
Presence-Absence Calls on AffyMetrix HG-U133
Series Microarrays with panp

Peter Warren

October 28, 2009

Contents

1 Background 2

2 Preprocessing CEL file data for panp 3
2.1 Creating an AffyBatch object from the CEL files 3
2.2 Creating the ExpressionSet . 3

3 Creating gene detection calls with panp 3

4 Extracting P/M/A calls and p-values 5

5 Illustrating panp’s decisions 5

6 References 7

Introduction

This document describes how to use panp to perform gene detection (make presence/absence
calls) on AffyMetrix HG-U133 series microarray data. Currently, the HG-U133A and
HG-U133 Plus 2.0 are supported. panp operates on preprocessed microarray expression
data as an ExpressionSet object. Any preprocessing method can be used to create the
ExpressionSet, such as rma(), mas5(), expresso(), or gcrma(). Examples show how
to quickly create such an ExpressionSet, then how to use panp to generate a set of
presence/absence calls and a set of p-values indicating significance of the detection for
each expression value.

1

1 Background

Outside of the MAS-P/A method which comes as part of the MAS5.0 software for pro-
cessing Affymetrix oligonucleotide array data (and is also available as mas5calls() in
the affy package), there is no publicly-available method for establishing presence or
absence of genes from microarray data. This means that until now the analyst was
required to use MAS5.0 software to establish gene presence or absence. It seemed desir-
able to decouple the method used to generate gene expression values from the method
used to make gene detection calls. We have therefore developed a statistical method in
R, called ”Presence-Absence calls with Negative Probesets” (PANP) which uses sets of
Affymetrix-reported probes with no known hybridization partners. This method uses a
simple empirically-derived means to generate p-values used for cutoffs, which can reduce
errors that can be introduced by using fitted models. In fact, PANP allows a user to uti-
lize any microarray data pre-processing method to generate expression values, including
PM-only methods as well as PM-MM methods. Cutoffs are generated in terms of the
data on each chip, so even pre-processing methods that do not normalize across chipsets
can be used.

Many Affymetrix probesets are designed based on EST matches in the public data-
bases. Normally, these can provide good target matches to predicted protein-coding
genes. However, occasionally ESTs are poorly annotated as to their strand direction.
As a result, some probesets have been designed in the reverse complement direction
against their own transcripts. That is, these probesets cannot hybridize to the true
(intended) EST target, but would hybridize instead to the reverse complement if it was
transcribed. We decided to call these Negative Strand Matching Probesets (NSMPs).
The initial NSMP lists were derived from Affymetrix chip annotation. We then BLATed
these against the NCBI dbEST and removed outliers that showed significant EST hits.
The resulting sets became our sets of NSMP negative controls, one set for each chip
type.

The panp package consists primarily of one function, pa.calls(), which is used to
create the set of presence/absence calls and the set of p-values. It calculates a survivor
function of the probability density of the NSMP expression values after preprocessing.
The user supplies p-value cutoffs (defaults 0.01/0.02) - let these be called tightCutoff and
looseCutoff. Then pa.calls() interpolates cutoff expression values at those p-values.
Finally, it makes gene presence determinations as follows, for interpolated intensities
above, below and between the cutoff intensities for p-values as follows:

1. Present (P): p-values < tightCutoff

2. Marginal (M): p-values between tightCutoff and looseCutoff

3. Absent (A): p-values >= looseCutoff

2

2 Preprocessing CEL file data for panp

This vignette assumes the affy package has been installed, as well as the cdf and probe
sequence packages for the chip type you will be using.

First, the CEL file data must be preprocessed to generate expression values. This is
done in two stages: create an AffyBatch object, then process that to generate expression
values as an ExpressionSet. In this example, we’ll use gcrma for the latter, so let’s
load the required libraries for that and for panp (note that loading these packages will
automatically cause to be loaded any other packages they require, such as affy):

> library(gcrma)

> library(panp)

2.1 Creating an AffyBatch object from the CEL files

Make sure the CEL files are in the current working directory, and that R is pointing
to that directory. The ReadAffy() function reads in the CEL file data and creates an
AffyBatch object:

> samples <- ReadAffy() # this reads in all CEL files it finds in the directory

2.2 Creating the ExpressionSet

The gcrma function is one way to do this.

> gcrma.ExpressionSet <- gcrma(samples)

> # You might wish to save it:

> save(gcrma.ExpressionSet, file= "gcrma.ExpressionSet.Rdata")

For this example, we have already done the above steps, using gcrma to create an
ExpressionSet with three samples, which we will now load:

> data(gcrma.ExpressionSet)

3 Creating gene detection calls with panp

First, you can run the pa.calls() function with no arguments to obtain a summary of
usage information:

> pa.calls()

3

USAGE:

pa.calls(object, looseCutoff=0.02, tightCutoff=0.01, verbose = FALSE)

INPUTS:

object - ExpressionSet, returned from expression-generating function,

such as expresso(), rma(), mas5(), gcrma(), etc.

looseCutoff - the larger P-value cutoff

tightCutoff - the smaller, more strict P-value cutoff

verbose - TRUE or FALSE

OUTPUTS:

Returns a list of two matrices, Pcalls and Pvals:

Pvals - a matrix of P-values of same dimensions as exprs(input object). Each

datapoint is the P-value for the probeset at the same x,y coordinates.

Pcalls - a matrix of Presence (P), Marginal (M), Absent (A) indicators

NULL

Now, let’s run it on our ExpressionSet. We’ll use the default p-value cutoffs of 0.01
and 0.02. So in this case, intensities above the intensity at the 0.01 cutoff will be called
”P” (present); intensities between the two cutoffs will be assigned an ”M” (marginal),
and those below the intensity at the 0.02 p-value will get an ”A”(absent).

> PA <- pa.calls(gcrma.ExpressionSet)

Processing 3 chips: ###

Processing complete.

Intensities at cutoff P-values of 0.02 and 0.01 :

Array: value at 0.02 value at 0.01

12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL 3.81 4.1

12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL 3.77 4.07

12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL 3.89 4.11

[NOTE: 'Collapsing to unique x values...' warning messages are benign.]

The screen output tells you what the intensity values are at each of the two cutoff
p-values, for each of the three chips in our ExpressionSet. (Be aware that some pre-
processing methods, such as rma and gcrma, return the expression values in log(2) form.
Others return untransformed expression values. pa.calls() works equally well in ei-
ther case.) The final output line informs the user that if any warning messages about
’Collapsing to unique values’ appear, they are benign (there are none in this example).
The collapsing sometimes occurs when pa.calls() interpolates over a large data set,
and is expected.

4

4 Extracting P/M/A calls and p-values

The presence/absence calls and p-values are returned as two matrices, ”Pcalls” and
”Pvals”, respectively, in the returned list (here, ”PA”). These two matrices can now
be extracted for further use in the R environment. They can also be saved as comma-
separated files, in case it is desired to view them in Excel, for instance. (You can, of
course, also save these as Rdata files for later use in the R environment.)

> PAcalls <- PA$Pcalls

> Pvalues <- PA$Pvals

> write.table(PAcalls, file = "PAcalls_gcrma.csv", sep = ",", col.names = NA)

> write.table(Pvalues, file = "Pvalues_gcrma.csv", sep = ",", col.names = NA)

A look at the first few P/A calls and p-values for the first chip shows some results:

> head(PAcalls[, 1])

1007_s_at 1053_at 117_at 121_at 1255_g_at 1294_at

"P" "P" "A" "A" "A" "A"

> head(Pvalues[, 1])

1007_s_at 1053_at 117_at 121_at 1255_g_at 1294_at

0.00000000 0.00000000 0.06040878 0.03161899 0.76539624 0.68257532

Finally, we can extract lists of probeset IDs that were called Present, Marginal and
Absent. This must be done one sample at a time; here, we extract the lists for the first
chip:

> P_list_1 <- rownames(PAcalls)[PAcalls[, 1] == "P"]

> M_list_1 <- rownames(PAcalls)[PAcalls[, 1] == "M"]

> A_list_1 <- rownames(PAcalls)[PAcalls[, 1] == "A"]

5 Illustrating panp’s decisions

Figure 1 illustrates how the pa.calls() function derives its P/A calls. The intensities
of the NSMPs versus those of all probesets on the chip (first chip of the three) are
shown. The survivor curve (1-CDF) is included, along with lines showing where the
default p-value cutoffs land on that curve. This illustrates how the p-value cutoffs
are interpolated into intensity cutoffs, using the survivor function. Transcripts whose
intensities are above the right-most cutoff line are called present; those between the two
lines are called marginal; and those below the left-most line are called absent.

5

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

Expression density: NSMPs vs. all, and NSMP survivor curve

Log2(Intensity)

P
ro

ba
bi

lit
y

de
ns

ity

0.010.02

3.81

4.1

Log(intensity)

Log(intensity)

NSMP exprs, survivor fcn.
NSMP exprs, density
All probesets, density
'Present' probesets, density
'Absent' probesets, density

Figure 1: Probability densities of intensities for NSMPs and all probesets for sample
number 1. NSMP survivor function (1-CDF) is in black. Dashed curves indicate densities
for probesets called ”Present” and ”Absent” by panp. Horizontal lines indicate p-value
cutoffs of 0.01 and 0.02, while vertical lines show how these are interpolated on the
NSMP survivor curve to get expression cutoff values.

6

6 References

Warren, P., Bienkowska, J., Martini, P., Jackson, J., and Taylor, D., PANP - a New
Method of Gene Detection on Oligonucleotide Expression Arrays (2007), under review

7

	Background
	Preprocessing CEL file data for panp
	Creating an AffyBatch object from the CEL files
	Creating the ExpressionSet

	Creating gene detection calls with panp
	Extracting P/M/A calls and p-values
	Illustrating panp's decisions
	References

