from lenstronomy.ImSim.MultiBand.multi_data_base import MultiDataBase
from lenstronomy.ImSim.MultiBand.single_band_multi_model import SingleBandMultiModel
__all__ = ['MultiLinear']
[docs]class MultiLinear(MultiDataBase):
"""
class to simulate/reconstruct images in multi-band option.
This class calls functions of image_model.py with different bands with
joint non-linear parameters and decoupled linear parameters.
the class supports keyword arguments 'index_lens_model_list', 'index_source_light_model_list',
'index_lens_light_model_list', 'index_point_source_model_list', 'index_optical_depth_model_list' in kwargs_model
These arguments should be lists of length the number of imaging bands available and each entry in the list
is a list of integers specifying the model components being evaluated for the specific band.
E.g. there are two bands and you want to different light profiles being modeled.
- you define two different light profiles lens_light_model_list = ['SERSIC', 'SERSIC']
- set index_lens_light_model_list = [[0], [1]]
- (optional) for now all the parameters between the two light profiles are independent in the model. You have
the possibility to join a subset of model parameters (e.g. joint centroid). See the Param() class for documentation.
"""
def __init__(self, multi_band_list, kwargs_model, likelihood_mask_list=None, compute_bool=None, kwargs_pixelbased=None):
"""
:param multi_band_list: list of imaging band configurations [[kwargs_data, kwargs_psf, kwargs_numerics],[...], ...]
:param kwargs_model: model option keyword arguments
:param likelihood_mask_list: list of likelihood masks (booleans with size of the individual images
:param compute_bool: (optinal), bool list to indicate which band to be included in the modeling
"""
self.type = 'multi-linear'
imageModel_list = []
for band_index in range(len(multi_band_list)):
imageModel = SingleBandMultiModel(multi_band_list, kwargs_model, likelihood_mask_list=likelihood_mask_list,
band_index=band_index, kwargs_pixelbased=kwargs_pixelbased)
imageModel_list.append(imageModel)
super(MultiLinear, self).__init__(imageModel_list, compute_bool=compute_bool)
[docs] def image_linear_solve(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None,
kwargs_extinction=None, kwargs_special=None, inv_bool=False):
"""
computes the image (lens and source surface brightness with a given lens model).
The linear parameters are computed with a weighted linear least square optimization
(i.e. flux normalization of the brightness profiles)
:param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles
:param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles
:param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles
:param kwargs_ps: keyword arguments corresponding to "other" parameters, such as external shear and point source image positions
:param inv_bool: if True, invert the full linear solver Matrix Ax = y for the purpose of the covariance matrix.
:return: 1d array of surface brightness pixels of the optimal solution of the linear parameters to match the data
"""
wls_list, error_map_list, cov_param_list, param_list = [], [], [], []
for i in range(self._num_bands):
if self._compute_bool[i] is True:
wls_model, error_map, cov_param, param = self._imageModel_list[i].image_linear_solve(kwargs_lens,
kwargs_source,
kwargs_lens_light,
kwargs_ps,
kwargs_extinction,
kwargs_special,
inv_bool=inv_bool)
else:
wls_model, error_map, cov_param, param = None, None, None, None
wls_list.append(wls_model)
error_map_list.append(error_map)
cov_param_list.append(cov_param)
param_list.append(param)
return wls_list, error_map_list, cov_param_list, param_list
[docs] def likelihood_data_given_model(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None,
kwargs_extinction=None, kwargs_special=None, source_marg=False, linear_prior=None,
check_positive_flux=False):
"""
computes the likelihood of the data given a model
This is specified with the non-linear parameters and a linear inversion and prior marginalisation.
:param kwargs_lens:
:param kwargs_source:
:param kwargs_lens_light:
:param kwargs_ps:
:param check_positive_flux: bool, if True, checks whether the linear inversion resulted in non-negative flux
components and applies a punishment in the likelihood if so.
:return: log likelihood (natural logarithm) (sum of the log likelihoods of the individual images)
"""
# generate image
logL = 0
if linear_prior is None:
linear_prior = [None for i in range(self._num_bands)]
for i in range(self._num_bands):
if self._compute_bool[i] is True:
logL += self._imageModel_list[i].likelihood_data_given_model(kwargs_lens, kwargs_source,
kwargs_lens_light, kwargs_ps,
kwargs_extinction, kwargs_special,
source_marg=source_marg,
linear_prior=linear_prior[i],
check_positive_flux=check_positive_flux)
return logL