())
Tell Rebroadcast how to generate C code for a Theano Type.

typ [Theano type] It must be the Theano class itself and not an instance of the class.

code [C code] That checks if the dimension %(axis)s is of shape 1 for the Theano type ‘typ’. Use
% (iname)s and %(oname)s for the input and output C variable names respectively, and %(axis)s
for the axis that we need to check. This code is put in a loop for all axes.

version A number indicating the version of the code, for cache.

theano.compile.ops.register_ shape_c_code (type, code, version=())
Tell Shape Op how to generate C code for a Theano Type.

Parameters

* typ (Theano type) - It must be the Theano class itself and not an instance of
the class.

* code (C code) — Returns a vector representing the shape for the Theano type
‘typ’. Use %(iname)s and %(oname)s for the input and output C variable names
respectively.

* version — A number indicating the version of the code, for cache.

theano.compile.ops.register shape i_c_code (typ, code, check_input, version=())
Tell Shape_i how to generate C code for a Theano Type.

Parameters
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* typ (Theano type)— It must be the Theano class itself and not an instance of
the class.

* code (C code) — Gets the shape of dimensions %(i)s for the Theano type ‘typ’.
Use %(iname)s and %(oname)s for the input and output C variable names respec-
tively.

* version — A number indicating the version of the code, for cache.

theano.compile.ops.register specify_ shape_c_code (typ, code, version=(),

c_support_code_apply=None)
Tell SpecifyShape how to generate C code for a Theano Type.

Parameters

* typ (Theano type) - It must be the Theano class itself and not an instance of
the class.

* code (C code) — Checks the shape and returns a view for the Theano type
‘typ’. Use %(iname)s and %(oname)s for the input and output C variable names
respectively. %(shape)s is the vector of shape of %(iname)s. Check that its length
is good.

* version — A number indicating the version of the code, for cache.

* c_support_code_apply — Extra code.

theano.compile.ops.register view_op_c_code (type, code, version=())

Tell ViewOp how to generate C code for a Theano Type.
Parameters

* type (Theano type) — It must be the Theano class itself and not an instance
of the class.

* code (C code) — Returns a view for the Theano type ‘type’. Use %(iname)s
and %(oname)s for the input and output C variable names respectively.

* version — A number indicating the version of the code, for cache.

theano.compile.ops.shape_i (var, i, fgraph=None)

Equivalent of var.shape[i], but apply if possible the shape feature optimization.

This is useful in optimization that need to get the shape. This remove the need of the following
shape_feature optimization that convert it. So this speed up optimization and remove Equilibrium
max iteration problems.

Parameters
* var — The variable we want to take the shape of.
* i — The shape dimensions we want

» fgraph (optional) — If var.fgraph do not exist, the fgraph that have the
shape_feature to introduce var in to get the optimized shape.
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mode — controlling compilation

Guide

The mode parameter to t heano. function () controls how the inputs-to-outputs graph is transformed
into a callable object.

Theano defines the following modes by name:
* 'FAST_COMPILE"': Apply just a few graph optimizations and only use Python implementations.
* '"FAST_RUN': Apply all optimizations, and use C implementations where possible.
* 'DebugMode': A mode for debugging. See DebugMode for details.
* 'ProfileMode': Deprecated, use the Theano flag config.profile.
* 'NanGuardMode: Nan detector
* 'DEBUG_MODE ': Deprecated. Use the string DebugMode.
* 'PROFILE_MODE': Deprecated, use the Theano flag config.profile.

The default mode is typically FAST_RUN, but it can be controlled via the configuration variable config.
mode, which can be overridden by passing the keyword argument to t heano. function ().

Todo

For a finer level of control over which optimizations are applied, and whether C or Python implementations
are used, read.... what exactly?

Reference

theano.compile.mode.FAST_COMPILE
theano.compile.mode.FAST_RUN

class theano.compile.mode .Mode (object)
Compilation is controlled by two attributes: the optimizer controls how an expression graph will be
transformed; the linker controls how the optimized expression graph will be evaluated.

optimizer
An optimizer instance.

linker
A 1inker instance.

including ( *tags)
Return a new Mode instance like this one, but with an optimizer modified by including the given
tags.
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excluding ( *fags)
Return a new Mode instance like this one, but with an optimizer modified by excluding the given
tags.

requiring (*tags)
Return a new Mode instance like this one, but with an optimizer modified by requiring the given
tags.

debugmode

Guide

The DebugMode evaluation mode includes a number of self-checks and assertions that can help to diagnose
several kinds of programmer errors that can lead to incorrect output.

It is much slower to evaluate a function or method with DebugMode than it would be in 'FAST_RUN' or
even 'FAST_COMPILE'. We recommended you use DebugMode during development, but not when you
launch 1000 processes on a cluster.

DebugMode can be used as follows:

import theano
from theano import tensor
from theano.compile.debugmode import DebugMode

x = tensor.dscalar('x")

f = theano.function([x], 10*x, mode='DebugMode')

It can also be used by setting the configuration variable config.mode. It can also be used by passing a
DebugMode instance as the mode, as in

>>> f = theano.function([x], 10%x, mode=DebugMode (check_c_code=False))

If any problem is detected, DebugMode will raise an exception according to what went wrong, either at
call time (£ (5)) or compile time ( £ = theano.function(x, 10xx, mode='DebugMode')).
These exceptions should not be ignored; talk to your local Theano guru or email the users list if you cannot
make the exception go away.

Some kinds of errors can only be detected for certain input value combinations. In the example above, there
is no way to guarantee that a future call to say, £ (-1) won’t cause a problem. DebugMode is not a silver
bullet.

If you instantiate DebugMode using the constructor compile.DebugMode rather than the keyword
DebugMode you can configure its behaviour via constructor arguments.

6.2. How to provide help 275




theano Documentation, Release 0.8.2

Reference

class theano.compile.debugmode . DebugMode (Mode)

Evaluation Mode that detects internal theano errors.
This mode catches several kinds of internal error:

*inconsistent outputs when calling the same Op twice with the same inputs, for instance if c_code
and perform implementations, are inconsistent, or in case of incorrect handling of output mem-
ory (see BadThunkOutput)

ea variable replacing another when their runtime values don’t match. This is a symptom of an
incorrect optimization step, or faulty Op implementation (raises BadOptimization)

sstochastic optimization ordering (raises StochasticOrder)
*incomplete destroy_map specification (raises BadDestroyMap)

ean op that returns an illegal value not matching the output Variable Type (raises InvalidValueEr-
ror)

Each of these exceptions inherits from the more generic DebugModeError.

If there are no internal errors, this mode behaves like FAST_RUN or FAST_COMPILE, but takes a
little longer and uses more memory.

If there are internal errors, this mode will raise an DebugModeError exception.

stability patience = config.DebugMode.patience
When checking for the stability of optimization, recompile the graph this many times. Default
10.

check_c_code = config.DebugMode.check_c
Should we evaluate (and check) the c_code implementations?

True ->yes, False ->no.
Default yes.
check_py_ code = config.DebugMode.check_ py
Should we evaluate (and check) the perform implementations?
True ->yes, False ->no.
Default yes.

check_isfinite = config.DebugMode.check_finite
Should we check for (and complain about) NaN/Inf ndarray elements?

True ->yes, False ->no.
Default yes.

require_matching_ strides = config.DebugMode.check_strides
Check for (and complain about) Ops whose python and C outputs are ndarrays with different
strides. (This can catch bugs, but is generally overly strict.)
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0 -> no check, 1 -> warn, 2 -> err.
Default warn.

__dinit__ (self, optimizer="fast_run’, stability_patience=None, check_c_code=None,
check_py_code=None, check_isfinite=None, require_matching_strides=None,

~ linker=None)
Initialize member variables.

If any of these arguments (except optimizer) is not None, it overrides the class default. The
linker arguments is not used. It is set their to allow Mode.requiring() and some other fct to work
with DebugMode too.

The keyword version of DebugMode (which you get by using mode="'DebugMode) is quite strict, and can
raise several different Exception types. There following are DebugMode exceptions you might encounter:

class theano.compile.debugmode .DebugModeError (Exception)
This is a generic error. All the other exceptions inherit from this one. This error is typically not raised
directly. However, you can use except DebugModeError: ... to catch any of the more
specific types of Exception.

class theano.compile.debugmode .BadThunkOutput (DebugModeError)
This exception means that different calls to the same Op with the same inputs did not compute
the same thing like they were supposed to. For instance, it can happen if the python (perform)
and ¢ (c_code) implementations of the Op are inconsistent (the problem might be a bug in either
perform or c_code (or both)). It can also happen if perform or c_code does not handle cor-
rectly output memory that has been preallocated (for instance, if it did not clear the memory before
accumulating into it, or if it assumed the memory layout was C-contiguous even if it is not).

class theano.compile.debugmode .BadOptimization (DebugModeError)
This exception indicates that an Optimization replaced one variable (say V1) with another one (say
V2) but at runtime, the values for V1 and V2 were different. This is something that optimizations are
not supposed to do.

It can be tricky to identify the one-true-cause of an optimization error, but this exception provides a
lot of guidance. Most of the time, the exception object will indicate which optimization was at fault.
The exception object also contains information such as a snapshot of the before/after graph where the
optimization introduced the error.

class theano.compile.debugmode .BadDestroyMap (DebugModeError)
This happens when an Op’s perform () or c_code () modifies an input that it wasn’t supposed
to. If either the perform or c_code implementation of an Op might modify any input, it has to
advertise that fact via the destroy_map attribute.

For detailed documentation on the dest roy_map attribute, see Inplace operations.

class theano.compile.debugmode .BadViewMap (DebugModeError)
This happens when an Op’s perform() or c_code() creates an alias or alias-like dependency between
an input and an output... and it didn’t warn the optimization system via the view_map attribute.

For detailed documentation on the view_map attribute, see Views.

class theano.compile.debugmode.StochasticOrder (DebugModeError)
This happens when an optimization does not perform the same graph operations in the same order
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when run several times in a row. This can happen if any steps are ordered by id (object) somehow,
such as via the default object hash function. A Stochastic optimization invalidates the pattern of work
whereby we debug in DebugMode and then run the full-size jobs in FAST_RUN.

class theano.compile.debugmode.InvalidValueError (DebugModeError)
This happens when some Op’s perform or c_code implementation computes an output that is
invalid with respect to the type of the corresponding output variable. Like if it returned a complex-
valued ndarray for a dscalar Type.

This can also be triggered when floating-point values such as NaN and Inf are introduced into the
computations. It indicates which Op created the first NaN. These floating-point values can be allowed
by passing the check_isfinite=False argument to DebugMode.

profilemode — profiling Theano functions

Guide

Note: ProfileMode is deprecated. Use config.profile instead.

To profile a Theano graph, a special mode called ProfileMode, must be passed as an argument when com-
piling your graph. Using ProfileMode is a three-step process.

Creating a ProfileMode Instance

First create a ProfileMode instance.

>>> import theano

>>> from theano import ProfileMode

>>> profmode = theano.ProfileMode (optimizer="'fast_run', linker=theano.gof.
—OpWiseCLinker ())

The ProfileMode constructor takes as input an optimizer and a linker. Which optimizer and linker to use will
depend on the application. For example, a user wanting to profile the Python implementation only, should
use the gof.PerformLinker (or “py” for short). On the other hand, a user wanting to profile his graph using
C implementations wherever possible should use the gof .OpWiseCLinker (or “clpy”).

In the same manner, modifying which optimizer is passed to ProfileMode will decide which optimizations
are applied to the graph, prior to profiling. Changing the optimizer should be especially useful when devel-
oping new graph optimizations, in order to evaluate their impact on performance. Also keep in mind that
optimizations might change the computation graph a lot, meaning that you might not recognize some of the
operations that are profiled (you did not use them explicitly but an optimizer decided to use it to improve
performance or numerical stability). If you cannot easily relate the output of ProfileMode with the computa-
tions you defined, you might want to try setting optimizer to None (but keep in mind the computations will
be slower than if they were optimized).
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Note that most users will want to use ProfileMode to optimize their graph and find where most of the
computation time is being spent. In this context, ‘fast_run’ optimizer and gof . OpWiseCLinker are the
most appropriate choices.

Compiling your Graph with ProfileMode

Once the ProfileMode instance is created, simply compile your graph as you would normally, by specifying
the mode parameter.

>>> # with functions
>>> f = theano.function([inputl, input2], [outputl], mode=profmode)

Retrieving Timing Information

Once your graph is compiled, simply run the program or operation you wish to profile, then call
profmode.print_summary (). This will provide you with the desired timing information, indicat-
ing where your graph is spending most of its time.

This is best shown through an example. Lets use the example of logistic regression. (Code for this example
is in the file benchmark/regression/regression.py.)

Compiling the module with ProfileMode and calling profmode.print_summary () generates the fol-
lowing output:

mmn

ProfileMode.print__summary ()

local time 0.0749197006226 (Time spent running thunks)
Apply-wise summary: <fraction of local_time spent at this position> (<Apply,,
—position>, <Apply Op name>)

0.069 15 _dot22

0.064 1 _dot22

0.053 0 InplaceDimShuffle{x, 0}

0.049 2 InplaceDimShuffle{1,0}

0.049 10 mul

0.049 6 Elemwise{ScalarSigmoid{output_types_preference=
—<theano.scalar.basic.transfer_type object at 0x171e650>}}[(0, 0)]

0.049 3 InplaceDimShuffle{x}

0.049 4 InplaceDimShuffle{x, x}

0.048 14 Sum{ 0}

0.047 7 sub

0.046 17 mul

0.045 9 sqr

0.045 8 Elemwise{sub}

0.045 16 Sum

0.044 18 mul

(remaining 6 Apply instances account for 0.25 of the runtime)
Op-wise summary: <fraction of local_time spent on this kind of Op> <Op name>
0.139 * mul
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0.134 * _dot22

0.092 * sub

0.085 * Elemwise{Sub{output_types_preference=<theano.scalar.basic.
—transfer_type object at 0x1779f10>}}[ (0, 0)]

0.053 * InplaceDimShuffle{x, 0}

0.049 * InplaceDimShuffle{1,0}

0.049 * Elemwise{ScalarSigmoid{output_types_ preference=<theano.
—scalar.basic.transfer_type object at 0x171e650>}}[(0, 0)]

0.049 * InplaceDimShuffle{x}

0.049 * InplaceDimShuffle{x,x}

0.048 * Sum{0}

0.045 * sSqQr

0.045 * Sum

0.043 * Sum{1}

0.042 * Elemwise{Mul {output_types preference=<theano.scalar.basic.
—transfer_type object at 0x17a0f50>}}[(0, 1)]

0.041 * Elemwise{Add{output_types_preference=<theano.scalar.basic.
—transfer._type object at 0x1736a50>}}[(0, 0)]

0.039 * Elemwise{Second{output_types_preference=<theano.scalar.

—basic.transfer_type object at 0x1736d90>}}[(0, 1)]
(remaining 0 Ops account for 0.00 of the runtime)
(#) Op is running a ¢ implementation

mmn

Note: *TODO*

The following text was recovered from a recent version of the source file... hopefully things haven’t gotten
too out-of-sync!

The first show an Apply-wise summary, the second show an Op-wise summary, the third show an type-Op-
wise summary.

The Apply-wise summary print the timing information for the worst offending Apply nodes. This corre-
sponds to individual Op applications within your graph which take the longest to execute (so if you use dot
twice, you will see two entries there).

The Op-wise summary print the execution time of all Apply nodes executing the same Op are grouped
together and the total execution time per Op is shown (so if you use dot twice, you will see only one entry
there corresponding to the sum of the time spent in each of them). If two Op have different hash value, they
will be separate.

The type-Op-wise summary group the result by type of op. So event if two Op have different hash value,
they will be merged.

Their is an hack with the Op-wise summary. Go see it if you want to know more.

The summary has two components to it. In the first section called the Apply-wise summary, timing informa-
tion is provided for the worst offending Apply nodes. This corresponds to individual Op applications within
your graph which take the longest to execute (so if you use dot twice, you will see two entries there). In
the second portion, the Op-wise summary, the execution time of all Apply nodes executing the same Op are
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grouped together and the total execution time per Op is shown (so if you use dot twice, you will see only
one entry there corresponding to the sum of the time spent in each of them).

Note that the ProfileMode also shows which Ops were running a ¢ implementation.

Developers wishing to optimize the performance of their graph should focus on the worst offending Ops and
Apply nodes — either by optimizing an implementation, providing a missing C implementation, or by writing
a graph optimization that eliminates the offending Op altogether. You should strongly consider emailing one
of our lists about your issue before spending too much time on this.

Reference

class theano.compile.profilemode.ProfileMode (Mode)

print_summary (n_apply_to_print=None, n_ops_to_print=None)
Print three summaries to stdout that show where cpu time is spent during theano function exe-
cutions (for all functions using this object instance).

Parameters

* n_apply_to_print — the number of apply nodes to print. The de-
fault 15, but can be configured via ProfileMode.n_ops_to_print in
THEANO_ _FLAGS.

* n_ops_to_print — the number of ops to print. Default 20, or but can be
configured via ProfileMode.n_apply_to_print in THEANO_ FLAGS.

Returns None

print_diff summary(self, other, n_apply to_print=None, n_ops_to_print=None) :
""" As print_summary, but print the difference on two different profile mode.
TODO: Also we don't print the Apply-wise summary as it don't work for now.
TODO: make comparaison with gpu code.

Parameters
* other — the other instance of ProfileMode that we want to be compared to.

* n_apply_to_print - the number of apply nodes to print. The de-
fault 15, but can be configured via ProfileMode.n_ops_to_print in
THEANO_FLAGS.

* n_ops_to_print - the number of ops to print. Default 20, or but can be
configured via ProfileMode.n_apply_to_print in THEANO FLAGS.

Returns None

nanguardmode
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Guide

The NanGuardMode aims to prevent the model from outputing NaNs or Infs. It has a number of self-checks,
which can help to find out which apply node is generating those incorrect outputs. It provides automatic
detection of 3 types of abnormal values: NaNs, Infs, and abnormally big values.

NanGuardMode can be used as follows:

import numpy

import theano

import theano.tensor as T

from theano.compile.nanguardmode import NanGuardMode

b
Il

T.matrix ()

w = theano.shared (numpy.random.randn (5, 7) .astype(theano.config.floatX))

T.dot (x, w)

fun = theano.function (

[x], ¥,

mode=NanGuardMode (nan_is_error=True, inf_ is_error=True, big_is_error=True)

=
Il

While using the theano function fun, it will monitor the values of each input and output variable of each
node. When abnormal values are detected, it raises an error to indicate which node yields the NaNs. For
example, if we pass the following values to fun:

infa = numpy.tile(
(numpy .asarray (100.) *% 1000000) .astype (theano.config.floatX), (3, 5))
fun (infa)

It will raise an AssertionError indicating that Inf value is detected while executing the function.

You can also set the three parameters in NanGuardMode () to indicate which kind of abnormal values to
monitor. nan_1is_error and inf_is_error has no default values, so they need to be set explicitly,
butbig_is_error is set to be True by default.

Note: NanGuardMode significantly slows down computations; only enable as needed.

Reference

class theano.compile.nanguardmode .NanGuardMode (nan_is_error=None,
inf_is_error=None,
big_is_error=None, opti-

mizer="default’, linker=None)
A Theano compilation Mode that makes the compiled function automatically detect NaNs and Infs

and detect an error if they occur.
Parameters

* nan_is_error (bool) - If True, raise an error anytime a NaN is encountered.
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* inf is_error (bool) - If True, raise an error anytime an Inf is encountered.
Note that some pylearn2 modules currently use np.inf as a default value (e.g.
mlp.max_pool) and these will cause an error if inf_is_error is True.

* big is_error (bool)-If True, raise an error when a value greater than 1e10
is encountered.

Note: We ignore the linker parameter

config — Theano Configuration

Guide

The config module contains many attributes that modify Theano’s behavior. Many of these attributes
are consulted during the import of the t heano module and many are assumed to be read-only.

As a rule, the attributes in this module should not be modified by user code.

Theano’s code comes with default values for these attributes, but you can override them from your .theanorc
file, and override those values in turn by the THEANO_FLAGS environment variable.

The order of precedence is:
1. an assignment to theano.config.<property>
2. an assignment in THEANO_FLAGS
3. an assignment in the .theanorc file (or the file indicated in THEANORC)

You can print out the current/effective configuration at any time by printing theano.config. For exam-
ple, to see a list of all active configuration variables, type this from the command-line:

python -c '"import theano; print (theano.config)' | less

Environment Variables

THEANO_FLAGS
This is a list of comma-delimited key=value pairs that control Theano’s behavior.

For example, in bash, you can override your THEANORC defaults for <myscript>.py by typing this:

THEANO_FLAGS='floatX=float32,device=gpul, lib.cnmem=1"' python <myscript>.
=Py

If a value is defined several times in THEANO_FLAGS, the right-most definition is used. So, for
instance, if THEANO_FLAGS="'device=cpu, device=gpu0", then gpu0 will be used.

THEANORC
The location[s] of the .theanorc file[s] in ConfigParser format. It defaults to SHOME/ . theanorc.
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On Windows, it defaults to SHOME/ .theanorc:SHOME/.theanorc.txt to make Windows
users’ life easier.

Here is the .theanorc equivalent to the THEANO_FLAGS in the example above:

[global]

floatX = float32
device = gpul
[1ib]

cnmem = 1

Configuration attributes that are available directly in config (e.g. config.device, config.
mode) should be defined in the [global] section. Attributes from a subsection of config (e.g.
config.lib.cnmem, config.dnn.conv.algo_fwd) should be defined in their correspond-
ing section (e.g. [nvcc], [dnn.conv]).

Multiple configuration files can be specified by separating them with °:” characters (as in $SPATH).
Multiple configuration files will be merged, with later (right-most) files taking priority over earlier
files in the case that multiple files specify values for a common configuration option. For exam-
ple, to override system-wide settings with personal ones, set THEANORC=/etc/theanorc:~/.
theanorc.

Config Attributes

The list below describes some of the more common and important flags that you might want to use. For the
complete list (including documentation), import theano and print the config variable, as in:

python -c '"import theano; print (theano.config)' | less

config.device

String value: either 'cpu', 'gpu', 'gpul', 'gpul', 'gpu2',or 'gpu3’

Default device for computations. If gpux, change the default to try to move computation to it and
to put shared variable of float32 on it. Choose the default compute device for theano graphs. Setting
this to a gpu~ string will make theano to try by default to move computation to it. Also it will make
theano put by default shared variable of float32 on it. 'gpu' lets the driver select the GPU to use,
while 'gpu?' makes Theano try to use a specific device. If we are not able to use the GPU, either
we fall back on the CPU, or an error is raised, depending on the force device flag.

This flag’s value cannot be modified during the program execution.

Do not use upper case letters, only lower case even if NVIDIA use capital letters.

config.force_device

Bool value: either True or False
Default: False

If True and device=gpux, we raise an error if we cannot use the specified device. If True
and device=cpu, we disable the GPU. If False and device=gpux, and if the specified device
cannot be used, we warn and fall back to the CPU.
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This is useful to run Theano’s tests on a computer with a GPU, but without running the GPU tests.
This flag’s value cannot be modified during the program execution.

config.init_gpu_device
String value: either ' ', 'gpu', 'gpul', 'gpul"', "gpu2',or 'gpu3'

Initialize the gpu device to use. When its value is gpu*, the theano flag device must be "cpu".
Unlike device, setting this flag to a specific GPU will not try to use this device by default, in
particular it will not move computations, nor shared variables, to the specified GPU.

This flag is useful to run GPU-specific tests on a particular GPU, instead of using the default one.
This flag’s value cannot be modified during the program execution.

config.pycuda.init
Bool value: either True or False

Default: False

If True, always initialize PyCUDA when Theano want to initialize the GPU. With PyCUDA version
2011.2.2 or earlier, PyCUDA must initialize the GPU before Theano does it. Setting this flag to True,
ensure that, but always import PyCUDA. It can be done manually by importing theano.misc.
pycuda_init before Theano initialize the GPU device. Newer version of PyCUDA (currently
only in the trunk) don’t have this restriction.

config.print_active_device
Bool value: either True or False

Default: True
Print active device at when the GPU device is initialized.

config.enable_initial driver test
Bool value: either True or False

Default: True
Tests the nvidia driver when a GPU device is initialized.

config.floatX
String value: 'float64', 'float32',or 'floatl6' (with limited support)

Default: 'float64"

This sets the default dtype returned by tensor.matrix (), tensor.vector (), and similar
functions. It also sets the default Theano bit width for arguments passed as Python floating-point
numbers.

config.warn_float64
String value: either 'ignore', 'warn', 'raise', or 'pdb'

Default: 'ignore'

When creating a TensorVariable with dtype float64, what should be done? This is useful to help find
upcast to float64 in user code.
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config.allow_gc

Bool value: either True or False
Default: True

This sets the default for the use of the Theano garbage collector for intermediate results. To use
less memory, Theano frees the intermediate results as soon as they are no longer needed. Disabling
Theano garbage collection allows Theano to reuse buffers for intermediate results between function
calls. This speeds up Theano by no longer spending time reallocating space. This gives significant
speed up on functions with many ops that are fast to execute, but this increases Theano’s memory
usage.

config.scan.allow_output_prealloc

Bool value, either True or False
Default: True

This enables, or not, an optimization in Scan in which it tries to pre-allocate memory for its outputs.
Enabling the optimization can give a significant speed up with Scan at the cost of slightly increased
memory usage.

config.scan.allow_gc

Bool value, either True or False
Default: False
Allow/disallow gc inside of Scan.

If config.allow _gcis True, but config.scan.allow_gcis False, then we will gc the
inner of scan after all iterations. This is the default.

config.openmp

Bool value: either True or False

Default: True if the environment variable OMP_NUM_THREADS!=1 or if we detect more
than 1 CPU core. Otherwise False.

Enable or not parallel computation on the CPU with OpenMP. It is the default value used when creat-
ing an Op that support it. The best is to define it via Theano configuration file or with the environment
variable THEANO_FLAGS.

config.openmp_elemwise_minsize

Positive int value, default: 200000.

This specifies the vectors minimum size for which elemwise ops use openmp, if openmp is enabled.

config.cast_policy

String value: either ' numpy+floatX"' or 'custom'
Default: 'custom'

This specifies how data types are implicitly figured out in Theano, e.g. for constants or in the
results of arithmetic operations. The ‘custom’ value corresponds to a set of custom rules origi-
nally used in Theano (which can be partially customized, see e.g. the in-code help of tensor.
NumpyAutocaster), and will be deprecated in the future. The ‘numpy-+floatX’ setting attempts
to mimic the numpy casting rules, although it prefers to use float32 numbers instead of float64 when
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config.floatX is set to ‘float32’ and the user uses data that is not explicitly typed as float64
(e.g. regular Python floats). Note that ‘numpy+floatX’ is not currently behaving exactly as planned
(it is a work-in-progress), and thus you should consider it as experimental. At the moment it behaves
differently from numpy in the following situations:

*Depending on the value of config. int_division, the resulting type of a division of inte-
ger types with the / operator may not match that of numpy.

*On mixed scalar / array operations, numpy tries to prevent the scalar from upcasting the array’s
type unless it is of a fundamentally different type. Theano does not attempt to do the same at
this point, so you should be careful that scalars may upcast arrays when they would not when
using numpy. This behavior should change in the near future.

config.int_division
String value: either 'int "', 'floatX"',or 'raise’

Default: 'int"'

Specifies what to do when one tries to compute x / y, where both x and y are of integer types
(possibly unsigned). ‘int’ means an integer is returned (as in Python 2.X), but this behavior is depre-
cated. ‘floatX’ returns a number of type given by config.floatX. ‘raise’ is the safest choice (and
will become default in a future release of Theano) and raises an error when one tries to do such an
operation, enforcing the use of the integer division operator (/ /) (if a float result is intended, either
cast one of the arguments to a float, oruse x.___truediv__ (y)).

config.mode
String value: 'Mode', 'ProfileMode' (deprecated), 'DebugMode', 'FAST_RUN',
'FAST_COMPILE'

Default: 'Mode"'

This sets the default compilation mode for theano functions. By default the mode Mode is equivalent
to FAST_RUN. See Config attribute linker and optimizer.

config.profile
Bool value: either True or False

Default: False
Do the vm/cvm linkers profile the execution time of Theano functions?
See Profiling Theano function for examples.

config.profile_memory
Bool value: either True or False

Default: False

Do the vm/cvm linkers profile the memory usage of Theano functions? It only works when pro-
file=True.

config.profile_optimizer
Bool value: either True or False

Default: False
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Do the vm/cvm linkers profile the optimization phase when compiling a Theano function? It only
works when profile=True.

config.profiling.n_apply
Positive int value, default: 20.

The number of Apply nodes to print in the profiler output

config.profiling.n_ops
Positive int value, default: 20.

The number of Ops to print in the profiler output

config.profiling.min_memory_size
Positive int value, default: 1024.

For the memory profile, do not print Apply nodes if the size of their outputs (in bytes) is lower than
this.

config.profiling.min_peak_memory
Bool value: either True or False

Default: False

Does the memory profile print the min peak memory usage? It only works when profile=True, pro-
file_memory=True

config.profiling.destination
String value: 'stderr', 'stdout ', or a name of a file to be created

Default: 'stderr’

Name of the destination file for the profiling output. The profiling output can be either directed to
stderr (default), or stdout or an arbitrary file.

config.profiling.debugprint
Bool value: either True or False

Default: False
Do a debugprint of the profiled functions

config.lib.amdlibm
Bool value: either True or False

Default: False
This makes the compilation use the amdlibm library, which is faster than the standard libm.

config.lib.cnmem
Float value: >=0

Controls the use of CNMeM (a faster CUDA memory allocator). In Theano dev version until 0.8 is
released.

The CNMeM library is included in Theano and does not need to be separately installed.
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The value represents the start size (either in MB or the fraction of total GPU memory) of the mem-
ory pool. If more memory is needed, Theano will try to obtain more, but this can cause memory
fragmentation.

*0: not enabled.
*0 < N <= 1: use this fraction of the total GPU memory (clipped to .95 for driver memory).
*> 1: use this number in megabytes (MB) of memory.

Default: 0 (but should change later)

Note: This could cause memory fragmentation. So if you have a memory error while using CNMeM,
try to allocate more memory at the start or disable it. If you try this, report your result on :ref‘theano-

3

dev’.

Note: The clipping at 95% can be bypassed by specifing the exact number of megabytes. If more
then 95% are needed, it will try automatically to get more memory. But this can cause fragmentation,
see note above.

config.linker
String value: 'c|py', 'py', 'c', 'clpy_nogc'

Default: 'c|py'

When the mode is Mode, it sets the default linker used. See Configuration Settings and Compiling
Modes for a comparison of the different linkers.

config.optimizer
String value: 'fast_run', 'merge', 'fast_compile', 'None'

Default: ' fast run'
When the mode is Mode, it sets the default optimizer used.
config.on_opt_error
String value: 'warn', 'raise', 'pdb"' or 'ignore'
Default: 'warn'

When a crash occurs while trying to apply some optimization, either warn the user and skip
this optimization (‘warn’), raise the exception (‘raise’), fall into the pdb debugger (‘pdb’)
or ignore it (‘ignore’). We suggest to never use ‘ignore’ except in tests.

If you encounter a warning, report it on theano-dev.

config.assert_no_cpu_op
String value: 'ignore' or 'warn' or 'raise' or 'pdb’

Default: "ignore'

If there is a CPU op in the computational graph, depending on its value; this flag can either raise a
warning, an exception or stop the compilation with pdb.
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config.on_shape_ error
String value: 'warn' or 'raise’

Default: 'warn'

When an exception is raised when inferring the shape of some apply node, either warn the user and
use a default value (‘warn’), or raise the exception (‘raise’).

config.warn.ignore_bug before
String value: 'None', 'al11','0.3','0.4','0.4.1','0.5','0.6"','0.7','0.8",'0.
8.1','0.8.2"

Default: '0.7"

When we fix a Theano bug that generated bad results under some circumstances, we also make Theano
raise a warning when it encounters the same circumstances again. This helps to detect if said bug had
affected your past experiments, as you only need to run your experiment again with the new version,
and you do not have to understand the Theano internal that triggered the bug. A better way to detect
this will be implemented. See this ticket.

This flag allows new users not to get warnings about old bugs, that were fixed before their first check-
out of Theano. You can set its value to the first version of Theano that you used (probably 0.3 or
higher)

'None ' means that all warnings will be displayed. 'all' means all warnings will be ignored.

It is recommended that you put a version, so that you will see future warnings. It is also recommended
you put this into your .theanorc, so this setting will always be used.

This flag’s value cannot be modified during the program execution.

config.base_compiledir
Default: On Windows: SLOCALAPPDATA\Theano if SLOCALAPPDATA is defined, otherwise and
on other systems: ~/.theano.

This directory stores the platform-dependent compilation directories.
This flag’s value cannot be modified during the program execution.

config.compiledir_ format
Default: "compiledir_% (platform)s—% (processor)s—% (python_version)s—% (python_bitwic

This is a Python format string that specifies the subdirectory of config.base_compiledir
in which to store platform-dependent compiled modules. To see a list of all available substitution
keys, run python -c "import theano; print (theano.config)", and look for com-
piledir_format.

This flag’s value cannot be modified during the program execution.

config.compiledir
Default: config.base_compiledir/config.compiledir_format

This directory stores dynamically-compiled modules for a particular platform.

This flag’s value cannot be modified during the program execution.
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config.blas.ldflags
Default: '-1blas'

Link arguments to link against a (Fortran) level-3 blas implementation. The default will test if
'—-1blas' works. If not, we will disable our C code for BLAS.

config.experimental.local_alloc_elemwise_ assert
Bool value: either True or False

Default: True
When the local_alloc_optimization is applied, add an assert to highlight shape errors.

Without such asserts this optimization could hide errors in the user code. We add the assert only if
we can’t infer that the shapes are equivalent. As such this optimization does not always introduce an
assert in the graph. Removing the assert could speed up execution.

config.cuda.root
Default: $CUDA_ROQOT or failing that, " /usr/local/cuda"

A directory with bin/, 1ib/, include/ folders containing cuda utilities.

config.dnn.enabled
String value: 'auto', 'True', 'False'

Default: "auto"

If 'auto’', automatically detect and use cuDNN if it is available. If cuDNN is unavailable, raise no
error.

If 'True', require the use of cuDNN. If cuDNN is unavailable, raise an error.
If '"False', do not use cuDNN or check if it is available.

config.dnn.conv.workmem
Deprecated, use config.dnn.conv.algo_fwd.

config.dnn.conv.workmem_bwd
Deprecated, use config.dnn.conv.algo bwd _filter and config.dnn.conv.
algo_bwd_data instead.

config.dnn.conv.algo_fwd
String  value: 'small', 'none’', 'large', 'fftY, 'fft_tiling',
'winograd', 'guess_once’, 'guess_on_shape_change', 'time_once',
'time_on_shape_change’'.

Default: 'small’

3d convolution only support 'none', 'winograd', 'guess_once',
'guess_on_shape_change', 'time_once', 'time_on_shape_change'.

config.dnn.conv.algo_bwd
Deprecated, use config.dnn.conv.algo bwd filter and config.dnn.conv.
algo_bwd_data instead.
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config.dnn.conv.algo_bwd filter
String  value: 'none', 'deterministic', 'fft', 'small', 'guess_once',
'guess_on_shape_change', 'time_once', 'time_on_shape_change'.

Default: 'none’

3d convolution only supports 'none', 'guess_once', 'guess_on_shape_change',
'time_once', 'time_on_shape_change’'.

config.dnn.conv.algo_bwd_data
String value: 'none', 'deterministic’, VEftY, 'fft_tiling',
'winograd', 'guess_once’, 'guess_on_shape_change', 'time_once',
'time_on_shape_change’.

Default: 'none"

3d convolution only support 'none', 'winograd', 'guess_once',
'guess_on_shape_change', 'time_once', 'time_on_shape_change'.

config.gcc.cxxflags
Default: ""

Extra parameters to pass to gcc when compiling. Extra include paths, library paths, configuration
options, etc.

config.cxx
Default: Full path to g++ if g++ is present. Empty string otherwise.

Indicates which C++ compiler to use. If empty, no C++ code is compiled. Theano automatically
detects whether g++ is present and disables C++ compilation when it is not. On darwin systems (Mac
OS X)), it preferably looks for clang++ and uses that if available.

We print a warning if we detect that no compiler is present. It is recommended to run with C++
compilation as Theano will be much slower otherwise.

This can be any compiler binary (full path or not) but things may break if the interface is not g++-
compatible to some degree.

config.nvcc. fastmath
Bool value, default: False

If true, this will enable fastmath (-—use-fast-math) mode for compiled cuda code which makes
div and sqrt faster at the cost of precision. This also disables support for denormal numbers. This can
cause NaN. So if you have NaN and use this flag, try to disable it.

config.optimizer_ excluding
Default: ""

A list of optimizer tags that we don’t want included in the default Mode. If multiple tags, sepa-
rate them by ‘. Ex: to remove the elemwise inplace optimizer(slow for big graph), use the flags:
optimizer_excluding:inplace_opt, where inplace_opt is the name of that optimization.

This flag’s value cannot be modified during the program execution.

config.optimizer_including
Default: ""
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A list of optimizer tags that we want included in the default Mode. If multiple tags, separate them by

This flag’s value cannot be modified during the program execution.

config.optimizer_ requiring
Default: ""

A list of optimizer tags that we require for optimizer in the default Mode. If multiple tags, separate
them by *:’.

This flag’s value cannot be modified during the program execution.

config.optimizer_ verbose
Bool value: either True or False

Default: False
When True, we print on the stdout the optimization applied.

config.nocleanup
Bool value: either True or False

Default: False

If False, source code files are removed when they are not needed anymore. This means files whose
compilation failed are deleted. Set to True to keep those files in order to debug compilation errors.

config.compile
This section contains attributes which influence the compilation of C code for ops. Due to historical
reasons many attributes outside of this section also have an influence over compilation, most notably
‘cxx’. This is not expected to change any time soon.

config.compile.timeout
Positive int value, default: compile.wait * 24

Time to wait before an unrefreshed lock is broken and stolen. This is in place to avoid manual cleanup
of locks in case a process crashed and left a lock in place.

The refresh time is automatically set to half the timeout value.

config.compile.wait
Positive int value, default: 5

Time to wait between attempts at grabbing the lock if the first attempt is not successful. The actual
time will be between compile.wait and compile.wait * 2 to avoid a crowding effect on lock.

config.DebugMode
This section contains various attributes configuring the behaviour of mode DebugMode. See directly
this section for the documentation of more configuration options.

config.DebugMode.check_preallocated_output
Default: "'

A list of kinds of preallocated memory to use as output buffers for each Op’s computations, separated
by :. Implemented modes are:
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*"initial™: initial storage present in storage map (for instance, it can happen in the inner
function of Scan),

*"previous": reuse previously-returned memory,
*"c_contiguous": newly-allocated C-contiguous memory,
*"f_ contiguous": newly-allocated Fortran-contiguous memory,
*"strided": non-contiguous memory with various stride patterns,
*"wrong_size": memory with bigger or smaller dimensions,
*"ALL": placeholder for all of the above.

In order not to test with preallocated memory, use an empty string, " ".

config.DebugMode.check_preallocated_output_ndim
Positive int value, default: 4.

When testing with “strided” preallocated output memory, test all combinations of strides over that
number of (inner-most) dimensions. You may want to reduce that number to reduce memory or time
usage, but it is advised to keep a minimum of 2.

config.DebugMode.warn_input_not_reused
Bool value, default: True

Generate a warning when the destroy_map or view_map tell that an op work inplace, but the op did
not reuse the input for its output.

config.NanGuardMode.nan_is_error
Bool value, default: True

Controls whether NanGuardMode generates an error when it sees a nan.

config.NanGuardMode.inf_ is_error
Bool value, default: True

Controls whether NanGuardMode generates an error when it sees an inf.

config.NanGuardMode.nan_is_error
Bool value, default: True

Controls whether NanGuardMode generates an error when it sees a big value (>1e10).

config.numpy
This section contains different attributes for configuring NumPy’s behaviour, described by
numpy.seterr.

config.numpy.seterr_all
String Value: 'ignore', 'warn', 'raise', 'call', 'print', 'log', 'None'

Default: "ignore'
Set the default behaviour described by numpy.seterr.

'None ' means that numpy’s default behaviour will not be changed (unless one of the other config.
numpy . seterr_* overrides it), but this behaviour can change between numpy releases.
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This flag sets the default behaviour for all kinds of floating-pont errors, and it can be overriden for
specific errors by setting one (or more) of the flags below.

This flag’s value cannot be modified during the program execution.

config.numpy.seterr_divide
String Value: 'None', 'ignore', 'warn', 'raise', 'call', 'print', 'log"

Default: 'None'

Sets numpy’s behavior for division by zero. 'None' means using the default, defined by con-
fig.numpy.seterr_all.

This flag’s value cannot be modified during the program execution.

config.numpy.seterr_over
String Value: 'None', 'ignore', 'warn', 'raise’', 'call', 'print’', 'log"

Default: 'None'

Sets numpy’s behavior for floating-point overflow. 'None' means using the default, defined by
config.numpy.seterr_all.

This flag’s value cannot be modified during the program execution.

config.numpy.seterr_under
String Value: 'None', 'ignore', 'warn', 'raise', 'call', 'print', 'log"

Default: 'None'

Sets numpy’s behavior for floating-point underflow. 'None' means using the default, defined by
config.numpy.seterr_all.

This flag’s value cannot be modified during the program execution.

config.numpy.seterr_invalid
String Value: 'None', 'ignore', 'warn', 'raise’', 'call', 'print"', 'log"
Default: 'None'

Sets numpy’s behavior for invalid floating-point operation. 'None ' means using the default, defined
by config.numpy.seterr_all.

This flag’s value cannot be modified during the program execution.

config.compute_test_value
String Value: 'off"', 'ignore', 'warn', 'raise’'.

Default: 'off"

Setting this attribute to something other than 'of £ ' activates a debugging mechanism, where Theano
executes the graph on-the-fly, as it is being built. This allows the user to spot errors early on (such as
dimension mis-match), before optimizations are applied.

Theano will execute the graph using the Constants and/or shared variables provided by the user.
Purely symbolic variables (e.g. x = T.dmatrix ()) can be augmented with test values, by writ-
ing to their 'tag.test_value' attribute (e.g. x.tag.test_value = numpy.random.
rand (5, 4)).
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When not 'off', the value of this option dictates what happens when an Op’s inputs do not provide
appropriate test values:

*'ignore' will silently skip the debug mechanism for this Op
*'warn' will raise a UserWarning and skip the debug mechanism for this Op
*'raise' will raise an Exception

config.compute_test_value_opt
As compute_test_value, but it is the value used during Theano optimization phase. Theano
user’s do not need to use this. This is to help debug shape error in Theano optimization.

config.print_test_value
Bool value, default: False

If ' True', Theano will override the __str___ method of its variables to also print the tag.test_value
when this is available.

config.reoptimize_unpickled_function
Bool value, default: False (changed in master after Theano 0.7 release)

Theano users can use the standard python pickle tools to save a compiled theano function. When
pickling, both graph before and after the optimization are saved, including shared variables. When set
to True, the graph is reoptimized when being unpickled. Otherwise, skip the graph optimization and
use directly the optimized graph.

config.exception_verbosity
String Value: 'low', "high'.

Default: 'low’

If "1ow"', the text of exceptions will generally refer to apply nodes with short names such as
'Elemwise{add_no_inplace}'. If '"high', some exceptions will also refer to apply nodes
with long descriptions like:

A. Elemwise{add_no_inplace}
B. log_likelihood_v_given_h
C. log_likelihood_h

config.cmodule.warn_no_version
Bool value, default: False

If True, will print a warning when compiling one or more Op with C code that can’t be cached because
there is no c_code_cache_version () function associated to at least one of those Ops.

config.cmodule.mac_framework_link
Bool value, default: False

If set to True, breaks certain MacOS installations with the infamous Bus Error.

config.cmodule.remove_gxx_opt
Bool value, default: False

If True, will remove the —Ox parameter passed to g++. This is useful to debug in gdb modules
compiled by Theano. The parameter —g is passed by default to g++.
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config.cmodule.compilation_warning
Bool value, default: False

If True, will print compilation warnings.

config.cmodule.preload_cache
Bool value, default: False

If set to True, will preload the C module cache at import time

config.traceback.limit
Int value, default: 8

The number of user stack level to keep for variables.

d3viz — d3viz: Interactive visualization of Theano compute graphs

Guide

Requirements

d3viz requires the pydot package. pydot-ng fork is better maintained, and it works both in Python 2.x and
3.x. Install it with pip:

pip install pydot-ng

Like Theano’s printing module, d3viz requires graphviz binary to be available.

Overview

d3viz extends Theano’s printing module to interactively visualize compute graphs. Instead of creating a
static picture, it creates an HTML file, which can be opened with current web-browsers. d3viz allows

* to zoom to different regions and to move graphs via drag and drop,
* to position nodes both manually and automatically,

* to retrieve additional information about nodes and edges such as their data type or definition in the
source code,

* to edit node labels,
* to visualizing profiling information, and

* to explore nested graphs such as OpFromGraph nodes.

Note: This userguide is also avaible as IPython notebook.

As an example, consider the following multilayer perceptron with one hidden layer and a softmax output
layer.
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import theano as th
import theano.tensor as T
import numpy as np

ninputs = 1000
nfeatures = 100
noutputs = 10
nhiddens 50

rng = np.random.RandomState (0)

x = T.dmatrix('x")

wh = th.shared(rng.normal (0, 1, (nfeatures, nhiddens)), borrow=True)
bh = th.shared(np.zeros (nhiddens), borrow=True)

h = T.nnet.sigmoid(T.dot (x, wh) + bh)

WYy th.shared(rng.normal (0, 1, (nhiddens, noutputs)))
by = th.shared(np.zeros (noutputs), borrow=True)
y = T.nnet.softmax (T.dot (h, wy) + by)

predict = th.function([x], V)

The function predict outputs the probability of 10 classes. You can visualize it with theano.
printing.pydotprint () as follows:

from theano.printing import pydotprint
import os

if not os.path.exists ('examples'):
os.makedirs ('examples"')
pydotprint (predict, 'examples/mlp.png')

The output file is available at examples/mlp.png

from IPython.display import Image
Image ('./examples/mlp.png', width='80%")
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0 TensorType(floato4, matrix) || TensorType(floato4, matrix)

Inplace DimShuffle{x.0}

0 TensorType(float64 , matrix)

Elemwise{Composite{scalar_sigmoid((i0 + i1)) }}[(0, 0)]

0 TensorType(float64, matrix)

ensor Type(float64, vector)

1 TensorType(floato4, row)

1 TensorType(float64, matrix)

1 TensorType(float64, vector) /0 TensorType(float64, matrix)

SoftmaxWithBias

ensorType(float64, matrix)

To visualize it interactively, import t heano.d3viz.d3viz.d3viz () fromthe the theano.d3viz.
d3viz module, which can be called as before:

import theano.d3viz as d3v
d3v.d3viz (predict, 'examples/mlp.html'")

Open visualization!

When you open the output file m1p.html in your web-browser, you will see an interactive visualization
of the compute graph. You can move the whole graph or single nodes via drag and drop, and zoom via the
mouse wheel. When you move the mouse cursor over a node, a window will pop up that displays detailed
information about the node, such as its data type or definition in the source code. When you left-click on a
node and select Edit, you can change the predefined node label. If you are dealing with a complex graph
with many nodes, the default node layout may not be perfect. In this case, you can press the Release
node button in the top-left corner to automatically arrange nodes. To reset nodes to their default position,
press the Reset nodes button.

You can also display the interactive graph inline in IPython using IPython.display.IFrame:

from IPython.display import IFrame
d3v.d3viz (predict, 'examples/mlp.html")
IFrame ('examples/mlp.html', width=700, height=500)

Currently if you use display.JFrame you still have to create a file, and this file can’t be outside notebooks
root (e.g. usually it can’t be in /tmp/).
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Profiling

Theano allows function profiling via the profile=True flag. After at least one function call, the compute
time of each node can be printed in text form with debugprint. However, analyzing complex graphs in
this way can be cumbersome.

d3viz can visualize the same timing information graphically, and hence help to spot bottlenecks in the
compute graph more easily! To begin with, we will redefine the predict function, this time by using
profile=True flag. Afterwards, we capture the runtime on random data:

predict_profiled = th.function([x], y, profile=True)

x_val = rng.normal (0, 1, (ninputs, nfeatures))
y_val = predict_profiled(x_val)

d3v.d3viz (predict_profiled, 'examples/mlp2.html')

Open visualization!

When you open the HTML file in your browser, you will find an additional Toggle profile colors
button in the menu bar. By clicking on it, nodes will be colored by their compute time, where red corresponds
to a high compute time. You can read out the exact timing information of a node by moving the cursor over
it.

Different output formats

Internally, d3viz represents a compute graph in the Graphviz DOT language, using the pydot package, and
defines a front-end based on the d3.js library to visualize it. However, any other Graphviz front-end can be
used, which allows to export graphs to different formats.

formatter = d3v.formatting.PyDotFormatter ()
pydot_graph = formatter (predict_profiled)

pydot_graph.write_png('examples/mlp2.png');
pydot_graph.write_png('examples/mlp2.pdf');

Image ('./examples/mlp2.png')
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