
Imputed SNP analyses and meta-analysis with
snpMatrix

David Clayton

December 4, 2009

Getting started

The need for imputation in SNP analysis studies occurs when we have a smaller set of samples
in which a large number of SNPs have been typed, and a larger set of samples typed in only a
subset of the SNPs. We use the smaller, complete dataset (which will be termed the training
dataset) to impute the missing SNPs in the larger, incomplete dataset (the target dataset).
Examples of such applications include:

• use of HapMap data to impute association tests for a large number of SNPs, given data
from genome-wide studies using, for example, a 500K SNP array, and

• meta-analyses which seek to combine results from two platforms such as the Affymetrix
500K and Illumina 550K platforms.

Here we will not use a real example such as the above to explore the use of snpMatrix

for imputation, but generate a fictitious example using the data analysed in earlier exer-
cises. This is particularly artificial in that we have seen that these data suffer from extreme
heterogeneity of population structure.

We start by attaching the required libraries and accessing the data used in the exercises:

> library(snpMatrix)

> library(hexbin)

> data(for.exercise)

We shall sample 200 subjects in our fictitious study as the training data set, select
alternate SNPs to be potentially missing or present in the target dataset, and split the
training set into two parts accoordingly:

> training <- sample(1000, 200)

> in.target <- seq(1, ncol(snps.10), 2)

> missing <- snps.10[training, -in.target]

> present <- snps.10[training, in.target]

> missing

1

A snp.matrix with 200 rows and 14250 columns

Row names: jpt.307 ... ceu.71

Col names: rs7093061 ... rs7899159

> present

A snp.matrix with 200 rows and 14251 columns

Row names: jpt.307 ... ceu.71

Col names: rs7909677 ... rs12218790

Thus the training dataset consists of the objects missing and present. The target dataset
holds a subset of the SNPs for the remaining 800 subjects.

> target <- snps.10[-training, in.target]

> target

A snp.matrix with 800 rows and 14251 columns

Row names: jpt.869 ... ceu.464

Col names: rs7909677 ... rs12218790

But, in order to see how successful we have been with imputation, we will also save the SNPs
we have removed from the target dataset

> lost <- snps.10[-training, -in.target]

> lost

A snp.matrix with 800 rows and 14250 columns

Row names: jpt.869 ... ceu.464

Col names: rs7093061 ... rs7899159

We also need to know where the SNPs are on the chromosome in order to avoid having to
search the entire chromosome for suitable predictors of a missing SNP:

> pos.miss <- snp.support$position[-in.target]

> pos.pres <- snp.support$position[in.target]

Calculating the imputation rules

The next step is to calculate a set of rules which for imputing the missing SNPs from the
present SNPs. This is carried out by the function snp.imputation:1

> rules <- snp.imputation(present, missing, pos.pres, pos.miss)

1Sometimes this command generates a warning message concerning the maximum number of EM itera-
tions. If this only concerns a small proportion of the SNPs to be imputed it can be ignored

2

This took a short while. But the wait was really quite short when we consider what
the function has done. For each of the 14,251 SNPs in the “missing” set, the function has
performed a forward step-wise regression on the 50 nearest SNPs in the“present”set, stopping
each search either when the R2 for prediction exceeds 0.95, or after including 4 SNPs in the
regression, or until R2 is not improved by at least 0.05. The figure 50 is the default value of
the try argument of the function, while the values 0.95, 4 and 0.05 together make up the
default value of the stopping argument. Where this regression equation provides adequate
prediction, the corresponding element of rules contains the regression coefficients together
with the R2 achieved and the minor allele frequency of the target SNP. Where prediction does
not achieve a target R2, phased haplotype frequencies are estimated for the predictor SNPs
plus the target SNP and a prediction rule based on these is evaluated. When the gain in R2

exceeds a threshold, this haplotype-based rule is saved in preference to the regression based
rule. The R2 target and threshold which control this process are supplied in the argument
use.haps.

A short listing of the first 10 rules follows:

> rules[1:10]

rs7093061 ~ rs11253563+rs12357593 (MAF = 0.2788945, R-squared = 0.918603)

rs7475011 ~ rs4881552+rs1133113+rs10904173+rs4881518 (MAF = 0.3131313, R-squared = 0.842068)

rs4881551 ~ rs4881552+rs10904596 (MAF = 0.3762626, R-squared = 0.9689128)

rs4880750 ~ rs4880781+rs4881552+rs10904596+rs2496279 (MAF = 0.2842640, R-squared = 0.7488795)

rs7081782 ~ rs2496279 (MAF = 0.05583756, R-squared = 0.975769)

rs7898275 ~ rs2496279 (MAF = 0.0530303, R-squared = 1)

rs4880809 ~ rs6560730+rs12359454 (MAF = 0.2791878, R-squared = 0.8952745)

rs4390277 ~ rs2496279+rs7910845+rs4880517+rs2303990 (MAF = 0.06060606, R-squared = 1)

rs9419496 ~ rs6560730 (MAF = 0.2994924, R-squared = 0.9777849)

rs9419498 ~ rs2448365*rs4881505*rs11253096*rs2050968 (MAF = 0.05808081, R-squared = 0.938291)

Regression-based rules are shown with a + symbol separating predictor SNPs, while haplotype-
based rules are shown with a * separator. A summary table of all the 14,251 rules is generated
by

> summary(rules)

SNPs used

R-squared 1 tags (reg) 2 tags (reg) 2 tags (hap) 3 tags (reg) 3 tags (hap)

(0,0.1] 92 41 0 0 0

(0.1,0.2] 0 103 0 45 0

(0.2,0.3] 0 26 6 96 5

(0.3,0.4] 0 28 7 53 17

(0.4,0.5] 0 26 7 59 24

(0.5,0.6] 0 20 1 50 20

(0.6,0.7] 0 33 24 54 29

3

(0.7,0.8] 0 63 12 89 39

(0.8,0.9] 0 165 44 169 102

(0.9,0.95] 0 176 70 192 143

(0.95,0.99] 2159 437 46 388 92

(0.99,1] 2624 89 23 75 16

<NA> 0 0 0 0 0

SNPs used

R-squared 4 tags (reg) 4 tags (hap) <NA>

(0,0.1] 0 0 0

(0.1,0.2] 1 0 0

(0.2,0.3] 55 0 0

(0.3,0.4] 157 19 0

(0.4,0.5] 205 67 0

(0.5,0.6] 258 154 0

(0.6,0.7] 268 268 0

(0.7,0.8] 362 493 0

(0.8,0.9] 480 935 0

(0.9,0.95] 363 818 0

(0.95,0.99] 260 704 0

(0.99,1] 45 88 0

<NA> 0 0 171

Columns represent the number of SNPs and the type of rule, while rows represent group-
ing on R2. The last column (headed <NA>) represents SNPs for which an imputation rule
could not be computed, either because they were monomorphic or because there was insuf-
ficient data (as determined by the minA optional argument in the call to snp.imputation).

The same information may be displayed graphically by

> plot(rules)

4

4 tags (hap)
4 tags (reg)
3 tags (hap)
3 tags (reg)
2 tags (hap)
2 tags (reg)
1 tags (reg)

r2

N
um

be
r

of
 im

pu
te

d
S

N
P

s

0
10

00
20

00
30

00
40

00

(0
.9

9,
1]

(0
.9

5,
0.

99
]

(0
.9

,0
.9

5]

(0
.8

,0
.9

]

(0
.7

,0
.8

]

(0
.6

,0
.7

]

(0
.5

,0
.6

]

(0
.4

,0
.5

]

(0
.3

,0
.4

]

(0
.2

,0
.3

]

(0
.1

,0
.2

]

(0
,0

.1
]

Carrying out the association tests

The association tests for imputed SNPs can be carried out using the function sin-

gle.snp.tests.

> imp <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = target, rules = rules)

Using the observed data in the matrix present and the set of imputation rules

stored in rules, the above command imputes each of the imputed SNPs, carries out

5

1- and 2-df single tests for association, returns the results in the object imp.

To see how successful imputation has been, we can carry out the same tests us-

ing the true data in missing:

> obs <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = lost)

The next commands extract the p-values for the 1-df tests, using both the im-

puted and the true missing data, and plot one against the other (using the hexbin

plotting package for clarity):

> logP.imp <- -log10(p.value(imp, df = 1))

> logP.obs <- -log10(p.value(obs, df = 1))

> hb <- hexbin(logP.obs, logP.imp, xbin = 50)

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

6

0 1 2 3 4 5 6

0

1

2

3

4

5

logP.obs

lo
gP

.im
p

1
84

168
251
335
418
502
585
668
752
835
919
1002
1086
1169
1253
1336

Counts

As might be expected, the agreement is rather better if we only compare the

results for SNPs that can be computed with high R2. The R2 value is extracted

from the rules object, using the function imputation.r2 and used to select a sub-

set of rules:

> use <- imputation.r2(rules) > 0.9

> hb <- hexbin(logP.obs[use], logP.imp[use], xbin = 50)

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

7

0 1 2 3 4 5

0

1

2

3

4

logP.obs[use]

lo
gP

.im
p[

us
e]

1
43
86

128
170
213
255
297
340
382
424
466
509
551
593
636
678

Counts

Similarly, the function imputation.maf can be used to extract the minor al-

lele frequencies of the imputed SNP from the rules object. Note that there is

a tendency for SNPs with a high minor allele frequency to be imputed rather more

successfully:

> hb <- hexbin(imputation.maf(rules), imputation.r2(rules), xbin = 50)

> sp <- plot(hb)

8

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

imputation.maf(rules)

im
pu

ta
tio

n.
r2

(r
ul

es
)

1
6
11
17
22
27
32
37
42
48
53
58
63
68
74
79
84

Counts

The function snp.rhs.glm also allows testing imputed SNPs. In its simplest

form, it can be used to calculate essentially the same tests as carried out with

single.snp.tests2 (although, being a more flexible function, this will run some-

what slower). The next commands recalculate the 1 df tests for the imputed SNPs

using snp.rhs.tests, and plot the results against those obtained when values are

observed.

> imp2 <- snp.rhs.tests(cc ~ strata(stratum), family = "binomial",

+ data = subject.support, snp.data = target, rules = rules)

2There is a small discrepancy, of the order of (N − 1) : N

9

> logP.imp2 <- -log10(p.value(imp2))

> hb <- hexbin(logP.obs, logP.imp2, xbin = 50)

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

0 1 2 3 4 5 6

0

1

2

3

4

5

logP.obs

lo
gP

.im
p2

1
84

168
251
335
418
502
585
668
752
835
919
1002
1086
1169
1253
1336

Counts

Meta-analysis

As stated at the beginning of this document, one of the main reasons that we need

imputation is to perform meta-analyses which bring together data from genome-

10

wide studies which use different platforms. The snpMatrix package includes a

number of tools to facilitate this. All the tests implemented in snpMatrix are

score tests. In the 1 df case we calculate a score defined by the first deriva-

tive of the log likelihood function with respect to the association parameter

of interest at the parameter value corresponding to the null hypothesis of no

association. Denote this by U. We also calculate an estimate of its variance,

also under the null hypothesis -- V say. Then U2/V provides the chi-squared

test on 1 df. This procedure extends easily to meta-analysis; given two inde-

pendent studies of the same hypothesis, we simply add together to two values of

U and the two values of V , and then calculate U2/V as before. These ideas also

extend naturally to tests of several parameters (2 or more df tests)

In snpMatrix, the statistical testing functions can be called with the op-

tion score=TRUE, causing an extended object to be saved. The extended object

contains the U and V values, thus allowing later combination of the evidence

from different studies. We shall first see what sort of object we have calcu-

lated previously using single.snp.tests without the score=TRUE argument.

> class(imp)

[1] "snp.tests.single"

attr(,"package")

[1] "snpMatrix"

This object contains the imputed SNP tests in our target set. However, these

SNPs were observed in our training set, so we can test them. We will also re-

calculate the imputed tests. In both cases we will saving the score informa-

tion:

> obs <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = missing, score = TRUE)

> imp <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = target, rules = rules, score = TRUE)

The extended objects have been returned:

> class(obs)

[1] "snp.tests.single.score"

attr(,"package")

[1] "snpMatrix"

> class(imp)

[1] "snp.tests.single.score"

attr(,"package")

[1] "snpMatrix"

11

These extended objects behave in the same way as the original objects, so that

the same functions can be used to extract chi-squared values, p-values etc., but

several additional functions, or methods, are now available. Chief amongst these

is pool, which combines evidence across independent studies as described at the

beginning of this section. Although obs and imp are not from independent stud-

ies, so that the resulting test would not be valid, we can use them to demon-

strate this:

> both <- pool(obs, imp)

> class(both)

[1] "snp.tests.single"

attr(,"package")

[1] "snpMatrix"

> both[1:5]

N N.r2 Chi.squared.1.df Chi.squared.2.df P.1df P.2df

rs7093061 979 915.5103 1.8948111 2.8244419 0.16866028 0.2436017

rs7475011 969 847.2344 1.0633196 1.0766987 0.30245927 0.5837110

rs4881551 982 957.6276 0.1798252 0.4333259 0.67152350 0.8052013

rs4880750 968 774.3861 2.8967897 4.4544485 0.08875616 0.1078273

rs7081782 990 970.7848 0.7425397 0.7461537 0.38884855 0.6886123

Note that if we wished at some later stage to combine the results in both with

a further study, we would also need to specify score=TRUE in the call to pool:

> both <- pool(obs, imp, score = TRUE)

> class(both)

[1] "snp.tests.single.score"

attr(,"package")

[1] "snpMatrix"

Another reason to save the score statistics is that this allows us to inves-

tigate the direction of findings. These can be extracted from the extended ob-

jects using the function effect.sign. For example, this command tabulates the

signs of the associations in obs:

> table(effect.sign(obs))

-1 0 1

7082 25 7143

12

In this table, -1 corresponds to tests in which effect sizes were negative (cor-

responding to an odds ratio less than one), while +1 indicates positive effect

sizes (odds ratio greater than one). Zero sign indicates that the effect was

NA (for example because the SNP was monomorphic). Reversal of sign can be the

explanation of a puzzling phenomenon when two studies give significant results

individually, but no significant association when pooled. Although it is not

impossible that such results are genuine, a more usual explanation is that the

two alleles have been differently coded in the two studies: allele 1 in the first

study is allele 2 in the second study and vice versa. To allow for this snpMa-

trix provides the switch.alleles function, which reverses the coding of spec-

ified SNPs. It can be applied to snp.matrix objects but, because allele switches

are often discovered quite late on in the analysis and recoding the original data

matrices could have unforeseen consequences, the switch.alleles function can also

be applied to the extended test output objects. This modifies the saved scores

as if the allele coding had been switched in the original data. The use of this

is demonstrated below.

> effect.sign(obs)[1:6]

rs7093061 rs7475011 rs4881551 rs4880750 rs7081782 rs7898275

-1 1 1 -1 1 1

> sw.obs <- switch.alleles(obs, c("rs7093061", "rs7475011"))

> class(sw.obs)

[1] "snp.tests.single.score"

attr(,"package")

[1] "snpMatrix"

> effect.sign(sw.obs)[1:6]

rs7093061 rs7475011 rs4881551 rs4880750 rs7081782 rs7898275

1 -1 1 -1 1 1

13

