
oBB Documentation
Release 0.1a

J. Fowkes

August 06, 2013

CONTENTS

1 Installing oBB 2
1.1 Requirements . 2
1.2 Installation using pip (recommended) . 2
1.3 Manual installation . 3
1.4 Uninstallation . 3

2 User Guide 4
2.1 Global Optimization . 4
2.2 How to use oBB . 4
2.3 Optional Parameters . 5
2.4 Example of Use . 5
2.5 Running the Algorithm . 7
2.6 Using the RBF Layer . 7
2.7 RBF Layer Example . 8
2.8 RBF Layer for the COCONUT Test Set . 9
2.9 References . 9

Bibliography 10

i

oBB Documentation, Release 0.1a

oBB is an algorithm for the parallel global optimization of functions with Lipchitz continuous gradient or
Hessian.

Warning: oBB is currently undergoing testing and may not work as expected.

CONTENTS 1

CHAPTER

ONE

INSTALLING OBB

1.1 Requirements

oBB requires the following software to be installed:

• Python 2.6 to 2.7 (http://www.python.org/)

• A working implementation of MPI-2 (e.g. OpenMPI, http://www.open-mpi.org/)

Additionally, the following python packages should be installed (these will be installed automatically if
using pip, see Installation using pip (recommended)):

• NumPy 1.3.0 or higher (http://www.numpy.org/)

• MPI for Python 1.3 or higher (http://mpi4py.scipy.org/)

• CVXOPT 1.1.3 or higher (http://cvxopt.org/)

Optionally, the following software may be manually installed for added functionality:

• matplotlib 1.1.0 or higher (http://www.matplotlib.org/) - for visualising the algorithm in 2D

1.2 Installation using pip (recommended)

For easy installation, use pip (http://www.pip-installer.org/):

$ [sudo] pip install obb

or alternatively easy_install (deprecated):

$ [sudo] easy_install obb

If you do not have root privileges or you want to install oBB for your private use, you can use:

$ pip install --user obb

which will install oBB in your home directory.

2

http://www.python.org/
http://www.open-mpi.org/
http://www.numpy.org/
http://mpi4py.scipy.org/
http://cvxopt.org/
http://www.matplotlib.org/
http://www.pip-installer.org/

oBB Documentation, Release 0.1a

1.3 Manual installation

Alternatively, you can download the source code and unpack as follows:

$ wget http://pypi.python.org/packages/source/o/oBB/oBB-X.X.tar.gz
$ tar -xzvf oBB-X.X.tar.gz
$ cd oBB-X.X

and then build and install manually using:

$ python setup.py build
$ python setup.py install

If you do not have root privileges or you want to install oBB for your private use, you can use:

$ python setup.py install --user

instead.

1.4 Uninstallation

If oBB was installed using pip you can uninstall as follows:

$ [sudo] pip uninstall obb

If oBB was installed manually you have to remove the installed files by hand (located in your python site-
packages directory).

1.3. Manual installation 3

CHAPTER

TWO

USER GUIDE

This section describes the main interface to oBB and how to use it.

2.1 Global Optimization

oBB is designed to solve the global optimization problem

min
x∈Rn

f(x)

s.t. l ≤ x ≤ u

and lc ≤ Ax ≤ uc

where the domain D is convex, compact and the objective function f has Lipschitz continuous gradient or
Hessian. oBB does not need to know the Lipschitz constants explicitly, it merely requires the user to supply
elementwise bounds on the Hessian or derivative tensor of the objective function (see How to use oBB).

oBB uses local first or second order Taylor type approximations over balls within a parallel branch and
bound framework. As with all branch and bound algorithms, the curse of dimensionality limits its use to
low dimensional problems. The choice of whether to use first or second order approximations is down to
the user (see How to use oBB).

For an in-depth technical description of the algorithm see the tech-report [CFG2013] and the paper
[FGF2013].

2.2 How to use oBB

oBB requires the user to write a python script file which defines the functions and parameters necessary to
solve the problem. These are determined by the choice of a first or second order approximation model (see
[CFG2013] for details):

• First order models: q - norm based, g, Hz, lbH, E0, Ediag - minimum eigenvalue based

• Second order models: c - norm based, gc - minimum eigenvalue based

If using a first order model, the following functions are required:

4

oBB Documentation, Release 0.1a

• f(x) - returns objective function f at point x (scalar)

• g(x) - returns gradient∇xf of objective function at x (1D numpy array)

and the bounding function:

• bndH(l,u) - returns two numpy matrices of elementwise lower and upper bounds on the Hessian∇xxf
of the objective function over [l, u]

For a second order model we also require:

• H(x) - returns Hessian∇xxf of objective function at x (2D numpy array)

and rather than bndH the bounding function:

• bndT(l,u) - returns two third order numpy tensors of elementwise lower and upper bounds on the
derivative tensor∇xxxf of the objective function over [l, u]

We now need only specify the type of parallel branch and bound algorithm to use (again, see [CFG2013] for
details):

• T1 - bounds in parallel

• T2_individual, T2_synchronised - tree in parallel

See Example of Use for an in-depth worked example in python.

2.3 Optional Parameters

oBB allows the user to specify several optional parameters to control the behaviour of the algorithm:

• tol - objective function tolerance (e.g. 1e-2, the default)

• toltype - tolerance type (r - relative [default], a - absolute)

• countf - count objective function evaluations (0 - off, 1 - on [default])

• countsp - count subproblem evaluations (0 - off, 1 - on [default])

and if matplotlib (http://www.matplotlib.org/) is installed:

• vis - visualisation of the algorithm in 2D (0 - off [default], 1 - on)

Note that the linear constraint parameters A, lc and uc are also optional as the optimization problem is only
required to be bound constrained.

2.4 Example of Use

Suppose we wish to solve the following problem:

2.3. Optional Parameters 5

http://www.matplotlib.org/

oBB Documentation, Release 0.1a

min
x∈Rn

n∑
i=1

sin(xi)

s.t. − 1 ≤ xi ≤ 1 ∀i = 1, . . . , n

and − 1 ≤
n∑

i=1

xi ≤ 1

One can see that the gradient g, Hessian H and third order derivative tensor T are given by

g(x) = (cos(x1), . . . , cos(xn))
T

H(x) = diag(− sin(x1), . . . ,− sin(xn))

T (x) = diagt(− cos(x1), . . . ,− cos(xn))

where diagt is the tensor diagonal function (i.e. diagt(v) places the vector v on the diagonal of the tensor).

It is straightforward to obtain elementwise bounds on the Hessian matrix H and third order derivative tensor
T as both sin and cos can be bounded below and above by -1 and 1 respectively.

We can code this up in a python script file, let’s call it sins.py as follows:

Example code for oBB
from obb import obb
from numpy import sin,cos,diag,ones,zeros

Input Settings
Algorithm (T1, T2_individual, T2_synchronised)
alg = ’T2_synchronised’

Model type (q - norm quadratic, g/Hz/lbH/E0/Ediag - min eig. quadratic,
c - norm cubic, gc - gershgorin cubic)
mod = ’c’

Tolerance
tol = 1e-2

Tensor diagonal function
def diagt(v):

T = zeros((D,D,D))
for i in range(0,D):

T[i,i,i] = v[i]
return T

Set up sum of sins test function
Dimension
D = 2
Constraints
l = -1*ones(D)
u = 1*ones(D)

2.4. Example of Use 6

oBB Documentation, Release 0.1a

A = ones((1,D))
lc = -1; uc = 1
Required functions
f = lambda x: sum(sin(x))
g = lambda x: cos(x)
H = lambda x: diag(-sin(x))
bndH = lambda l,u: (diag(-ones(D)), diag(ones(D)))
bndT = lambda l,u: (diagt(-ones(D)), diagt(ones(D)))

Name objective function
f.__name__ = ’Sum of Sins’

Run oBB
xs, fxs, tol, itr = obb(f, g, H, bndH, bndT, l, u, alg, mod, A=A, lc=lc, uc=uc, tol=tol)

This file is included in oBB as sins.py.

2.5 Running the Algorithm

To run the user-created python script file (e.g. sins.py) we need to execute it using MPI’s mpiexec command,
specifying the number of processor cores with the -n option. For example, to run oBB on four processor
cores we simply execute the following shell command:

$ mpiexec -n 4 python sins.py

Note that if using the MPICH2 implementation of MPI we first need to start an mpd daemon in the back-
ground:

$ mpd &

but this is not necessary for other MPI implmentations, e.g. OpenMPI.

And that’s all there is to it! Well, almost...

2.6 Using the RBF Layer

oBB can optionally approximate the objective function f by a radial basis function (RBF) surrogate and
optimize the approximation instead (see [FGF2013] for details). The advantage of this approach is that
the user merely needs to supply the objective function and a set of points at which the objective function
should be evaluated to construct the RBF approximation. The disadvantage is that the optimum found by
the algorithm will only be close to the optimum of the objective function if it is sampled at sufficiently many
points.

As before, the user is required to write a python script file which defines the functions and parameters
necessary to solve the problem. In addition to the approximation model, algorithm type parameters and
objective function described in How to use oBB only an n by m numpy array of m points at which to
sample the objective function needs to be specified.

See the RBF Layer Example below for an in-depth worked example in python.

2.5. Running the Algorithm 7

oBB Documentation, Release 0.1a

2.7 RBF Layer Example

Suppose we wish to solve an RBF approximation to the problem give in the Example of Use section:

min
x∈Rn

n∑
i=1

sin(xi)

s.t. − 1 ≤ xi ≤ 1 ∀i = 1, . . . , n

and − 1 ≤
n∑

i=1

xi ≤ 1

We can code this up in a python script file, let’s call it sins_rbf.py as follows:

Example RBF Layer code for oBB
from obb import obb_rbf
from numpy import sin,ones,zeros
from numpy.random import rand,seed

Input Settings
Algorithm (T1, T2_individual, T2_synchronised)
alg = ’T1’

Model type (q - norm quadratic, g/Hz/lbH/E0/Ediag - min eig. quadratic,
c - norm cubic, gc - gershgorin cubic)
mod = ’c’

Tolerance
tol = 1e-2

Set up sum of sins test function
Dimension
D = 2
Constraints
l = -1*ones(D)
u = 1*ones(D)
A = ones((1,D))
lc = -1; uc = 1
Required functions
f = lambda x: sum(sin(x))

Generate 10*D sample points for RBF approximation
seed(5) # !!Sample points have to be the same on all processors!!
pts = rand(10*D, D)

Scale points so they lie in [l,u]
for i in range(0,D):

pts[:,i] = l[i] + (u[i]-l[i])*pts[:,i]

Name objective function
f.__name__ = ’RBF Sum of Sins’

2.7. RBF Layer Example 8

oBB Documentation, Release 0.1a

Run oBB
xs, fxs, tol, itr = obb_rbf(f, pts, l, u, alg, mod, A=A, lc=lc, uc=uc, tol=tol)

Note the use of obb_rbf instead of obb and the need for a random number seed so that the sample points are
the same on all processors. This file is included in oBB as sins_rbf.py, to run it see Running the Algorithm.

2.8 RBF Layer for the COCONUT Test Set

oBB comes with a set of pre-computed RBF approximations to selected functions from the COCONUT
test set that were used to produce the numerical results in the paper [CFG2013]. In order to optimze these
approximations using oBB, the user is required to write a python script file which defines the desired function
and tolerance (see [CFG2013] for a list of all 31 functions available). For example, to optimize an RBF
approximation to the ‘hs041’ function the user could write the following python script file, let’s call it
coconut.py:

Example COCONUT RBF code for oBB
from obb import obb_rbf_coconut

Input Settings
Algorithm (T1, T2_individual, T2_synchronised)
alg = ’T1’

Model type (q - norm quadratic, g/Hz/lbH/E0/Ediag - min eig. quadratic,
c - norm cubic, gc - gershgorin cubic)
mod = ’c’

Tolerance (positive number e.g. 1e-2 or ’12hr’)
tol = ’12hr’

Choose RBF approximation from COCONUT test
f = ’hs041’

Run oBB
xs, fxs, tol, itr = obb_rbf_coconut(f, alg, mod, tol=tol)

Note the use of obb_rbf_coconut and the optional 12hr tolerance setting which runs the algorithm to the
absolute tolerance obtained by a serial code in twelve hours (see [CFG2013] for details). Of course one can
also specific a desired tolerance (e.g. 1e-2) as before. This file is included in oBB as coconut.py, to run it
see Running the Algorithm.

2.9 References

2.8. RBF Layer for the COCONUT Test Set 9

http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

BIBLIOGRAPHY

[CFG2013] Cartis, C., Fowkes, J. M. and Gould, N. I. M. (2013) ‘Branching and Bounding Improvements
for Global Optimization Algorithms with Lipschitz Continuity Properties’, ERGO Technical Report, no.
13-010, pp. 1-33. http://www.maths.ed.ac.uk/ERGO/pubs/ERGO-13-010.html

[FGF2013] Fowkes, J. M. , Gould, N. I. M. and Farmer, C. L. (2013) ‘A Branch and Bound Algorithm for
the Global Optimization of Hessian Lipschitz Continuous Functions’, Journal of Global Optimization,
vol. 56, no. 4, pp. 1791-1815. http://dx.doi.org/10.1007/s10898-012-9937-9

10

http://www.maths.ed.ac.uk/ERGO/pubs/ERGO-13-010.html
http://dx.doi.org/10.1007/s10898-012-9937-9

	Installing oBB
	Requirements
	Installation using pip (recommended)
	Manual installation
	Uninstallation

	User Guide
	Global Optimization
	How to use oBB
	Optional Parameters
	Example of Use
	Running the Algorithm
	Using the RBF Layer
	RBF Layer Example
	RBF Layer for the COCONUT Test Set
	References

	Bibliography

