import mpfit
import numpy as np
[docs]def powerfit(xax,data,err=None,alphaguess=-2.0,scaleguess=1.0,quiet=True):
"""
Fit a power law (a line in log-space) to data as a function of x
differs from 'plfit' because plfit fits a power law distribution,
this code simply fits a power law
"""
logdata = np.log10(data)
if err is None: err = np.ones(data.shape,dtype='float')
def mpfitfun(data,err):
def f(p,fjac=None): return [0,np.ravel(((np.log10(p[0])+np.log10(xax)*p[1])-data)/err)]
return f
mp = mpfit.mpfit(mpfitfun(logdata,err),xall=[scaleguess,alphaguess],quiet=quiet)
fitp = mp.params
return fitp,mp
[docs]def brokenpowerfit(xax, data, err=None, alphaguess1=0.0, alphaguess2=-2.0, scaleguess=1.0,
breakpoint=None, quiet=True):
"""
Fit a broken power law (a line in log-space) to data as a function of x
differs from 'plfit' because plfit fits a power law distribution,
this code simply fits a power law
This is a lot more intricate than the simple power law fit, since it involves
fitting two power laws with different slopes
Parameters:
p[0] - scale
p[1] - breakpoint
p[2] - power 1 (xax < breakpoint)
p[3] - power 2 (xax >= breakpoint)
There are 5 parameters (NOT 4) returned because there are two scales that are *NOT*
independent
returns: scale1,scale2,breakpoint,alpha1,alpha2
"""
logdata = np.log10(data)
if err is None: err = np.ones(data.shape,dtype='float')
def brokenpowerlaw(p):
lowerhalf = (np.log10(p[0]) + np.log10(xax)*p[2]) * (xax < p[1])
# find the location at which both functions must be equal
scale2loc = np.argmin(np.abs(xax - p[1]))
scale2 = np.log10(xax[scale2loc])*(p[2] - p[3]) + np.log10(p[0])
upperhalf = (scale2 + np.log10(xax)*p[3]) * (xax >= p[1])
# DEBUG print "scale1: %15g scale2: %15g xaxind: %5i xaxval: %15g lower: %15g upper: %15g" % (p[0],scale2,scale2loc,np.log10(xax[scale2loc]),lowerhalf[scale2loc-1],upperhalf[scale2loc])
return lowerhalf+upperhalf
def mpfitfun(data,err):
def f(p,fjac=None): return [0,np.ravel((brokenpowerlaw(p)-data)/err)]
return f
if breakpoint is None: breakpoint = np.median(xax)
parinfo = [{}, {'mpminstep':xax.min(),'mpmaxstep':xax.max(),'step':xax.min()}, {}, {}]
mp = mpfit.mpfit(mpfitfun(logdata,err),xall=[scaleguess,breakpoint,alphaguess1,alphaguess2],quiet=quiet,parinfo=parinfo)
fitp = mp.params
scale2loc = np.argmin(np.abs(xax - fitp[1]))
scale2 = 10**( np.log10(xax[scale2loc])*(fitp[2] - fitp[3]) + np.log10(fitp[0]) )
fitp = np.array( [fitp[0],scale2] + fitp[1:].tolist() )
return fitp,mp