Coverage for pygeodesy/vector3d.py : 91%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# -*- coding: utf-8 -*-
Pure Python implementation of vector-based functions by I{(C) Chris Veness 2011-2015} published under the same MIT Licence**, see U{Vector-based geodesy <https://www.Movable-Type.co.UK/scripts/latlong-vectors.html>}.
@newfield example: Example, Examples '''
isscalar, len2, map1, _IsNotError Vector3Tuple, _xattrs
# all public constants, classes and functions
return +1 if a > b else ( -1 if a < b else 0)
'''(INTERNAL) Get an C{(x, y, z, name)} 4-tuple. ''' except (TypeError, ValueError) as x: raise Error('%s invalid: %r, %s' % ('xyz, y or z', t, x))
'''(INTERNAL) Get an C{(x, y, z, h, d, name)} 6-tuple. '''
or getattr(xyz, 'h', None) \ or getattr(ll, 'height', None)
or getattr(ll, 'datum', None)
'''Error raised for zero or near-zero vectorial cross products, occurring for coincident or colinear points, paths or bearings. '''
'''Get/set raising of vectorial cross product errors.
@keyword raiser: Use C{True} to throw or C{False} to ignore L{CrossError} exceptions. Use C{None} to leave the setting unchanged.
@return: Previous setting (C{bool}). '''
'''L{Vector3d} or C{*Nvector} issue. '''
'''Generic 3-D vector manipulation.
In a geodesy context, these may be used to represent: - n-vector representing a normal to point on earth's surface - earth-centered, earth-fixed vector (= n-vector for spherical model) - great circle normal to vector - motion vector on earth's surface - etc. '''
'''New 3-D vector.
The vector may be normalised, or use x/y/z values for height relative to the surface of the sphere or ellipsoid, distance from earth centre, etc.
@param x: X component of vector (C{scalar}). @param y: Y component of vector (C{scalar}). @param z: Z component of vector (C{scalar}). @keyword ll: Optional, original latlon (C{LatLon}). @keyword name: Optional name (C{str}). '''
'''Add this to an other vector (L{Vector3d}).
@return: Vectorial sum (L{Vector3d}).
@raise TypeError: Incompatible B{C{other}} C{type}. ''' return self.plus(other) # __iadd__ = __add__
'''Return the norm of this vector.
@return: Norm, unit length (C{float}); ''' return self.length
'''Compare this and an other vector
@param other: The other vector (L{Vector3d}).
@return: -1, 0 or +1 (C{int}).
@raise TypeError: Incompatible B{C{other}} C{type}. ''' self.others(other) return _cmp(self.length, other.length)
'''Divide this vector by a scalar.
@param scalar: The divisor (C{scalar}).
@return: Quotient (L{Vector3d}).
@raise TypeError: Non-scalar B{C{scalar}}. ''' return self.dividedBy(scalar) # __itruediv__ = __div__
'''Is this vector equal to an other vector?
@param other: The other vector (L{Vector3d}).
@return: C{True} if equal, C{False} otherwise.
@raise TypeError: Incompatible B{C{other}} C{type}. '''
'''Is this vector longer than or equal to an other vector?
@param other: The other vector (L{Vector3d}).
@return: C{True} if so, C{False} otherwise.
@raise TypeError: Incompatible B{C{other}} C{type}. '''
'''Is this vector longer than an other vector?
@param other: The other vector (L{Vector3d}).
@return: C{True} if so, C{False} otherwise.
@raise TypeError: Incompatible B{C{other}} C{type}. '''
'''Is this vector shorter than or equal to an other vector?
@param other: The other vector (L{Vector3d}).
@return: C{True} if so, C{False} otherwise.
@raise TypeError: Incompatible B{C{other}} C{type}. '''
'''Is this vector shorter than an other vector?
@param other: The other vector (L{Vector3d}).
@return: C{True} if so, C{False} otherwise.
@raise TypeError: Incompatible B{C{other}} C{type}. '''
# Luciano Ramalho, "Fluent Python", page 397, O'Reilly 2016 '''Compute the cross product of this and an other vector.
@param other: The other vector (L{Vector3d}).
@return: Cross product (L{Vector3d}).
@raise TypeError: Incompatible B{C{other}} C{type}. ''' # __imatmul__ = __matmul__
'''Multiply this vector by a scalar
@param scalar: Factor (C{scalar}).
@return: Product (L{Vector3d}). ''' return self.times(scalar) # __imul__ = __mul__ # __rmul__ = __mul__
'''Is this vector not equal to an other vector?
@param other: The other vector (L{Vector3d}).
@return: C{True} if so, C{False} otherwise.
@raise TypeError: Incompatible B{C{other}} C{type}. '''
'''Negate this vector.
@return: Negative (L{Vector3d}) ''' return self.negate()
'''Copy this vector.
@return: Positive (L{Vector3d}) ''' return self.copy()
# Luciano Ramalho, "Fluent Python", page 397, O'Reilly 2016 '''Compute the cross product of an other and this vector.
@param other: The other vector (L{Vector3d}).
@return: Cross product (L{Vector3d}).
@raise TypeError: Incompatible B{C{other}} C{type}. '''
'''Subtract this vector from an other vector.
@param other: The other vector (L{Vector3d}).
@return: Difference (L{Vector3d}).
@raise TypeError: Incompatible B{C{other}} C{type}. ''' self.others(other) return other.minus(self)
'''Subtract an other vector from this vector.
@param other: The other vector (L{Vector3d}).
@return: Difference (L{Vector3d}).
@raise TypeError: Incompatible B{C{other}} C{type}. ''' return self.minus(other) # __isub__ = __sub__
'''(INTERNAL) Clear caches. '''
'''(INTERNAL) Make copy with add'l, subclass attributes. ''' self, '_length', '_united', *attrs) # _crosserrors
'''Compute the angle between this and an other vector.
@param other: The other vector (L{Vector3d}). @keyword vSign: Optional vector, if supplied (and out of the plane of this and the other), angle is signed positive if this->other is clockwise looking along vSign or negative in opposite direction, otherwise angle is unsigned.
@return: Angle (C{radians}).
@raise TypeError: If B{C{other}} or B{C{vSign}} not a L{Vector3d}. ''' # use vSign as reference to get sign of s
'''Copy this vector.
@return: The copy (L{Vector3d} or subclass thereof). ''' return self._xcopy()
'''Compute the cross product of this and an other vector.
@param other: The other vector (L{Vector3d}). @keyword raiser: Optional, L{CrossError} label if raised (C{str}).
@return: Cross product (L{Vector3d}).
@raise CrossError: Zero or near-zero cross product and both B{C{raiser}} and L{crosserrors} set.
@raise TypeError: Incompatible B{C{other}} C{type}. '''
raise CrossError('%s %s: %r' % (t, raiser, r))
def crosserrors(self): '''Get L{CrossError} exceptions (C{bool}). '''
def crosserrors(self, raiser): '''Raise L{CrossError} exceptions (C{bool}). ''' self._crosserrors = bool(raiser)
'''Divide this vector by a scalar.
@param factor: The divisor (C{scalar}).
@return: New, scaled vector (L{Vector3d}).
@raise TypeError: Non-scalar B{C{factor}}.
@raise VectorError: Invalid or zero B{C{factor}}. ''' raise _IsNotError('scalar', factor=factor) except (ValueError, ZeroDivisionError): raise VectorError('%s invalid: %r' % ('factor', factor))
'''Compute the dot (scalar) product of this and an other vector.
@param other: The other vector (L{Vector3d}).
@return: Dot product (C{float}).
@raise TypeError: Incompatible B{C{other}} C{type}. '''
'''DEPRECATED, use method C{isequalTo}. ''' return self.isequalTo(other, units=units)
'''Check if this and an other vector are equal or equivalent.
@param other: The other vector (L{Vector3d}). @keyword units: Optionally, compare the normalized, unit version of both vectors.
@return: C{True} if vectors are identical, C{False} otherwise.
@raise TypeError: Incompatible B{C{other}} C{type}.
@example:
>>> v1 = Vector3d(52.205, 0.119) >>> v2 = Vector3d(52.205, 0.119) >>> e = v1.isequalTo(v2) # True '''
else:
def length(self): '''Get the length (norm, magnitude) of this vector (C{float}). '''
'''Subtract an other vector from this vector.
@param other: The other vector (L{Vector3d}).
@return: New vector difference (L{Vector3d}).
@raise TypeError: Incompatible B{C{other}} C{type}. '''
self.y - other.y, self.z - other.z)
'''Return this vector in opposite direction.
@return: New, opposite vector (L{Vector3d}). '''
'''Refined class comparison.
@param other: The other vector (L{Vector3d}). @keyword name: Optional, other's name (C{str}).
@raise TypeError: Incompatible B{C{other}} C{type}. ''' raise
'''Parse an "x, y, z" string representing a L{Vector3d}.
@param str3d: X, y and z value (C{str}). @keyword sep: Optional separator (C{str}).
@return: New vector (L{Vector3d}).
@raise VectorError: Invalid B{C{str3d}}. ''' raise ValueError except (TypeError, ValueError): raise VectorError('%s invalid: %r' % ('str3d', str3d))
'''Add this vector and an other vector.
@param other: The other vector (L{Vector3d}).
@return: Vectorial sum (L{Vector3d}).
@raise TypeError: Incompatible B{C{other}} C{type}. '''
self.y + other.y, self.z + other.z)
'''Rotate this vector around an axis by a specified angle.
See U{Rotation matrix from axis and angle <https://WikiPedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle>} and U{Quaternion-derived rotation matrix <https://WikiPedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix>}.
@param axis: The axis being rotated around (L{Vector3d}). @param theta: The angle of rotation (C{radians}).
@return: New, rotated vector (L{Vector3d}).
@JSname: I{rotateAround}. '''
# multiply p by a quaternion-derived rotation matrix fdot(p, a.y * b.x + s.z, a.y * b.y + c, a.y * b.z - s.x), fdot(p, a.z * b.x - s.y, a.z * b.y + s.x, a.z * b.z + c))
'''DEPRECATED, use method C{rotate}. ''' return self.rotate(axis, theta)
'''Multiply this vector by a scalar.
@param factor: Scale factor (C{scalar}).
@return: New, scaled vector (L{Vector3d}).
@raise TypeError: Non-scalar B{C{factor}}. ''' raise _IsNotError('scalar', factor=factor) self.y * factor, self.z * factor)
'''Convert this vector to (geodetic) lat- and longitude in C{radians}.
@return: A L{PhiLam2Tuple}C{(phi, lam)}.
@example:
>>> v = Vector3d(0.500, 0.500, 0.707) >>> a, b = v.to2ab() # 0.785323, 0.785398 '''
'''Convert this vector to (geodetic) lat- and longitude in C{degrees}.
@return: A L{LatLon2Tuple}C{(lat, lon)}.
@example:
>>> v = Vector3d(0.500, 0.500, 0.707) >>> a, b = v.to2ll() # 44.99567, 45.0 '''
'''Return this vector as a 3-tuple.
@return: A L{Vector3Tuple}C{(x, y, z)}. '''
'''Return a string representation of this vector.
@keyword prec: Optional number of decimal places (C{int}). @keyword fmt: Optional, enclosing format to use (C{str}). @keyword sep: Optional separator between components (C{str}).
@return: Vector as "(x, y, z)" (C{str}). '''
'''Normalize this vector to unit length.
@keyword ll: Optional, original latlon (C{LatLon}).
@return: Normalized vector (L{Vector3d}). ''' else:
def x(self): '''Get the X component (C{float}). '''
def y(self): '''Get the Y component (C{float}). '''
def z(self): '''Get the Z component (C{float}). '''
'''Compute the vectorial sum of several vectors.
@param vectors: Vectors to be added (L{Vector3d}[]). @keyword Vector: Optional class for the vectorial sum (L{Vector3d}). @keyword kwds: Optional, additional B{C{Vector}} keyword arguments, ignored if C{B{Vector}=None}.
@return: Vectorial sum (B{C{Vector}}).
@raise VectorError: No B{C{vectors}}. ''' raise VectorError('no vectors: %r' & (n,))
fsum(v.y for v in vectors), fsum(v.z for v in vectors))
# **) MIT License # # Copyright (C) 2016-2020 -- mrJean1 at Gmail -- All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. |