Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

# Copyright 2017-2020 Spotify AB 

# 

# Licensed under the Apache License, Version 2.0 (the "License"); 

# you may not use this file except in compliance with the License. 

# You may obtain a copy of the License at 

# 

# http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

 

from typing import (Union, Iterable, Tuple, List, Dict) 

from pandas import (DataFrame, concat, Series) 

import numpy as np 

from scipy.stats import norm 

 

from spotify_confidence.analysis.constants import ( 

INCREASE_PREFFERED, DECREASE_PREFFERED, TWO_SIDED) 

 

 

def get_all_group_columns(categorical_columns: Iterable, 

ordinal_column: str) -> Iterable: 

all_columns = categorical_columns + [ordinal_column] 

all_columns = [col for col in all_columns if col is not None] 

return all_columns 

 

 

def validate_categorical_columns( 

categorical_group_columns: Union[str, Iterable]) -> Iterable: 

if isinstance(categorical_group_columns, str): 

pass 

elif isinstance(categorical_group_columns, Iterable): 

pass 

else: 

raise TypeError("""categorical_group_columns must be string or 

iterable (list of columns) and you must 

provide at least one""") 

 

 

def listify(column_s: Union[str, Iterable]) -> List: 

if isinstance(column_s, str): 

return [column_s] 

elif isinstance(column_s, Iterable): 

return list(column_s) 

elif column_s is None: 

return [] 

 

 

def get_remaning_groups(all_groups: Iterable, 

some_groups: Iterable) -> Iterable: 

if some_groups is None: 

remaining_groups = all_groups 

else: 

remaining_groups = [ 

group for group in all_groups 

if group not in some_groups and group is not None 

] 

return remaining_groups 

 

 

def validate_levels(df: DataFrame, 

level_columns: Union[str, Iterable], 

levels: Iterable): 

for level in levels: 

try: 

df.groupby(level_columns).get_group(level) 

except (KeyError, ValueError): 

raise ValueError(""" 

Invalid level: '{}' 

Must supply a level within the ungrouped dimensions: {} 

Valid levels: 

{} 

""".format( 

level, level_columns, 

list(df.groupby(level_columns).groups.keys()))) 

 

 

def validate_nims(df: DataFrame, 

groupby: List, 

nims: Union[Tuple, Dict[str, Tuple[float, str]]]): 

assert (nims is None or 

type(nims) is tuple or 

(type(nims) is dict and 

set(df.groupby(groupby).groups.keys()) == set(nims.keys()))) 

 

 

def signed_nims(nims: Union[Tuple, Dict[str, Tuple[float, str]]] 

) -> Union[Tuple[float, float, str], 

Dict[str, Tuple[float, float, str]]]: 

def _nim_2_signed_nim(nim: Tuple[float, str]) -> Tuple[float, float, str]: 

nim_value = 0 if nim[0] is None or np.isnan(nim[0]) else nim[0] 

if nim[1] is None: 

return (nim[0], nim_value, TWO_SIDED) 

elif nim[1].lower() == INCREASE_PREFFERED: 

return (nim[0], -nim_value, 'larger') 

elif nim[1].lower() == DECREASE_PREFFERED: 

return (nim[0], nim_value, 'smaller') 

else: 

raise ValueError(f'{nim[1].lower()} not in ' 

f'{[INCREASE_PREFFERED, DECREASE_PREFFERED]}') 

if nims is None: 

return (None, 0.0, TWO_SIDED) 

elif type(nims) is tuple: 

return _nim_2_signed_nim(nims) 

elif type(nims) is dict: 

return {group: _nim_2_signed_nim(nim) for group, nim in nims.items()} 

else: 

raise ValueError(f'Non inferiority margins need to be either tuple ' 

f'or dictionary') 

 

 

def select_levels(df: DataFrame, 

level_columns: Union[str, Iterable], 

level_1: Union[str, Tuple], 

level_2: Union[str, Tuple]) -> DataFrame: 

gdf = df.groupby(level_columns) 

return concat([gdf.get_group(level_1), gdf.get_group(level_2)]) 

 

 

def level2str(level: Union[str, Tuple]) -> str: 

if isinstance(level, str) or not isinstance(level, Iterable): 

return str(level) 

else: 

return ', '.join([str(sub_level) for sub_level in level]) 

 

 

def validate_data(df: DataFrame, 

numerator: str, 

numerator_sumsq: str, 

denominator: str, 

group_columns: Iterable, 

ordinal_group_column: str): 

"""Integrity check input dataframe. 

""" 

_validate_column(df, numerator) 

if numerator_sumsq is not None: 

_validate_column(df, numerator_sumsq) 

_validate_column(df, denominator) 

 

if not group_columns: 

raise ValueError("""At least one of `categorical_group_columns` 

or `ordinal_group_column` must be specified.""" 

) 

 

for col in group_columns: 

_validate_column(df, col) 

 

# Ensure there's at most 1 observation per grouping. 

max_one_row_per_grouping = all( 

df.groupby(group_columns).size() <= 1) 

if not max_one_row_per_grouping: 

raise ValueError( 

"""Each grouping should have at most 1 observation.""") 

 

if ordinal_group_column: 

ordinal_column_type = df[ 

ordinal_group_column].dtype.type 

if not np.issubdtype(ordinal_column_type, np.number) \ 

and not issubclass(ordinal_column_type, np.datetime64): 

raise TypeError("""`ordinal_group_column` is type `{}`. 

Must be number or datetime type.""".format(ordinal_column_type)) 

 

 

def _validate_column(df: DataFrame, col: str): 

if col not in df.columns: 

raise ValueError(f"""Column {col} is not in dataframe""") 

 

 

def _get_finite_bounds(numbers: Series) -> Tuple[float, float]: 

finite_numbers = numbers[numbers.abs() != float("inf")] 

return finite_numbers.min(), finite_numbers.max() 

 

 

def axis_format_precision(numbers: Series, 

absolute: bool, 

extra_zeros: int = 0) -> Tuple[str, float, float]: 

min_value, max_value = _get_finite_bounds(numbers) 

 

if max_value == min_value: 

return "0.00", min_value, max_value 

 

extra_zeros += 2 if absolute else 0 

precision = -int(np.log10(abs(max_value - min_value))) + extra_zeros 

zeros = ''.join(['0'] * precision) 

return "0.{}{}".format(zeros, '' if absolute else '%'), min_value, max_value 

 

 

def to_finite(s: Series, limit: float) -> Series: 

return s.clip(-100*abs(limit), 100*abs(limit)) 

 

 

def add_color_column(df: DataFrame, cols: Iterable) -> DataFrame: 

return df.assign(color=df[cols].agg(level2str, axis='columns')) 

 

 

def power_calculation(mde: float, 

baseline_var: float, 

alpha: float, 

n1: int, 

n2: int) -> float: 

 

z_alpha = norm.ppf(1 - alpha / 2) 

a = abs(mde) / np.sqrt(baseline_var) 

b = np.sqrt(n1 * n2 / (n1 + n2)) 

z_stat = a * b 

 

return norm.cdf(z_stat - z_alpha) + norm.cdf(-z_stat - z_alpha)