Coverage for pygeodesy/ellipsoidalKarney.py : 97%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# -*- coding: utf-8 -*-
L{Cartesian} classed and functions L{areaOf}, L{isclockwise} and L{perimeterOf}, all based on I{Charles Karney's} Python implementation of U{GeographicLib <https://PyPI.org/project/geographiclib>}.
Here's an example usage of C{ellipsoidalKarney}:
>>> from pygeodesy.ellipsoidalKarney import LatLon >>> Newport_RI = LatLon(41.49008, -71.312796) >>> Cleveland_OH = LatLon(41.499498, -81.695391) >>> Newport_RI.distanceTo(Cleveland_OH) 866,455.4329098687 # meter
You can change the ellipsoid model used by the Karney formulae as follows:
>>> from pygeodesy import Datums >>> from pygeodesy.ellipsoidalKarney import LatLon >>> p = LatLon(0, 0, datum=Datums.OSGB36)
or by converting to anothor datum:
>>> p = p.convertDatum(Datums.OSGB36)
@newfield example: Example, Examples '''
LatLonEllipsoidalBase
# all public contants, classes and functions 'Cartesian', 'LatLon', # classes 'areaOf', 'isclockwise', 'ispolar', 'perimeterOf') # functions
'''Extended to convert C{Karney}-based L{Cartesian} to C{Karney}-based L{LatLon} points. '''
'''Convert this cartesian point to a C{Karney}-based geodetic point.
@keyword kwds: Optional, additional B{C{LatLon}} keyword arguments, ignored if C{B{LatLon}=None}. For example, use C{LatLon=...} to override the L{LatLon} (sub-)class or specify C{B{LatLon}=None}.
@return: The B{C{LatLon}} point (L{LatLon}) or if C{B{LatLon}=None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)} with C{C} and C{M} if available.
@raise TypeError: Invalid B{C{LatLon}}, B{C{datum}} or B{C{kwds}}. '''
'''An ellipsoidal L{LatLon} similar to L{ellipsoidalVincenty.LatLon} but using I{Charles F. F. Karney's} Python U{GeographicLib <https://PyPI.org/project/geographiclib>} to compute the geodesic distance, initial and final bearing (azimuths) between two given points or the destination point given a start point and an initial bearing.
@note: This L{LatLon}'s methods require the U{GeographicLib <https://PyPI.org/project/geographiclib>} package. '''
'''DEPRECATED, use method C{initialBearingTo}. ''' return self.initialBearingTo(other, wrap=wrap)
'''Compute the initial and final bearing (forward and reverse azimuth) from this to an other point, using Karney's C{Inverse} method. See methods L{initialBearingTo} and L{finalBearingTo} for more details.
@param other: The other point (L{LatLon}). @keyword wrap: Wrap and unroll longitudes (C{bool}).
@return: A L{Bearing2Tuple}C{(initial, final)}.
@raise ImportError: Package U{geographiclib <https://PyPI.org/project/geographiclib>} not installed or not found.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible. '''
'''Compute the destination point after having travelled for the given distance from this point along a geodesic given by an initial bearing, using Karney's C{Direct} method. See method L{destination2} for more details.
@param distance: Distance (C{meter}). @param bearing: Initial bearing in (compass C{degrees360}). @keyword height: Optional height, overriding the default height (C{meter}, same units as C{distance}).
@return: The destination point (L{LatLon}).
@raise ImportError: Package U{geographiclib <https://PyPI.org/project/geographiclib>} not installed or not found.
@example:
>>> p = LatLon(-37.95103, 144.42487) >>> d = p.destination(54972.271, 306.86816) >>> d LatLon(37°39′10.14″S, 143°55′35.39″E) # 37.652818°S, 143.926498°E '''
'''Compute the destination point and the final bearing (reverse azimuth) after having travelled for the given distance from this point along a geodesic given by an initial bearing, using Karney's C{Direct} method.
The distance must be in the same units as this point's datum axes, conventionally meter. The distance is measured on the surface of the ellipsoid, ignoring this point's height.
The initial and final bearing (forward and reverse azimuth) are in compass degrees.
The destination point's height and datum are set to this point's height and datum.
@param distance: Distance (C{meter}). @param bearing: Initial bearing (compass C{degrees360}). @keyword height: Optional height, overriding the default height (C{meter}, same units as C{distance}).
@return: A L{Destination2Tuple}C{(destination, final)}.
@raise ImportError: Package U{geographiclib <https://PyPI.org/project/geographiclib>} not installed or not found.
@example:
>>> p = LatLon(-37.95103, 144.42487) >>> d, f = p.destination2(54972.271, 306.86816) >>> d LatLon(37°39′10.14″S, 143°55′35.39″E) # 37.652818°S, 143.926498°E >>> f 307.1736313846665 ''' height=height)[:2])
'''Compute the distance between this and an other point along a geodesic, using Karney's C{Inverse} method. See method L{distanceTo3} for more details.
@param other: The other point (L{LatLon}). @keyword wrap: Wrap and unroll longitudes (C{bool}).
@return: Distance (C{meter}).
@raise ImportError: Package U{geographiclib <https://PyPI.org/project/geographiclib>} not installed or not found.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@example:
>>> p = LatLon(50.06632, -5.71475) >>> q = LatLon(58.64402, -3.07009) >>> d = p.distanceTo(q) # 969,954.1663142084 m '''
'''Compute the distance, the initial and final bearing along a geodesic between this and an other point, using Karney's C{Inverse} method.
The distance is in the same units as this point's datum axes, conventially meter. The distance is measured on the surface of the ellipsoid, ignoring this point's height.
The initial and final bearing (forward and reverse azimuth) are in compass degrees from North.
@param other: Destination point (L{LatLon}). @keyword wrap: Wrap and unroll longitudes (C{bool}).
@return: A L{Distance3Tuple}C{(distance, initial, final)}.
@raise ImportError: Package U{geographiclib <https://PyPI.org/project/geographiclib>} not installed or not found.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible. '''
'''Compute the final bearing (reverse azimuth) after having travelled for the given distance along a geodesic given by an initial bearing from this point, using Karney's C{Direct} method. See method L{destination2} for more details.
@param distance: Distance (C{meter}). @param bearing: Initial bearing (compass C{degrees360}).
@return: Final bearing (compass C{degrees360}).
@raise ImportError: Package U{geographiclib <https://PyPI.org/project/geographiclib>} not installed or not found.
@example:
>>> p = LatLon(-37.95103, 144.42487) >>> b = 306.86816 >>> f = p.finalBearingOn(54972.271, b) # 307.1736313846665° '''
'''Compute the final bearing (reverse azimuth) after having travelled along a geodesic from this point to an other point, using Karney's C{Inverse} method. See method L{distanceTo3} for more details.
@param other: The other point (L{LatLon}). @keyword wrap: Wrap and unroll longitudes (C{bool}).
@return: Final bearing (compass C{degrees360}).
@raise ImportError: Package U{geographiclib <https://PyPI.org/project/geographiclib>} not installed or not found.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@example:
>>> p = new LatLon(50.06632, -5.71475) >>> q = new LatLon(58.64402, -3.07009) >>> f = p.finalBearingTo(q) # 11.297220414306684°
>>> p = LatLon(52.205, 0.119) >>> q = LatLon(48.857, 2.351) >>> f = p.finalBearingTo(q) # 157.83449958372714° '''
def geodesic(self): '''Get this C{LatLon}'s U{Geodesic <https://GeographicLib.SourceForge.io/html/python/code.html>}, provided package U{geographiclib <https://PyPI.org/project/geographiclib>} is installed. '''
'''Compute the initial bearing (forward azimuth) to travel along a geodesic from this point to an other point, using Karney's C{Inverse} method. See method L{distanceTo3} for more details.
@param other: The other point (L{LatLon}). @keyword wrap: Wrap and unroll longitudes (C{bool}).
@return: Initial bearing (compass C{degrees360}).
@raise ImportError: Package U{geographiclib <https://PyPI.org/project/geographiclib>} not installed or not found.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@example:
>>> p = LatLon(50.06632, -5.71475) >>> q = LatLon(58.64402, -3.07009) >>> b = p.initialBearingTo(q) # 9.141877488906045°
>>> p = LatLon(52.205, 0.119) >>> q = LatLon(48.857, 2.351) >>> b = p.initialBearingTo(q) # 156.1106404059787°
@JSname: I{bearingTo}. '''
'''Convert this point to C{Karney}-based cartesian (ECEF) coordinates.
@keyword kwds: Optional, additional B{C{Cartesian}} keyword arguments, ignored if C{B{Cartesian}=None}. For example, use C{Cartesian=...} to override the L{Cartesian} (sub-)class or specify C{B{Cartesian}=None}.
@return: The B{C{Cartesian}} point (L{Cartesian}) or if C{B{Cartesian}=None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)} with C{C} and C{M} if available.
@raise TypeError: Invalid B{C{Cartesian}}, B{C{datum}} or B{C{kwds}}. '''
'''(INTERNAL) Karney's C{Direct} method. '''
'''(INTERNAL) Karney's C{Inverse} method.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible. '''
# Compute the area or perimeter of a polygon, # using the GeographicLib package, iff installed
raise ValueError('%s invalid: %s' % ('wrap', wrap))
# note, lon deltas are unrolled, by default
# g.Compute returns (number_of_points, perimeter, signed area)
'''Compute the area of a (n ellipsoidal) polygon.
@param points: The polygon points (L{LatLon}[]). @keyword datum: Optional datum (L{Datum}). @keyword wrap: Wrap and unroll longitudes (C{bool}).
@return: Area (C{meter}, same as units of the B{C{datum}} ellipsoid, squared).
@raise ImportError: Package U{GeographicLib <https://PyPI.org/project/geographiclib>} missing.
@raise TypeError: Some B{C{points}} are not L{LatLon}.
@raise ValueError: Insufficient number of B{C{points}} or longitudes not wrapped, unrolled, B{C{wrap}} is C{False}.
@note: This function requires installation of the U{GeographicLib <https://PyPI.org/project/geographiclib>} package.
@see: L{pygeodesy.areaOf}, L{sphericalNvector.areaOf} and L{sphericalTrigonometry.areaOf}. '''
'''Determine the direction of a path or polygon.
@param points: The path or polygon points (C{LatLon}[]). @keyword datum: Optional datum (L{Datum}). @keyword wrap: Wrap and unroll longitudes (C{bool}).
@return: C{True} if B{C{points}} are clockwise, C{False} otherwise.
@raise TypeError: Some B{C{points}} are not C{LatLon}.
@raise ValueError: Insufficient number of B{C{points}} or B{C{points}} enclose a pole or zero area.
@note: This function requires installation of the U{GeographicLib <https://PyPI.org/project/geographiclib>} package.
@see: L{pygeodesy.isclockwise}. ''' elif a < 0: return False raise ValueError('polar or zero area: %r' % (points,))
'''Compute the perimeter of a (n ellipsoidal) polygon.
@param points: The polygon points (L{LatLon}[]). @keyword closed: Optionally, close the polygon (C{bool}). @keyword datum: Optional datum (L{Datum}). @keyword wrap: Wrap and unroll longitudes (C{bool}).
@return: Perimeter (C{meter}, same as units of the B{C{datum}} ellipsoid).
@raise ImportError: Package U{GeographicLib <https://PyPI.org/project/geographiclib>} missing.
@raise TypeError: Some B{C{points}} are not L{LatLon}.
@raise ValueError: Insufficient number of B{C{points}} or longitudes not wrapped, unrolled, B{C{wrap}} is C{False}.
@note: This function requires installation of the U{GeographicLib <https://PyPI.org/project/geographiclib>} package.
@see: L{pygeodesy.perimeterOf} and L{sphericalTrigonometry.perimeterOf}. '''
# **) MIT License # # Copyright (C) 2016-2020 -- mrJean1 at Gmail -- All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. |