Module ellipsoidalKarney
Ellipsoidal geodetic (lat-/longitude) and cartesian (x/y/z) classes LatLon and Cartesian and functions areaOf and perimeterOf based on Charles Karney's Python
implementation of GeographicLib.
Here's an example usage of ellipsoidalKarney
:
>>> from pygeodesy.ellipsoidalKarney import LatLon
>>> Newport_RI = LatLon(41.49008, -71.312796)
>>> Cleveland_OH = LatLon(41.499498, -81.695391)
>>> Newport_RI.distanceTo(Cleveland_OH)
866,455.4329098687 # meter
You can change the ellipsoid model used by the Karney formulae as
follows:
>>> from pygeodesy import Datums
>>> from pygeodesy.ellipsoidalKarney import LatLon
>>> p = LatLon(0, 0, datum=Datums.OSGB36)
or by converting to anothor datum:
>>> p = p.convertDatum(Datums.OSGB36)
|
LatLon
An ellipsoidal LatLon similar to ellipsoidalVincenty.LatLon but using Charles F.
F. Karney's Python GeographicLib to compute the geodesic distance,
initial and final bearing (azimuths) between two given points or
the destination point given a start point and an initial bearing.
|
|
Cartesian
Extended to convert (geocentric) Cartesian points to Karney-based (ellipsoidal)
geodetic LatLon.
|
|
ispolar(points,
wrap=False)
Check whether a polygon encloses a pole. |
|
|
|
areaOf(points,
datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran... ,
wrap=True)
Compute the area of a (n ellipsoidal) polygon. |
|
|
|
isclockwise(points,
datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran... ,
wrap=True)
Determine the direction of a path or polygon. |
|
|
|
perimeterOf(points,
closed=False,
datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran... ,
wrap=True)
Compute the perimeter of a (n ellipsoidal) polygon. |
|
|
ispolar(points,
wrap=False)
|
|
Check whether a polygon encloses a pole.
- Parameters:
points - The polygon points (LatLon []).
wrap - Wrap and unroll longitudes (bool ).
- Returns:
True if the polygon encloses a pole,
False otherwise.
- Raises:
ValueError - Insufficient number of points .
TypeError - Some points are not LatLon or
don't have bearingTo2 , initialBearingTo
and finalBearingTo methods.
|
areaOf(points,
datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran... ,
wrap=True)
|
|
Compute the area of a (n ellipsoidal) polygon.
- Parameters:
points - The polygon points (LatLon[]).
datum - Optional datum (Datum).
wrap - Wrap and unroll longitudes (bool ).
- Returns:
- Area (
meter , same as units of the
datum ellipsoid, squared).
- Raises:
ImportError - Package GeographicLib missing.
TypeError - Some points are not LatLon.
ValueError - Insufficient number of points or longitudes not
wrapped, unrolled, wrap is False .
|
isclockwise(points,
datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran... ,
wrap=True)
|
|
Determine the direction of a path or polygon.
- Parameters:
points - The path or polygon points (LatLon []).
datum - Optional datum (Datum).
wrap - Wrap and unroll longitudes (bool ).
- Returns:
True if points are clockwise,
False otherwise.
- Raises:
TypeError - Some points are not LatLon .
ValueError - Insufficient number of points or
points enclose a pole or zero area.
|
perimeterOf(points,
closed=False,
datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran... ,
wrap=True)
|
|
Compute the perimeter of a (n ellipsoidal) polygon.
- Parameters:
points - The polygon points (LatLon[]).
closed - Optionally, close the polygon (bool ).
datum - Optional datum (Datum).
wrap - Wrap and unroll longitudes (bool ).
- Returns:
- Perimeter (
meter , same as units of the
datum ellipsoid).
- Raises:
ImportError - Package GeographicLib missing.
TypeError - Some points are not LatLon.
ValueError - Insufficient number of points or longitudes not
wrapped, unrolled, wrap is False .
|