
JavaTestGenie:

A Command-Line Tool for AI-Driven Unit Test Generation

Bora Elci (be2246)
Columbia University

bora.elci@columbia.edu

1 Synopsis

We present JavaTestGenie, a command-line tool for AI-driven unit test generation. It is designed
for developers who prefer using built-in text editors (like Vim, Nano, and Emacs) over IDEs. This
lightweight solution, written in Python, requires minimal installation, allowing for easy portability
and compatibility with multiple systems. It aims to improve code correctness and maintainability.
This tool provides significant benefits to software engineers by saving time and reducing human
error. Additionally, it is available as open-source software. From our experimental results, readers
are expected to gain an understanding of the current state of test generation using publicly available
models and datasets. There exist other tools for unit test generation. The authors of [1] describe
two of them as follows.

In particular, [Evosuite] introduces mutants into the software and attempts to generate
assert statements able to kill these mutants... [Randoop] is another automated test
generation tool that creates assertions with intelligent guessing.

In another paper, it is further explained that “A major weakness and criticism of these ap-
proaches is related to the poor readability and understandability of the generated test cases, which
clearly appear as machine-generated code” [2]. Although tools like Evosuite and Randoop are
useful, pre-trained models have been shown to outperform state-of-the-art (SOTA) techniques in
many program understanding and generation tasks [3]. This opens the door for utilizing pre-trained
models to generate unit tests.

(a) Pre-training levels [4] (b) Focal context levels [4]

Figure 1: Effects on model performance

1



We employ Methods2Test, a publicly available dataset comprising 780,944 instances of test
methods mapped to focal methods within classes. We recognize that the size of the dataset is very
large to handle with our computational resources. Therefore, we sample a subset of the instances
in our experiment. This dataset is organized into various context levels as shown in Figure 7.
The authors of [2] conduct experiments with various levels of pre-training as well as focal context
levels. In Figure 1a, we observe that pre-training with both English and Code datasets yields
the best results. Therefore, we design our experiment to utilize those types of models. In Figure
1b, we observe that the combination of FM+FC+C offers the most favorable balance between
validation loss and the number of input tokens. Consequently, we choose this level of context for
our experiments. This selection corresponds to incorporating the focal method, class name, and
constructors in the input, as illustrated in Figure 7.

2 Research Questions

2.1 RQ1: Which metrics are suitable for measuring model performance?

When examining the individual components of test generation, we find that creating accurate assert
statements is particularly challenging. Often, unit tests can have multiple asserts, which makes it
difficult to determine the main scope of the test. To address these challenges, previous work [5]
adopts an approach where they discard methods with multiple assert statements from their dataset
and define the focal method as “method invocation before (or within) the assert statement” [5].
On the other hand, the Methods2Test dataset is created with a better heuristic. The authors
implement strategies for matching method names and analyzing which methods are called in a
test. This challenge, along with similar ones, raises the question of what defines an “accurate” test.
Does it involve calling the correct method, using the appropriate assert, or using correct object
signatures? How about all of the above? Furthermore, does being compilable and running mean
that a test is “accurate”?

Although we acknowledge that a better analysis is needed to determine the “accuracy” of a test
generation model, previous work shows the use of BLEU score for evaluating model performance
in program generation tasks. We begin by using BLEU score for the generations obtained from
PLBART and GPT-3.5 models, but the results indicate poor performance. The PLBART cases do
not seem meaningful while GPT-3.5 cases seem promising and a closer manual inspection indicates
that they are accurate. However, the BLEU score is still only around 5%. We investigate how
the performance of PLBART differs between BLEU and CodeBLEU scores and observe that Code-
BLEU is often slightly higher (only a few points) than BLEU [6]. However, at this point, we begin
suspecting that test generation can yield a different trend. We implement CodeBLEU ourselves,
with guidance from its original paper [7]. Our implementation parses Java code to get abstract syn-
tax trees (AST) and traverse them to extract tokens (ignoring whitespaces and comments). Then,
we compute the BLEU score using the NLTK library based on the extracted tokens, which gives
us CodeBLEU. We compare the two scores over 100 samples in Figure 2. CodeBLEU consistently
captures when a test is good with a high score and identifies when it is bad by matching a low
score, similar to what BLEU provides. This metric allows us to better understand which prediction
is actually good or bad, and potentially discard & regenerate.

2



Figure 2: BLEU vs CodeBLEU over 100 samples with GPT3.5

Figure 3 shows a very simple example. The code snippets in the expected output and prediction
are undeniably doing the same task, so the generated case is accurate. However, it only receives a
BLEU score of around 7% while CodeBLEU is around 38% as shown in Table 1. Since CodeBLEU
accounts for code-specific features such as variable names, it better captures the accuracy of the
test. Hence, RQ1 is answered with CodeBLEU being the most suitable choice for evaluating the
model performance in our experiment.

(a) Input (b) Target (expected output)

(c) Prediction

Figure 3: Example data

BLEU CodeBLEU

7.52 38.82

Table 1: Scores for example data

2.2 RQ2: How does model choice affect performance?

The authors of [8] fine-tune and compare the performances of PLBART, CodeT5, CodeBERT,
and CodeGPT. They find that PLBART outperforms the others. So, we employ this model and
begin fine-tuning it. We use uclanlp/plbart-base [9] from Hugging Face’s transformers library. We
begin the training on our local computers, even with a GPU, but soon realize that much more
computation power is needed to achieve substantial results. We create a script for running training
jobs on AWS SageMaker, but the projected cost exceeds our budget. Finally, we switch to using

3



Google Colab. The runtime disconnects every few hours while the training definitely requires more
than that. We implement checkpoints to frequently save and load intermediate model weights,
along with optimizer, scaler, and scheduler states.

To speed up the training process, we implement mixed-precision training, meaning substituting
lower-precision data types for some tensor values. To prevent underflows and overflows, we use
gradient scaler. Unfortunately, the training time still takes around 30 minutes per epoch for 10,000
samples. We employ pre-tokenization to save tokenized inputs beforehand, but we observe that
this causes a massive increase in the size of the input files. For example, the evaluation input
file becomes 1.29 GB compared to its original size of 54.3 MB. Despite the increased file size, this
strategy still appears promising for accelerating the training process. Finally, we plan to investigate
freezing model parameters, as studies show that doing so results in similar performance compared
to fine-tuning all the layers. At this point, due to limited time and computational resources, we
shift our attention to bringing the command-line tool to an MVP stage first. Therefore, we decide
to integrate the tool with OpenAI’s GPT models and conduct experiments with them.

We write a script, ClassParser.py, adapted from a similar one used in Methods2Test for parsing
Java classes via the tree-sitter library. However, the grammar file provided is not compatible
with macOS, where we are running the experiment. Therefore, we compile the Java language file
ourselves. The code and instructions to accomplish this can be found in our GitHub repository,
although this is not needed to use our tool since we already distribute the grammar file within
our releases. We make further adjustments to the scripts to make them compatible with macOS
and plan to make an open-source contribution to the Methods2Test repository. Our adapted script
brings any Java repository to the same FM+FC+C format that we selected to use. We create
another script, evaluate.py, in a similar manner that allows us to evaluate OpenAI’s GPT models
over the dataset. We sample the first 100 inputs and corresponding outputs from the evaluation
set to compare model performances.

Figure 4: Effect of model choice on performance

4



We compare GPT-3.5 and GPT-4 with the default temperature setting of 1 and illustrate the
results in Figure 4. Surprisingly, GPT3.5 outperforms the newer model by a difference of 3.43%
CodeBLEU score as seen in Table 2. We suspect that this is due to the performance fluctuations
between different runs since GPT-4 results show a smaller standard deviation. Despite this theory,
we do not proceed with GPT-4 in the next experiment and use GPT3.5 instead because of the
order of magnitude difference in price between them.

2.3 RQ3: How do hyperparameter settings affect performance?

While fine-tuning PLBART, we reach the conclusion that a learning rate of 1e-3 is too large because
the evaluation loss stops converging around 1.14 after a few epochs while smaller learning rates
risk taking too many epochs to converge. We find that 1e-4 is suitable in this context for making
decent progress towards the loss function’s minimum. We explore using a scheduler with a warm-up
period to further address this problem. We also observe the effect of batch size for model training.
A3Test [8], with a PLBART base, employs a batch size of 32 while the authors of AthenaTest [2]
do not specify it. For our GPU, this batch size is unattainable. Therefore, we implement gradient
accumulation over 16 steps to achieve an effective batch size of 32 while setting our actual batch
size to 2. We see that many pre-trained models for code generation, along with AthenaTest and
A3Test, use the Adam optimizer and achieve substantial performance, so we also select that one.
Similarly, we use cross-entropy loss.

Figure 5: Effect of temperature on model performance

OpenAI’s GPT models allow varying temperature and top-p parameters for queries, although
it is recommended that only one of them and not both are adjusted in a single query. We select
temperature and evaluate how it affects model performance. Figure 5 shows box plots for GPT3.5
models with three temperatures ranging between 0 and 1. A temperature of 0.5 corresponds to the
best performance, but it is important to note that the description for temperature states that lower
values “make it more focused and deterministic” [10]. This means that the values can significantly

5



differ between different runs and sample sets. GPT3.5 with a temperature of 0 has the lowest
standard deviation and highest lower quartile. To achieve more stability, we select this model to
integrate with our tool and evaluate it on 1,000 samples to verify its performance. Table 2 shows
an overall summary, where the performance is shown to increase to the levels of other temperature
settings. In fact, we see a mean CodeBLEU score of 18.02% and a median of 16.76%, the highest
ones achieved in our experiment. We would like to note that sequentially running one thousand
samples took around 1 hour and 50 minutes. Our script saved each generated test case, BLEU &
CodeBLEU scores, and a performance summary to our repository’s evaluation directory.

Model Mean Median SD

GPT-4 T=1 13.63 12.46 8.55
GPT-3.5 T=0 16.42 14.79 9.94
GPT-3.5 T=0.5 16.80 16.73 11.32
GPT-3.5 T=1 17.10 15.89 11.81
GPT-3.5 T=0 S=1K 18.02 16.76 12.15

Table 2: CodeBLEU statistics for GPT models with different settings

2.4 RQ4: What are the benefits of the command-line tool and how can it be
improved?

JavaTestGenie is integrated with GPT3.5 to generate complete test classes. However, it often
requires the developers to edit various parts of the code such as import statements, model signatures,
and (rarely) deleting inaccurately generated methods. We find that this process usually does not
take a long time, only around 1-2 minutes per class, which makes this tool a very convenient choice
for developers. We also provide an option for querying by each test method rather than the whole
class, but this presents the issue of missing imports and package names, as well as lack of complete
class definition. It writes the generated test methods back to back to the output file. The software
engineer has to figure out what to import, add the class name, and initialize mocks to make it
into a compilable file. Despite our clear instructions in the prompt, GPT models still included
comments in the code 20% of the time. We use regex statements to mitigate this problem by
removing comments. Similarly, we merge multiple space characters into one and remove new lines.
We observe that sometimes the queries cannot be completed due to the limit of maximum number
of tokens set at 2048. In those cases, we append two closing curly braces to the end for closing
the last generated method and the class. It becomes the developer’s responsibility to complete or
delete the last method.

Although Methods2Test is the only viable dataset in the literature for training a model with
the goal of unit test generation, we realized some of its limitations. Despite the rich metadata
stored in JSON inputs, package names and import statements are not available. This makes it
difficult to create a model that is capable of generating whole classes, although the package name
can still be deduced from the source file. AAn important observation to note is that current models
lack an understanding of the organizational hierarchy and the relationships between classes. In our
experiments, we observed that GPT models make assumptions about signatures and sometimes get
them wrong. Let’s investigate a scenario where there is an Account model. The AccountService
has a method calculateBalance(Account account) {return (account.cash - account.debt)}. We feed
our model the class name that is AccountService and the method calculateBalance() in its entirety.
How is the testCalculateBalance() in AccountServiceTest supposed to know 1) where to import
Account model from and 2) what the signature is to create an instance of that class. Perhaps,

6



a separate model can be trained to operate on the generated test methods with the purpose of
repairing signatures and adding correct imports. We believe this step is essential for creating a
holistic tool. A similar issue presents itself in Figure 3, where the prediction involves creating an
instance of the UiLesson class. However, the expected output most likely handles this in the setup
method, so we recognize that model performance is impacted by the lack of setup knowledge.

We think about how this tool can be improved. Firstly, the generation speed can be increased
by leveraging parallel queries. Although GPT3.5 has a limit on the number of tokens per minute,
we believe it supports generating at least a few methods at the same time, split into different chat
sessions. This would also work for classes, depending on their length. Moreover, several different
OpenAI accounts could be used for load balancing. In fact, a backend could be integrated into
the tool to allow this kind of functionality and manage API keys in a better way. Currently, our
users have to supply their own API keys obtained from OpenAI’s website. The future direction
of this work should focus on fine-tuning a publicly available model such as PLBART. Deploying
a model endpoint on AWS would allow scaling easily to generate entire test suites consisting of
many classes and methods seamlessly. The costs associated with this approach should be studied
and compared with the cost of using OpenAI models. Secondly, additional programming languages
can be supported. We designed the tool specifically to be easily extensible to other languages.
We developed reusable classes and methods for this purpose. The tree-sitter library, which we
have a dependency on, provides parsers for 113 programming languages. Substituting a different
grammar file and adjusting the code should allow both generating tests and evaluating results with
CodeBLEU.

3 Deliverables

Developers can quickly download the tool with “pip install java-test-genie”. They are expected to
navigate to a Java project that they plan to run the tool for and add a configuration file describing
the directories & files they want to include & exclude. Figure 6 shows an example configuration
for a simple trading service [11], developed with the Spring Boot framework.

Figure 6: Example configuration file

The tool can be run with the command “genie”. It is open-sourced with an MIT license and
the source code is available at [12]. The PyPi releases are distributed at [13]. We documented our

7



work to make it reproducible. The GitHub repository includes:

• Source code of the command-line tool

• README describing how to install and use it

• Generated tests for each experiment, performance summary, and BLEU & CodeBLEU scores

• Jupyter notebook of visualizations and statistical data presented in this paper

• Project milestones including proposal, progress report, and link to demo slides

4 Self-Evaluation

Through this project, we gained a deep understanding of fine-tuning NL-PL models using the
transformers library. We became familiar with various components that make up hyperparameters
and learned about distributed training at scale while exploring AWS SageMaker. We also discovered
how to reduce costs by implementing various strategies to accelerate training time and balance
computational resources and time allocation to successfully achieve a project’s scope. We gained
experience working with publicly available datasets and libraries and repurposing scripts to create
new software. Additionally, we learned the importance of documenting our work to ensure its
reproducibility. Writing this paper taught us how to present experimental data and evaluate it
effectively.

Overall, we believe that JavaTestGenie has made significant progress in utilizing AI-driven mod-
els for unit test generation. It has also achieved its goal of becoming a lightweight and portable
command-line tool for developers who prefer using built-in text editors. The project has successfully
addressed the research questions posed and experimented with different models and hyperparam-
eters. However, there is still room for improvement. For instance, the tool could benefit from
fine-tuning a publicly available model such as PLBART, which would allow for increased genera-
tion speed and scalability. Additionally, support for other programming languages could be added,
making the tool more versatile and useful for a broader range of developers.

In terms of the research process, we recognize that the project has encountered some challenges,
such as limited computational resources and time constraints. These factors have influenced the
decision to shift focus from fine-tuning PLBART to using OpenAI’s GPT models. Despite these
challenges, the project has managed to produce valuable insights and results. We also initially
planned to conduct a user study about the feasibility, adoption, and areas of improvement of the
tool. Instead, we conducted an empirical evaluation of model performances to address our research
questions. Our rationale was based on the expectation that a user study would be more informative
if carried out after transitioning to an approach offering better model ownership, such as hosting a
fine-tuned model on AWS, rather than relying on OpenAI.

In conclusion, we are satisfied with the progress made in this project and the development of
JavaTestGenie as a practical and useful tool for software engineers. The research conducted has
contributed valuable insights to the field of AI-driven unit test generation and has the potential for
future improvements and developments.

References

[1] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk. On
learning meaningful assert statements for unit test cases. In Proceedings of the ACM/IEEE

8



42nd International Conference on Software Engineering, pages 1398–1409, 2020. https://

arxiv.org/abs/2002.05800.

[2] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundare-
san. Unit test case generation with transformers and focal context. arXiv preprint
arXiv:2009.05617, 2020. https://arxiv.org/abs/2009.05617.

[3] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Lingming Zhang.
An extensive study on pre-trained models for program understanding and generation. In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 39–51, 2022. https://dl.acm.org/doi/abs/10.1145/3533767.3534390.

[4] Michele Tufano, Shao Kun Deng, Neel Sundaresan, and Alexey Svyatkovskiy. Methods2test:
A dataset of focal methods mapped to test cases. In Proceedings of the 19th International
Conference on Mining Software Repositories, pages 299–303, 2022. https://dl.acm.org/

doi/abs/10.1145/3524842.3528009.

[5] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. Generating accurate
assert statements for unit test cases using pretrained transformers. In Proceedings of the 3rd
ACM/IEEE International Conference on Automation of Software Test, pages 54–64, 2022.
https://dl.acm.org/doi/abs/10.1145/3524481.3527220.

[6] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-
training for program understanding and generation. arXiv preprint arXiv:2103.06333, 2021.
https://arxiv.org/abs/2103.06333.

[7] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming
Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code
synthesis. arXiv preprint arXiv:2009.10297, 2020. https://arxiv.org/abs/2009.10297.

[8] Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. A3test: Assertion-
augmented automated test case generation. arXiv preprint arXiv:2302.10352, 2023. https:

//arxiv.org/abs/2302.10352.

[9] Uclanlp/plbart-base. https://huggingface.co/uclanlp/plbart-base.

[10] Openai api. https://platform.openai.com/docs/api-reference/chat.

[11] Bora Elci, Joey Lamborn, Raymond Wu, Yigit Ozulku, and Yigit Karakas. Kaiserschmarrn:
Team repo for advanced software engineering (coms w4156) / fall 2022 / team kaiserschmarrn.
GitHub. https://github.com/boraelci/kaiserschmarrn.

[12] Bora Elci. Javatestgenie: A command-line tool for ai-driven unit test generation. GitHub.
https://github.com/boraelci/java-test-genie.

[13] Bora Elci. Javatestgenie: A command-line tool for ai-driven unit test generation. PyPI, 2021.
https://pypi.org/project/java-test-genie/.

9

https://arxiv.org/abs/2002.05800
https://arxiv.org/abs/2002.05800
https://arxiv.org/abs/2009.05617
https://dl.acm.org/doi/abs/10.1145/3533767.3534390
https://dl.acm.org/doi/abs/10.1145/3524842.3528009
https://dl.acm.org/doi/abs/10.1145/3524842.3528009
https://dl.acm.org/doi/abs/10.1145/3524481.3527220
https://arxiv.org/abs/2103.06333
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2302.10352
https://arxiv.org/abs/2302.10352
https://huggingface.co/uclanlp/plbart-base
https://platform.openai.com/docs/api-reference/chat
https://github.com/boraelci/kaiserschmarrn
https://github.com/boraelci/java-test-genie
https://pypi.org/project/java-test-genie/


Methods2Test Dataset

Figure 7: Focal context levels

10


	Synopsis
	Research Questions
	RQ1: Which metrics are suitable for measuring model performance?
	RQ2: How does model choice affect performance?
	RQ3: How do hyperparameter settings affect performance?
	RQ4: What are the benefits of the command-line tool and how can it be improved?

	Deliverables
	Self-Evaluation
	

