BicARE

April 19, 2010

BicARE-package BicARE

Description

Biclustering Analysis and Results Exploration

Details

Package:	BicARE
Version:	0.1.0
Date:	2008-06-05
Depends:	R (>= 1.8.0), Biobase, multtest, GSEABase
License:	GPL
biocViews:	Microarray, Transcription, Statistics, Clustering
URL:	http://bioinfo.curie.fr
Packaged:	Tue Aug 19 14:21:38 2008; pgestraud
Built:	R 2.8.0; i686-pc-linux-gnu; 2008-08-19 14:39:57; unix

Index:

FLOC	Performs the FLOC algorithm
bicluster	Extract a bicluster
makeReport	Export the results as html files
residue	Residue of a matrix
sample.bicData	Example data set for BicARE
sample.biclustering	Example biclustering object
testAnnot	Find samples annotations over-represented in
	biclusters
testSet	Find gene sets that are enriched in a bicluster

Further information is available in the following vignettes:

BicARE BicARE (source, pdf)

bicluster

Author(s)

Pierre Gestraud

Maintainer: Pierre Gestraud, <pierre.gestraud@curie.fr>

bicluster

Extract a bicluster

Description

Extract a bicluster from an object of class biclustering

Usage

bicluster(biclustering, k, graph=TRUE)

Arguments

biclustering	an object of class "biclustering" created by function FLOC
k	the number of the bicluster considered in the "biclustering" object
graph	boolean, indicating whether the graph should be plotted or not

Value

Returns the bicluster as a matrix with the genes on rows and the samples on columns. Result matrix is of class "bicluster". The "graph" option allows to plot the expression profiles of the genes across the conditions in the bicluster.

Author(s)

Pierre Gestraud

Examples

```
### extract the first bicluster
data(sample.biclustering)
sample.biclustering
bic <- bicluster(sample.biclustering, 1, graph=TRUE)
plot(bic)</pre>
```

2

FLOC

Description

Find a given number of biclusters using the a modified version of the FLOC algorithm.

Usage

```
FLOC(Data, k = 20, pGene = 0.5, pSample=pGene, r = NULL, N = 8, M = 6, t = 500, blocGene = NULL, blocSample = NULL)
```

Arguments

Data	an ExpressionSet or a matrix (with genes on rows and conditions on columns)
k	the number of biclusters searched
pGene	genes initial probability of membership to the biclusters
pSample	samples initial probability of membership to the biclusters
r	the residue threshold
Ν	minimal number of gene per bicluster
М	minimal number of conditions per bicluster
t	number of iterations
blocGene	a matrix indicating the directed initialisation for the genes (see details)
blocSample	a matrix indicating the directed initialisation for the conditions (see details)

Details

This biclustering algorithm is based on the FLOC algorithm (FLexible Overlapped biClustering) defined by Yang et al. (see references). It can discover a set of k, possibly overlapping, biclusters. If r is set to NULL, the residue threshold used in the analysis is the residue of Data divided by 10.

blocGene and blocSample are matrix of 0 and 1 with the rows representing the features (gene or samples) and the columns the biclusters. A 1 on line i and column j indicates that the feature i (gene or sample) will be include in the bicluster j during the initialisation step and will not be removed from it during the analysis. If the number of columns in these matrices is different from the number of bicluster searched, k is set to the maximal value of these two.

See bicluster to extract a bicluster from the biclustering result.

Value

Returns an object of class 'biclustering', a list containing at least :

Call	the matched call.
ExpressionS	et
	the data used
param	a data.frame with the algorithm parameters
bicRow	a matrix of boolean indicating the belonging of the genes to the biclusters
bicCol	the same as for bicRow but for the conditions
mat.resvol.	bic
	a matrix describing the biclusters

makeReport

Author(s)

Pierre Gestraud (<pierre.gestraud@curie.fr>)

References

J. Yang, H. Wang, W. Wang, and P.S. Yu. An improved biclustering method for analyzing gene expression. International Journal on Artificial Intelligence Tools, 14(5):771-789, 2005

Examples

```
data(sample.bicData) ## subset of sample.ExpressionSet from Biobase
residue(sample.bicData) ## 0.3401921
resBic <- FLOC(sample.bicData, k=10, pGene=0.5, r=0.05, N=8, M=10, t=500)
resBic
## initialising samples of 2 biclusters
iniSample <- matrix(0, ncol=2, nrow=26)
## first bicluster initialised around Female cases
iniSample[pData(sample.bicData)$sex=="Female",1] <- 1
## second bicluster initialised around control cases
iniSample[pData(sample.bicData)$type=="Control",2] <- 1
resBic <- FLOC(sample.bicData, k=10, pGene=0.5, r=0.05, N=8, M=10, t=500, blocSample=iniS
resBic
```

makeReport

Export the results as html files

Description

Creates a directory with html files containing the biclustering results.

Usage

makeReport(dirPath, dirName, resBic, browse=TRUE)

Arguments

dirPath	path to the directory
dirName	the name of the directory where the report will be created
resBic	a biclustering result
browse	logical. If TRUE the web browser will be opened

Details

makeReport produces a html report of biclustering results in a new directory named dirName. If the browse argument is set to TRUE the web browser will be opened on the "home.html" file.

Make sure to have rights to create the result directory.

Author(s)

Pierre Gestraud <pierre.gestraud@curie.fr>

4

residue

Examples

```
data(sample.biclustering)
dirPath <- getwd() ## report created in the current working directory
dirName <- "test"
makeReport(dirPath, dirName, sample.biclustering, browse=FALSE)</pre>
```

residue

Residue of a matrix

Description

Returns the residue of a matrix.

Usage

residue(Data)

Arguments

Data an ExpressionSet-class or a matrix

Details

This function computes the residue of a matrix as defined by Yang et al (see references).

Author(s)

Pierre Gestraud

References

J. Yang, H. Wang, W. Wang, and P.S. Yu. An improved biclustering method for analyzing gene expression. International Journal on Artificial Intelligence Tools, 14(5):771-789, 2005

See Also

FLOC

Examples

```
data(sample.bicData)
residue(sample.bicData)
```

sample.bicData Example data set for BicARE

Description

A subset of sample.ExpressionSet from package Biobase. The data for 26 cases, labeled A to Z and 350 genes. Each case has three covariates: sex (male/female), type (case/control) and score (testing score).

Usage

sample.bicData

Format

An ExpressionSet

sample.biclustering

Example biclustering object

Description

A biclustering object created by the FLOC function on the sample.bicData with the following options : k=10, pGene = 0.3, pSample = 0.5, r = 0.025, N = 8, M = 8, t = 1000.

Usage

sample.biclustering

Format

a biclustering object

testAnnot

Find samples annotations over-represented covariates in biclusters

Description

Characterisation of the biclusters in term of over-representation of sample covariates.

Usage

```
testAnnot(resBic, annot=NULL, covariates="all")
```

testSet

Arguments

resBic	a biclustering result from FLOC
annot	annotation matrix, default value is set to NULL, then phenoData of the ExpressionSet is used
covariates	the names of the covariates that should be tested, default value is set to "all"

Details

For each bicluster and each covariate a chi-squarred test is performed to test the adequation between the distribution of the levels of the covariates in the bicluster and in the original dataset.

Multiple testing correction is performed by the Benjamini-Yekutieli procedure. The residuals of the tests indicate if the level is over or down represented in the bicluster.

Due to the amount of results it is advised to use the makeReport function to get a html report.

Value

A biclustering object containing resBic and updated with the results of the tests in resBic\$covar. The results are presented as a list with :

covar	the samples covariates tested
pvalues	a matrix with the p-values of the tests
adjpvalues	a matrix with the p-values adjusted by the Benjamini Yekutieli procedure
index	a list of matrices with the numbers of each level in each bicluster
residuals	a list of matrices with the residuals of the tests for each modality in each bicluster

Author(s)

Pierre Gestraud

Examples

```
data(sample.biclustering)
resBic <- testAnnot(sample.biclustering, annot=NULL, covariates=c("sex", "type"))</pre>
```

testSet

Find gene sets that are enriched in a bicluster

Description

Test of the over-representation of gene sets in the biclusters

Usage

```
testSet(resBic, geneSetCol)
```

Arguments

resBic	a biclustering object created by FLOC
geneSetCol	a GeneSetCollection-class

Details

The over-representation of a gene set in a bicluster is evaluated by an hypergeometric test.

The genes identifiers of the gene sets will automatically be mapped to the same as those used in the data.

Due to the amount of results it is advised to use the makeReport function to get a html report.

Value

A biclustering object containing resBic and updated with the results of the tests in resBic\$geneSet. The results are presented as a list with :

GeneSetCollection

	the GeneSetCollection used
pvalues	a matrix containing the pvalues of the tests for each geneSet and each bicluster
adjpvalue	a matrix containing the p-values adjusted by the Benjamini Yekutieli procedure

Author(s)

Pierre Gestraud < pierre.gestraud@curie.fr>

Examples

```
data(sample.biclustering)
gss <- GeneSetCollection(sample.biclustering$ExpressionSet[1:50,], setType=GOCollection()
resBic <- testSet(sample.biclustering, gss)</pre>
```

Index

*Topic cluster bicluster, 2 FLOC, 3 makeReport, 4 residue, 5 testAnnot, 6 testSet, 7 *Topic datasets sample.bicData, 6 sample.biclustering, 6 *Topic package BicARE-package, 1

BicARE (BicARE-package), 1
BicARE-package, 1
bicluster, 2, 3

ExpressionSet,3 ExpressionSet-class,5

FLOC, 2, 3, 5-7

GeneSetCollection-class,7

makeReport, 4, 7, 8

residue,5

sample.bicData,6
sample.biclustering,6

testAnnot,6 testSet,7