Source code for diamondback.filters.ComplexFrequencyFilter

""" **Description**

        A complex frequency filter adapts and discriminates the phase of a forward
        complex coefficient to produce a reference signal, which estimates a normalized
        frequency of a primary signal which is normalized to unity magnitude.  A
        normalized frequency and rate of adaptation are specified.

        .. math::

            f_{n} = \\frac{\\tan^{-1}(\ b_{n}\ ) }{\pi}

        .. math::

            x_{n} = \\frac{d_{n}}{|\ d_{n}\ |}

        .. math::

            y_{n} = b_{n} x_{n-1}

        .. math::

            e_{n} = d_{n} - y_{n}

        .. math::

            b_{0} = e^{\ j\ \pi\ f_{0}}

        .. math::

            b_{n} = b_{n} + \mu e_{n} x_{n}^{*}

    **Example**

        ::

            from diamondback import ComplexExponentialFilter
            import numpy


            x = numpy.linspace( 0.0, 0.1, 128 )

            # Create a primary signal.

            d = ComplexExponentialFilter( 0.0 ).filter( x )

            # Create an instance with frequency and rate.

            obj = ComplexFrequencyFilter( frequency = 0.0, rate = 0.1 )

            # Filter a primary signal.

            obj.reset( d[ 0 ] )

            y, e, b = obj.filter( d )

    **License**

        `BSD-3C.  <https://github.com/larryturner/diamondback/blob/master/license>`_

        © 2018 - 2021 Larry Turner, Schneider Electric Industries SAS. All rights reserved.

    **Author**

        Larry Turner, Schneider Electric, Analytics & AI, 2018-02-01.

    **Definition**

"""

from diamondback.filters.FirFilter import FirFilter
from diamondback.interfaces.IFrequency import IFrequency
from diamondback.interfaces.IRate import IRate
import math
import numpy
import typing


[docs]class ComplexFrequencyFilter( FirFilter, IFrequency, IRate ) : """ Complex frequency filter. """ @IFrequency.frequency.setter def frequency( self, frequency : float) : """ frequency : float - relative to Nyquist in [ -1.0, 1.0 ]. """ IFrequency.frequency.fset( self, frequency ) self.b[ 0 ] = numpy.exp( 1j * math.pi * self.frequency ) def __init__( self, frequency : float, rate : float ) -> None : """ Initialize. Arguments : frequency : float - relative to Nyquist in [ -1.0, 1.0 ). rate : float - in [ 0.0, 1.0 ]. """ if ( ( rate < 0.0 ) or ( rate > 1.0 ) ) : raise ValueError( f'Rate = {rate}' ) super( ).__init__( numpy.ones( 1, complex ), numpy.ones( 1, complex ) ) self.frequency, self.rate = frequency, rate
[docs] def filter( self, d : typing.Union[ typing.List, numpy.ndarray ], x : typing.Union[ typing.List, numpy.ndarray ] = None ) -> typing.Tuple[ numpy.ndarray, numpy.ndarray, numpy.ndarray ] : """ Filters an incident signal and produces a reference signal. Arguments : d : typing.Union[ typing.List, numpy.ndarray ] - primary signal. x : typing.Union[ typing.List, numpy.ndarray ] - incident signal. Returns : y : numpy.ndarray - reference signal. e : numpy.ndarray - error signal. b : numpy.ndarray - forward coefficient. """ if ( ( not numpy.isscalar( d ) ) and ( not isinstance( d, numpy.ndarray ) ) ) : d = numpy.array( list( d ) ) if ( ( len( d.shape ) != 1 ) or ( len( d ) == 0 ) or ( not isinstance( d[ 0 ], complex ) ) ) : raise ValueError( f'D = {d}' ) x = abs( d ) x[ numpy.isclose( x, 0.0 ) ] = 1.0 x = d / x y, e, b = numpy.zeros( len( x ) ), numpy.zeros( len( x ), complex ), numpy.zeros( len( x ), complex ) for ii in range( 0, len( x ) ) : y[ ii ] = numpy.angle( self.b[ 0 ] ) / math.pi e[ ii ] = x[ ii ] - self.b[ 0 ] * self.s[ 0 ] b[ ii ] = self.b[ 0 ] self.b[ 0 ] += self.rate * e[ ii ] * numpy.conjugate( self.s[ 0 ] ) self.s[ 0 ] = x[ ii ] return y, e, b
[docs] def reset( self, x : complex ) -> None : """ Modifies a state to minimize edge effects by assuming persistent operation at a specified primary incident condition. Arguments : x : complex - incident signal. """ if ( not numpy.isscalar( x ) ) : raise ValueError( f'X = {x}' ) if ( numpy.isclose( x, 0.0 ) ) : self.s[ 0 ] = 1.0 else : self.s[ 0 ] = x / abs( x )