lenstronomy.Cosmo package

Submodules

lenstronomy.Cosmo.background module

class lenstronomy.Cosmo.background.Background(cosmo=None, interp=False, **kwargs_interp)[source]

Bases: object

class to compute cosmological distances

T_xy(z_observer, z_source)[source]
Parameters:
  • z_observer – observer
  • z_source – source
Returns:

transverse comoving distance in units of Mpc

a_z(z)[source]

returns scale factor (a_0 = 1) for given redshift :param z: redshift :return: scale factor

d_xy(z_observer, z_source)[source]
Parameters:
  • z_observer – observer redshift
  • z_source – source redshift
Returns:

angular diameter distance in units of Mpc

ddt(z_lens, z_source)[source]

time-delay distance

Parameters:
  • z_lens – redshift of lens
  • z_source – redshift of source
Returns:

time-delay distance in units of proper Mpc

rho_crit

critical density :return: value in M_sol/Mpc^3

lenstronomy.Cosmo.cosmo_solver module

lenstronomy.Cosmo.cosmo_solver.cosmo2angular_diameter_distances(H_0, omega_m, z_lens, z_source)[source]
Parameters:
  • H_0 – Hubble constant [km/s/Mpc]
  • omega_m – dimensionless matter density at z=0
  • z_lens – deflector redshift
  • z_source – source redshift
Returns:

angular diameter distances Dd and Ds/Dds

lenstronomy.Cosmo.cosmo_solver.ddt2h0(ddt, z_lens, z_source, cosmo)[source]

converts time-delay distance to H0 for a given expansion history

Parameters:
  • ddt – time-delay distance in Mpc
  • z_lens – deflector redshift
  • z_source – source redshift
  • cosmo – astropy.cosmology class instance
Returns:

h0 value which matches the cosmology class effectively replacing the h0 value used in the creation of this class

class lenstronomy.Cosmo.cosmo_solver.SolverFlatLCDM(z_d, z_s)[source]

Bases: object

class to solve multidimensional non-linear equations to determine the cosmological parameters H0 and omega_m given the angular diameter distance relations

F(x, Dd, Ds_Dds)[source]
Parameters:x – array of parameters (H_0, omega_m)
Returns:
solve(init, dd, ds_dds)[source]
class lenstronomy.Cosmo.cosmo_solver.InvertCosmo(z_d, z_s, H0_range=array([ 10., 11.01123596, 12.02247191, 13.03370787, 14.04494382, 15.05617978, 16.06741573, 17.07865169, 18.08988764, 19.1011236, 20.11235955, 21.12359551, 22.13483146, 23.14606742, 24.15730337, 25.16853933, 26.17977528, 27.19101124, 28.20224719, 29.21348315, 30.2247191, 31.23595506, 32.24719101, 33.25842697, 34.26966292, 35.28089888, 36.29213483, 37.30337079, 38.31460674, 39.3258427, 40.33707865, 41.34831461, 42.35955056, 43.37078652, 44.38202247, 45.39325843, 46.40449438, 47.41573034, 48.42696629, 49.43820225, 50.4494382, 51.46067416, 52.47191011, 53.48314607, 54.49438202, 55.50561798, 56.51685393, 57.52808989, 58.53932584, 59.5505618, 60.56179775, 61.57303371, 62.58426966, 63.59550562, 64.60674157, 65.61797753, 66.62921348, 67.64044944, 68.65168539, 69.66292135, 70.6741573, 71.68539326, 72.69662921, 73.70786517, 74.71910112, 75.73033708, 76.74157303, 77.75280899, 78.76404494, 79.7752809, 80.78651685, 81.79775281, 82.80898876, 83.82022472, 84.83146067, 85.84269663, 86.85393258, 87.86516854, 88.87640449, 89.88764045, 90.8988764, 91.91011236, 92.92134831, 93.93258427, 94.94382022, 95.95505618, 96.96629213, 97.97752809, 98.98876404, 100. ]), omega_m_range=array([0.05, 0.06010638, 0.07021277, 0.08031915, 0.09042553, 0.10053191, 0.1106383, 0.12074468, 0.13085106, 0.14095745, 0.15106383, 0.16117021, 0.1712766, 0.18138298, 0.19148936, 0.20159574, 0.21170213, 0.22180851, 0.23191489, 0.24202128, 0.25212766, 0.26223404, 0.27234043, 0.28244681, 0.29255319, 0.30265957, 0.31276596, 0.32287234, 0.33297872, 0.34308511, 0.35319149, 0.36329787, 0.37340426, 0.38351064, 0.39361702, 0.4037234, 0.41382979, 0.42393617, 0.43404255, 0.44414894, 0.45425532, 0.4643617, 0.47446809, 0.48457447, 0.49468085, 0.50478723, 0.51489362, 0.525, 0.53510638, 0.54521277, 0.55531915, 0.56542553, 0.57553191, 0.5856383, 0.59574468, 0.60585106, 0.61595745, 0.62606383, 0.63617021, 0.6462766, 0.65638298, 0.66648936, 0.67659574, 0.68670213, 0.69680851, 0.70691489, 0.71702128, 0.72712766, 0.73723404, 0.74734043, 0.75744681, 0.76755319, 0.77765957, 0.78776596, 0.79787234, 0.80797872, 0.81808511, 0.82819149, 0.83829787, 0.84840426, 0.85851064, 0.86861702, 0.8787234, 0.88882979, 0.89893617, 0.90904255, 0.91914894, 0.92925532, 0.9393617, 0.94946809, 0.95957447, 0.96968085, 0.97978723, 0.98989362, 1. ]))[source]

Bases: object

class to do an interpolation and call the inverse of this interpolation to get H_0 and omega_m

get_cosmo(Dd, Ds_Dds)[source]

return the values of H0 and omega_m computed with an interpolation :param Dd: flat :param Ds_Dds: float :return:

lenstronomy.Cosmo.kde_likelihood module

class lenstronomy.Cosmo.kde_likelihood.KDELikelihood(D_d_sample, D_delta_t_sample, kde_type='scipy_gaussian', bandwidth=1)[source]

Bases: object

class that samples the cosmographic likelihood given a distribution of points in the 2-dimensional distribution of D_d and D_delta_t

logLikelihood(D_d, D_delta_t)[source]

likelihood of the data (represented in the distribution of this class) given a model with predicted angular diameter distances.

Parameters:
  • D_d – model predicted angular diameter distance
  • D_delta_t – model predicted time-delay distance
Returns:

loglikelihood (log of KDE value)

lenstronomy.Cosmo.lcdm module

class lenstronomy.Cosmo.lcdm.LCDM(z_lens, z_source, flat=True)[source]

Bases: object

Flat LCDM cosmology background with free Hubble parameter and Omega_m at fixed lens redshift configuration

D_d(H_0, Om0, Ode0=None)[source]

angular diameter to deflector :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]

D_ds(H_0, Om0, Ode0=None)[source]

angular diameter from deflector to source :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]

D_dt(H_0, Om0, Ode0=None)[source]

time delay distance :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]

D_s(H_0, Om0, Ode0=None)[source]

angular diameter to source :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]

lenstronomy.Cosmo.lens_cosmo module

class lenstronomy.Cosmo.lens_cosmo.LensCosmo(z_lens, z_source, cosmo=None)[source]

Bases: object

class to manage the physical units and distances present in a single plane lens with fixed input cosmology

a_z(z)[source]

convert redshift into scale factor :param z: redshift :return: scale factor

arcsec2phys_lens(arcsec)[source]

convert angular to physical quantities for lens plane :param arcsec: angular size at lens plane [arcsec] :return: physical size at lens plane [Mpc]

arcsec2phys_source(arcsec)[source]

convert angular to physical quantities for source plane :param arcsec: angular size at source plane [arcsec] :return: physical size at source plane [Mpc]

dd
Returns:angular diameter distance to the deflector [Mpc]
dds
Returns:angular diameter distance from deflector to source [Mpc]
ddt
Returns:time delay distance [Mpc]
ds
Returns:angular diameter distance to the source [Mpc]
h
kappa2proj_mass(kappa)[source]

convert convergence to projected mass M_sun/Mpc^2 :param kappa: lensing convergence :return: projected mass [M_sun/Mpc^2]

mass_in_coin(theta_E)[source]
Parameters:theta_E – Einstein radius [arcsec]
Returns:mass in coin calculated in mean density of the universe
mass_in_theta_E(theta_E)[source]

mass within Einstein radius (area * epsilon crit) [M_sun] :param theta_E: Einstein radius [arcsec] :return: mass within Einstein radius [M_sun]

nfwParam_physical(M, c)[source]

returns the NFW parameters in physical units

Parameters:
  • M – physical mass in M_sun
  • c – concentration
Returns:

rho0, Rs, r200

nfw_M_theta_vir(M)[source]

returns virial radius in angular units of arc seconds on the sky

Parameters:M – physical mass in M_sun
Returns:angle (in arc seconds) of the virial radius
nfw_angle2physical(Rs_angle, alpha_Rs)[source]

converts the angular parameters into the physical ones for an NFW profile

Parameters:
  • alpha_Rs – observed bending angle at the scale radius in units of arcsec
  • Rs – scale radius in units of arcsec
Returns:

rho0, Rs, c, r200, M200

nfw_physical2angle(M, c)[source]

converts the physical mass and concentration parameter of an NFW profile into the lensing quantities

Parameters:
  • M – mass enclosed 200 rho_crit in units of M_sun (physical units, meaning no little h)
  • c – NFW concentration parameter (r200/r_s)
Returns:

Rs_angle (angle at scale radius) (in units of arcsec), alpha_Rs (observed bending angle at the scale radius

phys2arcsec_lens(phys)[source]

convert physical Mpc into arc seconds :param phys: physical distance [Mpc] :return: angular diameter [arcsec]

sigma_crit

returns the critical projected lensing mass density in units of M_sun/Mpc^2 :return: critical projected lensing mass density

sigma_crit_angle

returns the critical surface density in units of M_sun/arcsec^2 (in physical solar mass units) when provided a physical mass per physical Mpc^2 :return: critical projected mass density

sis_sigma_v2theta_E(v_sigma)[source]

converts the velocity dispersion into an Einstein radius for a SIS profile :param v_sigma: velocity dispersion (km/s) :return: theta_E (arcsec)

sis_theta_E2sigma_v(theta_E)[source]

converts the lensing Einstein radius into a physical velocity dispersion :param theta_E: Einstein radius (in arcsec) :return: velocity dispersion in units (km/s)

time_delay2fermat_pot(dt)[source]
Parameters:dt – time delay in units of days
Returns:Fermat potential in units arcsec**2 for a given cosmology
time_delay_units(fermat_pot, kappa_ext=0)[source]
Parameters:
  • fermat_pot – in units of arcsec^2 (e.g. Fermat potential)
  • kappa_ext – unit-less external shear not accounted for in the Fermat potential
Returns:

time delay in days

uldm_angular2phys(kappa_0, theta_c)[source]

converts the anguar parameters entering the LensModel Uldm() (Ultra Light Dark Matter) class in physical masses, i.e. the total soliton mass and the mass of the particle :param kappa_0: central convergence of profile :param theta_c: core radius (in arcseconds) :return: m_eV_log10, M_sol_log10, the log10 of the masses, m in eV and M in M_sun

uldm_mphys2angular(m_log10, M_log10)[source]

converts physical ULDM mass in the ones, in angular units, that enter the LensModel Uldm() class :param m_log10: exponent of ULDM mass in eV :param M_log10: exponent of soliton mass in M_sun :return: kappa_0, theta_c, the central convergence and core radius (in arcseconds)

lenstronomy.Cosmo.nfw_param module

class lenstronomy.Cosmo.nfw_param.NFWParam(cosmo=None)[source]

Bases: object

class which contains a halo model parameters dependent on cosmology for NFW profile All distances are given in physical units. Mass definitions are relative to 200 crit including redshift evolution. The redshift evolution is cosmology dependent (dark energy). The H0 dependence is propagated into the input and return units.

M200(rs, rho0, c)[source]

M(R_200) calculation for NFW profile

Parameters:
  • rs (float) – scale radius
  • rho0 (float) – density normalization (characteristic density)
  • c (float [4,40]) – concentration
Returns:

M(R_200) density

M_r200(r200, z)[source]
Parameters:
  • r200 – r200 in physical Mpc/h
  • z – redshift
Returns:

M200 in M_sun/h

c_M_z(M, z)[source]

fitting function of http://moriond.in2p3.fr/J08/proceedings/duffy.pdf for the mass and redshift dependence of the concentration parameter

Parameters:
  • M (float or numpy array) – halo mass in M_sun/h
  • z (float >0) – redshift
Returns:

concentration parameter as float

c_rho0(rho0, z)[source]

computes the concentration given density normalization rho_0 in h^2/Mpc^3 (physical) (inverse of function rho0_c) :param rho0: density normalization in h^2/Mpc^3 (physical) :param z: redshift :return: concentration parameter c

nfw_Mz(M, z)[source]

returns all needed parameter (in physical units modulo h) to draw the profile of the main halo r200 in physical Mpc/h rho_s in h^2/Mpc^3 (physical) Rs in Mpc/h physical c unit less

r200_M(M, z)[source]

computes the radius R_200 crit of a halo of mass M in physical distances M/h

Parameters:
  • M (float or numpy array) – halo mass in M_sun/h
  • z (float) – redshift
Returns:

radius R_200 in physical Mpc/h

rho0_c(c, z)[source]

computes density normalization as a function of concentration parameter

Parameters:
  • c – concentration
  • z – redshift
Returns:

density normalization in h^2/Mpc^3 (physical)

rhoc = 277536627000.0
rhoc_z(z)[source]
Parameters:z – redshift
Returns:critical density of the universe at redshift z in physical units [h^2 M_sun Mpc^-3]

Module contents