
Notes on the Numerical Methods in pfsspy

A. R. Yeates
Department of Mathematical Sciences, Durham University, UK

September 25, 2020

1 Basic Equations

The pfsspy code solves the for a magnetic field satisfying

∇×B = 0; ∇ ·B = 0 (1)

in a spherical shell 1 ≤ r ≤ Rss , given boundary conditions

Br („; ffi) = g(„; ffi) on r = 1; (2)

B„ = Bffi = 0 on r = Rss : (3)

The function g(„; ffi) is specified by the user.

2 Numerical Grid

The solver uses a rectilinear grid that is equally spaced in , s, ffi, where

 = ln(r); s = cos „

in terms of spherical coordinates (r; „ ffi). The coordinate scale factors |dr=d|, |dr=ds|, |dr=dffi| are

h = r = e; hs =
r

sin „
=

e√
1− s2

; hffi = r sin „ = e
p

1− s2:

The grid is illustrated in Figure 1. Note that the longitudinal cell size goes to zero at the poles; these
points are treated specially in the calculation of B. Note also that, since s is a decreasing function of „,
the components of a vector v in (; s; ffi) are v = vr but vs = −v„.

We define the number of grid cells n, ns , nffi, with corresponding uniform spacings

∆ =
ln(Rss)

n
; ∆s =

2

ns
; ∆ffi =

2ı

nffi
:

Note that the boundaries in s are at the poles s = ±1, at which points hffi is not defined. The solution is
periodic in the longitudinal (ffi) direction.

1

Figure 1: The numerical grid used in the solver.

3 Numerical method

3.1 Overall strategy

Rather than writing B = ∇ffl and solving ∇2ffl = 0, we write instead A = ∇×
`
 e

´
. Then accounting

for the unusual coordinates we get

B =
1

hhshffi

˛̨̨̨
˛̨̨h e hffi effi hs es
@ @ffi @s

0
hffi
hs
@s − hs

hffi
@ffi

˛̨̨̨
˛̨̨ (4)

= − 1

hshffi

»
@s

„
hffi
hs
@s

«
+ @ffi

„
hs
hffi
@ffi

«–
e +

1

hhffi
@ffi@ effi +

1

hhs
@s@ es (5)

= −∆⊥ e +
1

hffi
@ffi

„
1

h
@

«
effi +

1

hs
@s

„
1

h
@

«
es : (6)

This will take the curl-free form B = ∇
`

1
h
@

´
provided that

∇2
⊥ = − 1

h
@

„
1

h
@

«
; (7)

so our strategy is to solve Equation (7) for , then reconstruct A and B. The reason for doing it this
way is that it allows us to compute A as well as B (again, for legacy reasons).

2

3.2 Numerical solution

We follow the method described in van Ballegooijen et al. [2000], except that we modify the finite-
difference discretisation to suit our particular coordinates.

The discretisation is chosen so that we will have ∇×B = 0 to machine precision on a staggered grid,
when the curl is taken using central differences. This property of essentially zero current density is
required when using the PFSS solution to, e.g., initialize non-potential simulations. It would not typically
be achieved by interpolating a spherical harmonic solution onto the numerical grid. However, we will
see that the discrete solution effectively computes discrete approximations of the spherical harmonics,
tailored to our particular difference formula.

In the following subsections, we describe the numerical solution in more detail.

3.2.1 Variables

Let the coordinate grid points be defined by

k = k∆; k = 0; : : : ; n;

s j = j∆s − 1; j = 0; : : : ; ns ;

ffii = i∆ffi; i = 0; : : : ; nffi:

In the code the first two arrays are called rg and sg (that for pg is not required). There are also arrays
rc, sc and pc corresponding to the cell centres, i.e. k+1=2, s j+1=2 and ffii+1=2.

To deal with the curvilinear coordinates, we define the edge lengths

L
k+1=2;j;i
 =

Z k+1

k
h d = e

k+1 − e
k
;

L
k;j+1=2;i
s =

Z s j+1

s j
hs ds = e

k`
arcsin(s j+1)− arcsin(s j)

´
;

L
k;j;i+1=2

ffi =

Z ffii+1

ffii
hffi dffi = e

k
ffj∆ffi:

Here we used the fact that ∆, ∆s and ∆ffi are constant, and used the shorthand

ffj :=
q

1− (s j)2:

Similarly we define the areas of the cell faces

S
k;j+1=2;i+1=2
 =

Z ffii+1

ffii

Z s j+1

s j
hshffi dsdffi = e2k∆s∆ffi;

S
k+1=2;j;i+1=2
s =

Z k+1

k

Z ffii+1

ffii
hhffi dffid = 1

2

`
e2k+1 − e2k

´
ffj ∆ffi;

S
k+1=2;j+1=2;i
ffi =

Z k+1

k

Z s j+1

s j
hhs dsd = 1

2

`
e2k+1 − e2k

´`
arcsin(s j+1)− arcsin(s j)

´
:

3

In the code the face areas are stored in arrays Sbr, Sbs and Sbp (with only the dimensions required).

In the code the magnetic field B is defined staggered on the face centres, so Bk;j+
1=2;i+1=2

 , Bk+1=2;j;i+1=2
s ,

B
k+1=2;j+1=2;i
ffi . These variables are called br, bs and bp.

The vector potential is located on the corresponding cell edges, so Ak+1=2;j;i
 , Ak;j+

1=2;i+1=2
s , Ak;j;i+

1=2

ffi . In
fact, these values are never required on their own, only multiplied by the corresponding edge lengths.
So the variables alr, als and alp correspond to the products LA, LsAs and LffiAffi, respectively.

Finally, the potential is located on the -faces (like B), so k;j+1=2;i+1=2. It is stored in the variable
psi.

3.2.2 Derivatives

Firstly, we have A = ∇×
`
 e

´
. Numerically, this is approximated by

A
k;j+1=2;i
s = −

k;j+1=2;i+1=2 − k;j+1=2;i−1=2

L
k;j+1=2;i
ffi

; A
k;j;i+1=2

ffi =
 k;j+1=2;i+1=2 − k;j−1=2;i+1=2

L
k;j;i+1=2
s

: (8)

The magnetic field B = ∇× A is then approximated by

(SB)k;j+
1=2;i+1=2 = (LsAs)

k;j+1=2;i+1 − (LsAs)
k;j+1=2;i − (LffiAffi)k;j+1;i+1=2 + (LffiAffi)k;j;i+

1=2; (9)

(SsBs)
k+1=2;j;i+1=2 = (LffiAffi)k+1;j;i+1=2 − (LffiAffi)k;j;i+

1=2; (10)

(SffiBffi)k+1=2;j+1=2;i = −(LsAs)
k+1;j+1=2;i + (LsAs)

k;j+1=2;i : (11)

These formulae correspond to Stokes’ Theorem applied to the cell face. The condition ∇×B = 0 may
be expressed similarly as

0 = (LsBs)
k+1=2;j;i−1=2 − (LsBs)

k+1=2;j;i+1=2 − (LffiBffi)k+1=2;j+1=2;i + (LffiBffi)k+1=2;j−1=2;i ; (12)

0 = (LffiBffi)k+1=2;j+1=2;i − (LffiBffi)k−
1=2;j+1=2;i − (LB)k;j+

1=2;i+1=2 + (LB)k;j+
1=2;i−1=2; (13)

0 = (LB)k;j+
1=2;i+1=2 − (LB)k;j−

1=2;i+1=2 − (LsBs)
k+1=2;j;i+1=2 + (LsBs)

k−1=2;j;i+1=2: (14)

Note that the factors L, Ls , Lffi here are defined normal to the cell faces, not on the edges. But they
have the same formulae.

In fact, condition (12) is automatically satisfied. This may be shown using equations (8) to (11), together
with our formulae for Ls , Lffi, Ss and Sffi.

Below, we will discretise (7) in such a way that conditions (13) and (14) are also satisfied exactly (up to
rounding error).

3.2.3 Boundary conditions for B

Boundary conditions are needed when br, bs, bp are averaged to the grid points for output. We use a
layer of “ghost cells”, whose values are set by the following boundary conditions:

4

1. In ffi, br and bs are simply periodic.

2. At the outer boundary  = log(Rss), ghost values of bs and bp are set assuming constant gradient
in .

3. At the inner boundary,  = 0, ghost values of bs and bp are set using equations (13) and (14)
(effectively assuming zero horizontal current density).

4. At the polar boundaries, the ghost value of br is set to the polemost interior value from the
opposite side of the grid. Similarly, bp is set to minus the polemost interior value from the opposite
side of the grid. The values of bs at the poles are not meaningful as the cell faces have zero area.
However, they are set to the average of the two neighbouring interior values at that longitude (with
the opposite one being reversed in sign).

Some of these conditions are chosen for compatibility with other codes, and are not necessarily the
most straightforward option for a pure PFSS solver.

3.2.4 Discretization of Equation (7)

First, we approximate the two-dimensional Laplacian ∇2
⊥ by

∇2
⊥

k;j+1=2;i+1=2 =
1

S
k;j+1=2;i+1=2


24Lk;j+1=2;i+1
s

L
k;j+1=2;i+1
ffi

`
 k;j+

1=2;i+3=2 − k;j+1=2;i+1=2
´
− L

k;j+1=2;i
s

L
k;j+1=2;i
ffi

`
 k;j+

1=2;i+1=2 − k;j+1=2;i−1=2
´

+
L
k;j+1;i+1=2

ffi

L
k;j+1;i+1=2
s

`
 k;j+

3=2;i+1=2 − k;j+1=2;i+1=2
´
−
L
k;j;i+1=2

ffi

L
k;j;i+1=2
s

`
 k;j+

1=2;i+1=2 − k;j−1=2;i+1=2
´35

As shorthand we define the quantities

U j+
1=2 =

„
Ls

∆s∆ffiLffi

«j+1=2

; V j =

„
Lffi

∆s∆ffiLs

«j
;

noting that these both depend on j only. In the code these are called Uc and Vg. Then we can write our
discretization as

∇2
⊥

k;j+1=2;i+1=2 =
1

e2k

h
U j+

1=2
`
 k;j+

1=2;i+3=2 − k;j+1=2;i−1=2
´

+ V j+1 k;j+
3=2;i+1=2 + V j k;j−

1=2;i+1=2

−
“

2U j+
1=2 + V j+1 + V j

”
 k;j+

1=2;i+1=2

i
:

(15)

This is the left-hand side of (7).

To discretize the right-hand side of (7), we use the approximation

− 1

h
@

„
1

h
@

«k;j+1=2;i+1=2

= − c(∆)

L
k;j+1=2;i+1=2


 k+1;j+1=2;i+1=2 − k;j+1=2;i+1=2

L
k+1=2;j+1=2;i+1=2


− k;j+1=2;i+1=2 − k−1;j+1=2;i+1=2

L
k−1=2;j+1=2;i+1=2


!
;

(16)

5

where

c(∆) =
2 e∆=2

e∆ + 1
= sech

„
∆

2

«
:

Combining this with (15), we arrive at

U j+
1=2
`
 k;j+

1=2;i+3=2 − k;j+1=2;i−1=2
´

+ V j+1 k;j+
3=2;i+1=2 + V j k;j−

1=2;i+1=2 −
“

2U j+
1=2 + V j+1 + V j

”
 k;j+

1=2;i+1=2

= − c(∆) e2k

L
k;j+1=2;i+1=2


 k+1;j+1=2;i+1=2 − k;j+1=2;i+1=2

L
k+1=2;j+1=2;i+1=2


− k;j+1=2;i+1=2 − k−1;j+1=2;i+1=2

L
k−1=2;j+1=2;i+1=2


!
:

(17)

The reader may verify algebraically that conditions (13) and (14) follow if this finite-difference equation
is satisfied.

3.2.5 Method of solution

Equation (17), together with the appropriate boundary conditions, yields a large (but sparse) system of
nnsnffi × nnsnffi linear equations to solve. Fortunately, following van Ballegooijen et al. [2000], we can
reduce this to a series of symmetric tridiagonal eigenvalue problems, if we look for eigenfunctions of
the form

 k;j+
1=2;i+1=2 = f kQ

j+1=2

lm e2ıImi=nffi : (18)

Here the k in f k is a power, not an index, and I is the square root of −1 (since we already used i and j
for indices). This reduction will enable very efficient solution of the linear system.

Substituting (18) in Equation (17) gives

−V jQj−1=2

lm +
“
V j + V j+1 + 4U j+

1=2 sin2
“
ım
nffi

””
Q
j+1=2

lm − V j+1Q
j+3=2

lm

=
c(∆)e2k

L
k;j+1=2;i+1=2


f − 1

L
k+1=2;j+1=2;i+1=2


− 1− f −1

L
k−1=2;j+1=2;i+1=2


!
Q
j+1=2

lm : (19)

The right-hand side can be simplified since the dependence on k cancels out. This leaves the tridiago-
nal eigenvalue problem

− V jQj−1=2

lm +
“
V j + V j+1 + 4U j+

1=2 sin2
“
ım
nffi

””
Q
j+1=2

lm − V j+1Q
j+3=2

lm = –lmQ
j+1=2

lm ; (20)

where f is determined from the eigenvalues –lm by solving the quadratic relation

–lm =
c(∆)

e∆=2 − e−∆=2

„
1− f −1

1− e−∆
− f − 1

e∆ − 1

«
: (21)

This may be rearranged into the form

f 2 −
»

1 + e∆ + sech

„
∆

2

«
–lm(e∆ − 1)(e∆=2 − e−∆=2)

–
f + e∆ = 0; (22)

6

with two solutions for each l , m given by

f +
lm; f

−
lm = Flm ±

q
F 2
lm − e∆ ; where Flm = 1

2

h
1 + e∆ + –lm(e∆ − 1) sinh(∆)

i
: (23)

In the code, the eigenvalues are called lam and the corresponding matrix of eigenvectors is Q. The
solutions f +

lm and f −lm are called ffp and ffm respectively.

The solution may then be written as a sum of these two sets of radial eigenfunctions:

 k;j+
1=2;i+1=2 =

ns−1X
l=0

nffi−1X
m=0

h
clm(f +

lm)k + dlm(f −lm)k)
i
Q
j+1=2

lm e2ıImi=nffi : (24)

The coefficients clm and dlm are then determined by the radial boundary conditions:

1. At the inner boundary  = 0, where k = 0, we want B = −∇2
⊥ to match our given distribution

g j+1=2;i+1=2. We have

B
k;j+1=2;i+1=2
 =

ns−1X
l=0

nffi−1X
m=0

–lm

e2k

h
clm(f +

lm)k + dlm(f −lm)k)
i
Q
j+1=2

lm e2ıImi=nffi ;

so

g j+
1=2;i+1=2 =

ns−1X
l=0

nffi−1X
m=0

–lm

e20

h
clm + dlm

i
Q
j+1=2

lm e2ıImi=nffi :

We take the discrete Fourier transform of g j+1=2;i+1=2 in i , so that (noting e
0

= 1),

ns−1X
l=0

nffi−1X
m=0

–lm

h
clm + dlm

i
Q
j+1=2

lm e2ıImi=nffi =

nffi−1X
m=0

b
j+1=2
m e2ıImi=nffi :

Then the orthonormality of Qj+
1=2

lm for different l allows us to determine

clm + dlm =
1

–lm

ns−1X
j=0

b
j+1=2
m Q

j+1=2

lm : (25)

2. At the source (outer) surface  = ln(Rss), where k = n, there are two options.

(a) Radial field. We impose @ = 0, in the form n;j+1=2;i+1=2 = n−1;j+1=2;i+1=2, which gives

dlm
clm

=
(f +
lm)n − (f +

lm)n−1

(f −lm)n−1 − (f −lm)n
: (26)

(Numerically it is better to compute this ratio the other way up, to prevent overflow.)

(b) Imposed Br . In this case the boundary condition is treated similarly to the inner boundary.
We require

ĝ j+
1=2;i+1=2 =

ns−1X
l=0

nffi−1X
m=0

–lm
e2n

h
clm(f +

lm)n + dlm(f −lm)n
i
Q
j+1=2

lm e2ıImi=nffi ;

7

Figure 2: Comparison of Pml (cos „) (coloured lines) with the discrete eigenfunctions Qj+
1=2

lm (black dots), for m = 6
and l = 0; : : : ; 4, at resolution ns = 60 and nffi = 120.

so we may again take the discrete Fourier transform to end up with

clm(f +
lm)n + dlm(f −lm)n =

e2n

–lm

ns−1X
j=0

b̂
j+1=2
m Q

j+1=2

lm ; (27)

Solving (26) simultaneously with either (25) or (27) gives clm and dlm. These are called clm and dlm in
the code.

Remark: as we increase the grid resolution, the eigenfunctions Qj+
1=2

lm , which are functions of „, should
converge to the corresponding associated Legendre polynomials Pml (cos „), up to normalization. This
is illustrated in Figure 2.

References

A. A. van Ballegooijen, E. R. Priest, and D. H. Mackay. Mean Field Model for the Formation of Filament
Channels on the Sun. ApJ, 539:983–994, Aug. 2000. doi: 10.1086/309265.

8

	Basic Equations
	Numerical Grid
	Numerical method
	Overall strategy
	Numerical solution
	Variables
	Derivatives
	Boundary conditions for bold0mu mumu BBBBBB
	Discretization of Equation (7)
	Method of solution

