Calculation of the cost matrix

Wolfgang Huber

October 28, 2009

1 Problem statement and definitions

Let $y_{n j}$ be the data value at position (genomic coordinate) $n=1, \ldots, N$ for replicate array $j=1, \ldots, J$. Hence we have J arrays and sequences of length N. The goal of this note is to describe an $O(N J)$ algorithm to calculate the cost matrix of a piecewise linear model for the segmentation of the $(1, \ldots, N)$ axis. It is implemented in the function costMatrix in the package tilingArray. The cost matrix is the input for a dynamic programming algorithm that finds the optimal (least squares) segmentation.

The cost matrix $G_{k m}$ is the sum of squared residuals for a segment from m to $m+k-1$ (i. e. including $m+k-1$ but excluding $m+k$),

$$
\begin{equation*}
G_{k m}:=\sum_{j=1}^{J} \sum_{n=m}^{m+k-1}\left(y_{n j}-\hat{\mu}_{k m}\right)^{2} \tag{1}
\end{equation*}
$$

where $1 \leq m \leq m+k-1 \leq N$ and $\hat{\mu}_{k m}$ is the mean of that segment,

$$
\begin{equation*}
\hat{\mu}_{k m}=\frac{1}{J k} \sum_{j=1}^{J} \sum_{n=m}^{m+k-1} y_{n j} . \tag{2}
\end{equation*}
$$

Sidenote: a perhaps more straightforward definition of a cost matrix would be $\bar{G}_{m^{\prime} m}=G_{\left(m^{\prime}-m\right) m}$, the sum of squared residuals for a segment from m to $m^{\prime}-1$. I use version (1) because it makes it easier to use the condition of maximum segment length ($k<=k_{\max }$), which I need to get the algorithm from complexity $O\left(N^{2}\right)$ to $O(N)$.

2 Algebra

$$
\begin{align*}
& G_{k m}=\sum_{j=1}^{J} \sum_{n=m}^{m+k-1}\left(y_{n j}-\hat{\mu}_{k m}\right)^{2} \tag{3}\\
& =\sum_{n, j} y_{n j}^{2}-\frac{1}{J k}\left(\sum_{n^{\prime}, j^{\prime}} y_{n^{\prime} j^{\prime}}\right)^{2} \tag{4}\\
& =\sum_{n} q_{n}-\frac{1}{J k}\left(\sum_{n^{\prime}} r_{n^{\prime}}\right)^{2} \tag{5}
\end{align*}
$$

with

$$
\begin{align*}
q_{n} & :=\sum_{j} y_{n j}^{2} \tag{6}\\
r_{n} & :=\sum_{j} y_{n j} \tag{7}
\end{align*}
$$

If y is an $N \times J$ matrix, then the N-vectors q and r can be obtained by

```
q = rowSums(y*y)
r = rowSums(y)
```

Now define

$$
\begin{align*}
c_{\nu} & =\sum_{n=1}^{\nu} r_{n} \tag{8}\\
d_{\nu} & =\sum_{n=1}^{\nu} q_{n} \tag{9}
\end{align*}
$$

which be obtained from

```
c = cumsum(r)
d = cumsum(q)
```

then (5) becomes

$$
\begin{equation*}
\left(d_{m+k-1}-d_{m-1}\right)-\frac{1}{J k}\left(c_{m+k-1}-c_{m-1}\right)^{2} \tag{10}
\end{equation*}
$$

