Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

 

# -*- coding: utf-8 -*- 

 

u'''(INTERNAL) Ellipsoidal base classes C{CartesianEllipsoidalBase} and 

C{LatLonEllipsoidalBase}. 

 

Pure Python implementation of geodesy tools for ellipsoidal earth models, 

transcribed in part from JavaScript originals by I{(C) Chris Veness 2005-2016} 

and published under the same MIT Licence**, see for example U{latlon-ellipsoidal 

<https://www.Movable-Type.co.UK/scripts/geodesy/docs/latlon-ellipsoidal.js.html>}. 

 

@newfield example: Example, Examples 

''' 

 

from pygeodesy.cartesianBase import CartesianBase 

from pygeodesy.datum import Datum, Datums 

from pygeodesy.ecef import EcefVeness 

from pygeodesy.fmath import EPS, _IsNotError 

from pygeodesy.latlonBase import LatLonBase 

from pygeodesy.lazily import _ALL_DOCS 

from pygeodesy.named import Vector3Tuple 

from pygeodesy.trf import _2epoch, RefFrame, TRFError, _reframeTransforms 

from pygeodesy.utily import property_RO, _TypeError 

 

__all__ = _ALL_DOCS('CartesianEllipsoidalBase', 'LatLonEllipsoidalBase') 

__version__ = '19.10.21' 

 

 

class CartesianEllipsoidalBase(CartesianBase): 

'''(INTERNAL) Base class for ellipsoidal C{Cartesian}s. 

''' 

_datum = Datums.WGS84 #: (INTERNAL) L{Datum}. 

_Ecef = EcefVeness #: (INTERNAL) Preferred C{Ecef...} class, backward compatible. 

 

def convertRefFrame(self, reframe2, reframe, epoch=None): 

'''Convert this cartesian point from one to an other reference frame. 

 

@param reframe2: Reference frame to convert I{to} (L{RefFrame}). 

@param reframe: Reference frame to convert I{from} (L{RefFrame}). 

@keyword epoch: Optional epoch to observe for B{C{reframe}}, a 

fractional calendar year (C{scalar}). 

 

@return: The converted point (C{Cartesian}) or this point if 

conversion is C{nil}. 

 

@raise TRFError: No conversion available from B{C{reframe}} 

to B{C{reframe2}}. 

 

@raise TypeError: B{C{reframe2}} or B{C{reframe}} not a 

L{RefFrame} or B{C{epoch}} not C{scalar}. 

''' 

_TypeError(RefFrame, reframe2=reframe2, reframe=reframe) 

 

c = self 

for t in _reframeTransforms(reframe2, reframe, reframe.epoch if 

epoch is None else _2epoch(epoch)): 

c = c._applyHelmert(t, False) 

return c 

 

 

class LatLonEllipsoidalBase(LatLonBase): 

'''(INTERNAL) Base class for ellipsoidal C{LatLon}s. 

''' 

_convergence = None #: (INTERNAL) UTM/UPS meridian convergence (C{degrees}). 

_datum = Datums.WGS84 #: (INTERNAL) Datum (L{Datum}). 

_elevation2 = () #: (INTERNAL) Cached C{elevation2} result. 

_epoch = None #: (INTERNAL) overriding .reframe.epoch (C{float}). 

_etm = None #: (INTERNAL) Cached toEtm (L{Etm}). 

_geoidHeight2 = () #: (INTERNAL) Cached C{geoidHeight2} result. 

_lcc = None #: (INTERNAL) Cached toLcc (C{Lcc}). 

_osgr = None #: (INTERNAL) Cached toOsgr (C{Osgr}). 

_reframe = None #: (INTERNAL) reference frame (L{RefFrame}). 

_scale = None #: (INTERNAL) UTM/UPS scale factor (C{float}). 

_ups = None #: (INTERNAL) Cached toUps (L{Ups}). 

_utm = None #: (INTERNAL) Cached toUtm (L{Utm}). 

_wm = None #: (INTERNAL) Cached toWm (webmercator.Wm instance). 

_3xyz = None #: (DEPRECATED) Cached (L{Vector3Tuple}) 

 

def __init__(self, lat, lon, height=0, datum=None, reframe=None, 

epoch=None, name=''): 

'''Create an ellipsoidal C{LatLon} point frome the given 

lat-, longitude and height on the given datum and with 

the given reference frame and epoch. 

 

@param lat: Latitude (C{degrees} or DMS C{[N|S]}). 

@param lon: Longitude (C{degrees} or DMS C{str[E|W]}). 

@keyword height: Optional elevation (C{meter}, the same units 

as the datum's half-axes). 

@keyword datum: Optional, ellipsoidal datum to use (L{Datum}). 

@keyword reframe: Optional reference frame (L{RefFrame}). 

@keyword epoch: Optional epoch to observe for B{C{reframe}} 

(C{scalar}), a non-zero, fractional calendar 

year. 

@keyword name: Optional name (string). 

 

@raise TypeError: B{C{datum}} is not a L{datum}, B{C{reframe}} 

is not a L{RefFrame} or B{C{epoch}} is not 

C{scalar} non-zero. 

 

@example: 

 

>>> p = LatLon(51.4778, -0.0016) # height=0, datum=Datums.WGS84 

''' 

LatLonBase.__init__(self, lat, lon, height=height, name=name) 

if datum: 

self.datum = datum 

if reframe: 

self.reframe = reframe 

self.epoch = epoch 

 

def _Radjust2(self, adjust, datum, meter_text2): 

'''(INTERNAL) Adjust elevation or geoidHeight with difference 

in Gaussian radii of curvature of given datum and NAD83. 

 

@note: This is an arbitrary, possibly incorrect adjustment. 

''' 

if adjust: # Elevation2Tuple or GeoidHeight2Tuple 

m, t = meter_text2 

if isinstance(m, float): 

n = Datums.NAD83.ellipsoid.rocGauss(self.lat) 

if min(abs(m), n) > EPS: 

# use ratio, datum and NAD83 units may differ 

e = self.ellipsoid(datum).rocGauss(self.lat) 

if min(abs(e - n), e) > EPS: 

m *= e / n 

meter_text2 = meter_text2.classof(m, t) 

return self._xnamed(meter_text2) 

 

def _update(self, updated): 

if updated: # reset cached attrs 

self._etm = self._lcc = self._osgr = self._ups = \ 

self._utm = self._wm = self._3xyz = None 

self._elevation2 = self._geoidHeight2 = () 

LatLonBase._update(self, updated) 

 

def _xcopy(self, *attrs): 

'''(INTERNAL) Make copy with add'l, subclass attributes. 

''' 

return LatLonBase._xcopy(self, '_datum', '_epoch', '_reframe', *attrs) 

 

def antipode(self, height=None): 

'''Return the antipode, the point diametrically opposite 

to this point. 

 

@keyword height: Optional height of the antipode, height 

of this point otherwise (C{meter}). 

 

@return: The antipodal point (C{LatLon}). 

''' 

lla = LatLonBase.antipode(self, height=height) 

if lla.datum != self.datum: 

lla.datum = self.datum 

return lla 

 

@property_RO 

def convergence(self): 

'''Get this point's UTM or UPS meridian convergence (C{degrees}) 

or C{None} if not converted from L{Utm} ot L{Ups}. 

''' 

return self._convergence 

 

def convertDatum(self, datum2): 

'''Convert this point to an other datum. 

 

@param datum2: Datum to convert I{to} (L{Datum}). 

 

@return: The converted point (ellipsoidal C{LatLon}). 

 

@raise TypeError: The B{C{datum2}} is not a L{Datum}. 

 

@example: 

 

>>> p = LatLon(51.4778, -0.0016) # default Datums.WGS84 

>>> p.convertDatum(Datums.OSGB36) # 51.477284°N, 000.00002°E 

''' 

if self.datum == datum2: 

return self.copy() 

 

c = self.toCartesian().convertDatum(datum2) 

return c.toLatLon(datum=datum2, LatLon=self.classof) 

 

def convertRefFrame(self, reframe2): 

'''Convert this point to an other reference frame. 

 

@param reframe2: Reference frame to convert I{to} (L{RefFrame}). 

 

@return: The converted point (ellipsoidal C{LatLon}) or 

this point if conversion is C{nil}. 

 

@raise TRFError: No B{C{.reframe}} or no conversion 

available from B{C{.reframe}} to 

B{C{reframe2}}. 

 

@raise TypeError: The B{C{reframe2}} is not a L{RefFrame}. 

 

@example: 

 

>>> p = LatLon(51.4778, -0.0016, reframe=RefFrames.ETRF2000) # default Datums.WGS84 

>>> p.convertRefFrame(RefFrames.ITRF2014) # 51.477803°N, 000.001597°W, +0.01m 

''' 

_TypeError(RefFrame, reframe2=reframe2) 

 

if not self.reframe: 

raise TRFError('no %r.%s' % (self, 'reframe')) 

 

ts = _reframeTransforms(reframe2, self.reframe, self.epoch) 

if ts: 

c = self.toCartesian() 

for t in ts: 

c = c._applyHelmert(t, False) 

ll = c.toLatLon(datum=self.datum, LatLon=self.classof, 

epoch=self.epoch, reframe=reframe2) 

# ll.reframe, ll.epoch = reframe2, self.epoch 

else: 

ll = self 

return ll 

 

@property 

def datum(self): 

'''Get this point's datum (L{Datum}). 

''' 

return self._datum 

 

@datum.setter # PYCHOK setter! 

def datum(self, datum): 

'''Set this point's datum I{without conversion}. 

 

@param datum: New datum (L{Datum}). 

 

@raise TypeError: The B{C{datum}} is not a L{Datum} 

or not ellipsoidal. 

''' 

_TypeError(Datum, datum=datum) 

if not datum.isEllipsoidal: 

raise _IsNotError('ellipsoidal', datum=datum) 

self._update(datum != self._datum) 

self._datum = datum 

 

def distanceTo2(self, other): 

'''Approximate the distance and (initial) bearing between this 

and an other (ellipsoidal) point based on the radii of curvature. 

 

Suitable only for short distances up to a few hundred Km 

or Miles and only between non-near-polar points. 

 

@param other: The other point (C{LatLon}). 

 

@return: An L{Distance2Tuple}C{(distance, initial)}. 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@raise ValueError: Incompatible datum ellipsoids. 

 

@see: Method L{Ellipsoid.distance2} and U{Local, flat earth 

approximation<https://www.EdWilliams.org/avform.htm#flat>}. 

''' 

return self.ellipsoids(other).distance2(self.lat, self.lon, 

other.lat, other.lon) 

 

def elevation2(self, adjust=True, datum=Datums.WGS84, timeout=2): 

'''Return elevation of this point for its or the given datum. 

 

@keyword adjust: Adjust the elevation for a B{C{datum}} other 

than C{NAD83}. 

@keyword datum: Optional datum (L{Datum}). 

@keyword timeout: Optional query timeout (seconds). 

 

@return: An L{Elevation2Tuple}C{(elevation, data_source)} 

or C{(None, error)} in case of errors. 

 

@note: The adjustment applied is the difference in geocentric 

earth radius for the B{C{datum}} used and the C{NAV83} 

datum upon which L{elevations.elevation2} is based. 

 

@note: NED elevation is only available for locations within 

the U{Conterminous US (CONUS) 

<https://WikiPedia.org/wiki/Contiguous_United_States>}. 

 

@see: Function L{elevations.elevation2} and method 

L{Ellipsoid.Rgeocentric} for further details and 

possible C{error}s. 

''' 

if not self._elevation2: # get elevation and data source 

from pygeodesy.elevations import elevation2 

self._elevation2 = elevation2(self.lat, self.lon, 

timeout=timeout) 

return self._Radjust2(adjust, datum, self._elevation2) 

 

def ellipsoid(self, datum=Datums.WGS84): 

'''Return the ellipsoid of this point's datum or the given datum. 

 

@keyword datum: Default datum (L{Datum}). 

 

@return: The ellipsoid (L{Ellipsoid}). 

''' 

return getattr(self, 'datum', datum).ellipsoid 

 

def ellipsoids(self, other): 

'''Check the type and ellipsoid of this and an other point's datum. 

 

@param other: The other point (C{LatLon}). 

 

@return: This point's datum ellipsoid (L{Ellipsoid}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@raise ValueError: Incompatible datum ellipsoids. 

''' 

self.others(other) 

 

E = self.ellipsoid() 

try: # other may be Sphere, etc. 

e = other.ellipsoid() 

except AttributeError: 

try: # no ellipsoid method, try datum 

e = other.datum.ellipsoid 

except AttributeError: 

e = E # no datum, XXX assume equivalent? 

if e != E: 

c = E.classname 

raise ValueError('%s %s mistmatch: %ss.%s vs %ss.%s' % 

('other', c, c, e.name, c, E.name)) 

return E 

 

@property 

def epoch(self): 

'''Get this point's observed epoch (C{float}) or C{None}. 

''' 

return self._epoch or (self.reframe.epoch if self.reframe else None) 

 

@epoch.setter # PYCHOK setter! 

def epoch(self, epoch): 

'''Set or clear this point's observed epoch. 

 

@param epoch: Observed epoch, a fractional calendar year 

(C{scalar}) or C{None}. 

 

@raise TypeError: The B{C{epoch}} is not C{scalar}. 

''' 

self._epoch = None if epoch is None else _2epoch(epoch) 

 

def geoidHeight2(self, adjust=False, datum=Datums.WGS84, timeout=2): 

'''Return geoid height of this point for its or the given datum. 

 

@keyword adjust: Adjust the geoid height for a B{C{datum}} other 

than C{NAD83/NADV88}. 

@keyword datum: Optional datum (L{Datum}). 

@keyword timeout: Optional query timeout (seconds). 

 

@return: An L{GeoidHeight2Tuple}C{(height, model_name)} or 

C{(None, error)} in case of errors. 

 

@note: The adjustment applied is the difference in geocentric 

earth radius for the given B{C{datum}} and the C{NAV83/NADV88} 

datum of the L{elevations.geoidHeight2}. 

 

@note: The geoid height is only available for locations within 

the U{Conterminous US (CONUS) 

<https://WikiPedia.org/wiki/Contiguous_United_States>}. 

 

@see: Function L{elevations.geoidHeight2} and method 

L{Ellipsoid.Rgeocentric} for further details and 

possible C{error}s. 

''' 

if not self._geoidHeight2: # get elevation and data source 

from pygeodesy.elevations import geoidHeight2 

self._geoidHeight2 = geoidHeight2(self.lat, self.lon, 

model=0, timeout=timeout) 

return self._Radjust2(adjust, datum, self._geoidHeight2) 

 

@property_RO 

def isEllipsoidal(self): 

'''Check whether this C{LatLon} point is ellipsoidal (C{bool}). 

''' 

return self.datum.isEllipsoidal 

 

@property_RO 

def isSpherical(self): 

'''Check whether this C{LatLon} point is spherical (C{bool}). 

''' 

return self.datum.isSpherical 

 

def parse(self, strll, height=0, datum=None, sep=','): 

'''Parse a string representing this C{LatLon} point. 

 

The lat- and longitude must be separated by a sep[arator] 

character. If height is present it must follow and be 

separated by another sep[arator]. Lat- and longitude 

may be swapped, provided at least one ends with the 

proper compass direction. 

 

For more details, see functions L{parse3llh} and L{parseDMS} 

in sub-module L{dms}. 

 

@param strll: Lat, lon [, height] (string). 

@keyword height: Optional, default height (C{meter} or C{None}). 

@keyword datum: Optional, default datum (L{Datum}). 

@keyword sep: Optional separator (string). 

 

@return: The point (L{LatLonEllipsoidalBase}). 

 

@raise ValueError: Invalid B{C{strll}}. 

''' 

from pygeodesy.dms import parse3llh 

a, b, h = parse3llh(strll, height=height, sep=sep) 

return self.classof(a, b, height=h, datum=datum or self.datum) 

 

@property 

def reframe(self): 

'''Get this point's reference frame (L{RefFrame}) or C{None}. 

''' 

return self._reframe 

 

@reframe.setter # PYCHOK setter! 

def reframe(self, reframe): 

'''Set or clear this point's reference frame. 

 

@param reframe: Reference frame (L{RefFrame}) or C{None}. 

 

@raise TypeError: The B{C{reframe}} is not a L{RefFrame}. 

''' 

if isinstance(reframe, RefFrame): 

self._reframe = reframe 

elif reframe is not None: 

_TypeError(RefFrame, reframe=reframe) 

elif self.reframe is not None: 

self._reframe = None 

 

@property_RO 

def scale(self): 

'''Get this point's UTM grid or UPS point scale factor (C{float}) 

or C{None} if not converted from L{Utm} or L{Ups}. 

''' 

return self._scale 

 

def to3xyz(self): # overloads LatLonBase.to3xyz 

'''DEPRECATED, use method C{toEcef}. 

 

@return: A L{Vector3Tuple}C{(x, y, z)}. 

''' 

if self._3xyz is None: 

r = self.toEcef() 

self._3xyz = Vector3Tuple(r.x, r.y, r.z) 

return self._xrenamed(self._3xyz) 

 

def toEtm(self): 

'''Convert this C{LatLon} point to an ETM coordinate. 

 

@return: The ETM coordinate (L{Etm}). 

 

@see: Function L{toEtm8}. 

''' 

if self._etm is None: 

from pygeodesy.etm import toEtm8, Etm # PYCHOK recursive import 

self._etm = toEtm8(self, datum=self.datum, Etm=Etm) 

return self._etm 

 

def toLcc(self): 

'''Convert this C{LatLon} point to a Lambert location. 

 

@see: Function L{toLcc} in module L{lcc}. 

 

@return: The Lambert location (L{Lcc}). 

''' 

if self._lcc is None: 

from pygeodesy.lcc import Lcc, toLcc # PYCHOK recursive import 

self._lcc = toLcc(self, height=self.height, Lcc=Lcc, 

name=self.name) 

return self._lcc 

 

def toOsgr(self): 

'''Convert this C{LatLon} point to an OSGR coordinate. 

 

@see: Function L{toOsgr} in module L{osgr}. 

 

@return: The OSGR coordinate (L{Osgr}). 

''' 

if self._osgr is None: 

from pygeodesy.osgr import Osgr, toOsgr # PYCHOK recursive import 

self._osgr = toOsgr(self, datum=self.datum, Osgr=Osgr, 

name=self.name) 

return self._osgr 

 

def toUps(self, pole='N', falsed=True): 

'''Convert this C{LatLon} point to a UPS coordinate. 

 

@keyword pole: Optional top/center of (stereographic) 

projection (C{str}, 'N[orth]' or 'S[outh]'). 

@keyword falsed: False easting and northing (C{bool}). 

 

@return: The UPS coordinate (L{Ups}). 

 

@see: Function L{toUps8}. 

''' 

if self._ups is None: 

from pygeodesy.ups import toUps8, Ups # PYCHOK recursive import 

self._ups = toUps8(self, datum=self.datum, Ups=Ups, 

pole=pole, falsed=falsed) 

return self._ups 

 

def toUtm(self): 

'''Convert this C{LatLon} point to a UTM coordinate. 

 

@return: The UTM coordinate (L{Utm}). 

 

@see: Function L{toUtm8}. 

''' 

if self._utm is None: 

from pygeodesy.utm import toUtm8, Utm # PYCHOK recursive import 

self._utm = toUtm8(self, datum=self.datum, Utm=Utm) 

return self._utm 

 

def toUtmUps(self, pole=''): 

'''Convert this C{LatLon} point to a UTM or UPS coordinate. 

 

@keyword pole: Optional top/center of UPS (stereographic) 

projection (C{str}, 'N[orth]' or 'S[outh]'). 

 

@return: The UTM or UPS coordinate (L{Utm} or L{Ups}). 

 

@raise TypeError: Result in L{Utm} or L{Ups}. 

 

@see: Function L{toUtmUps}. 

''' 

if self._utm: 

u = self._utm 

elif self._ups and (self._utm.pole == pole or not pole): 

u = self._ups 

else: 

from pygeodesy.utmups import toUtmUps8, Utm, Ups # PYCHOK recursive import 

u = toUtmUps8(self, datum=self.datum, Utm=Utm, Ups=Ups, pole=pole) 

if isinstance(u, Utm): 

self._utm = u 

elif isinstance(u, Ups): 

self._ups = u 

else: 

_TypeError(Utm, Ups, toUtmUps8=u) 

return u 

 

def toWm(self): 

'''Convert this C{LatLon} point to a WM coordinate. 

 

@see: Function L{toWm} in module L{webmercator}. 

 

@return: The WM coordinate (L{Wm}). 

''' 

if self._wm is None: 

from pygeodesy.webmercator import toWm # PYCHOK recursive import 

self._wm = toWm(self) 

return self._wm 

 

# **) MIT License 

# 

# Copyright (C) 2016-2020 -- mrJean1 at Gmail -- All Rights Reserved. 

# 

# Permission is hereby granted, free of charge, to any person obtaining a 

# copy of this software and associated documentation files (the "Software"), 

# to deal in the Software without restriction, including without limitation 

# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

# and/or sell copies of the Software, and to permit persons to whom the 

# Software is furnished to do so, subject to the following conditions: 

# 

# The above copyright notice and this permission notice shall be included 

# in all copies or substantial portions of the Software. 

# 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

# OTHER DEALINGS IN THE SOFTWARE.