Module ellipsoidalVincenty
Ellispodial classes for Vincenty's geodetic (lat-/longitude) LatLon, geocentric (ECEF) Cartesian and VincentyError and functions areaOf, intersections2, nearestOn and perimeterOf.
Pure Python implementation of geodesy tools for ellipsoidal earth
models, transcribed from JavaScript originals by (C) Chris Veness
2005-2016 and published under the same MIT Licence**, see Vincenty geodesics. More at geographiclib and GeoPy.
Calculate geodesic distance between two points using the Vincenty formulae and one of several ellipsoidal earth
models. The default model is WGS-84, the most accurate and widely used
globally-applicable model for the earth ellipsoid.
Other ellipsoids offering a better fit to the local geoid include Airy
(1830) in the UK, Clarke (1880) in Africa, International 1924 in much of
Europe, and GRS-67 in South America. North America (NAD83) and Australia
(GDA) use GRS-80, which is equivalent to the WGS-84 model.
Great-circle distance uses a spherical model of the earth with the
mean earth radius defined by the International Union of Geodesy and
Geophysics (IUGG) as (2 * a + b) / 3 =
6371008.7714150598 meter or approx. 6371009 meter (for WGS-84,
resulting in an error of up to about 0.5%).
Here's an example usage of ellipsoidalVincenty
:
>>> from pygeodesy.ellipsoidalVincenty import LatLon
>>> Newport_RI = LatLon(41.49008, -71.312796)
>>> Cleveland_OH = LatLon(41.499498, -81.695391)
>>> Newport_RI.distanceTo(Cleveland_OH)
866,455.4329158525 # meter
You can change the ellipsoid model used by the Vincenty formulae as
follows:
>>> from pygeodesy import Datums
>>> from pygeodesy.ellipsoidalVincenty import LatLon
>>> p = LatLon(0, 0, datum=Datums.OSGB36)
or by converting to anothor datum:
>>> p = p.convertDatum(Datums.OSGB36)
|
VincentyError
Error raised from Vincenty's direct and
inverse methods for coincident points or lack of
convergence.
|
|
Cartesian
Extended to convert geocentric, Cartesian points to Vincenty-based, ellipsoidal,
geodetic LatLon.
|
|
LatLon
Using the formulae devised by Thaddeus Vincenty (1975) for an (oblate)
ellipsoidal model of the earth to compute the geodesic distance and
bearings between two given points or the destination point given an
start point and initial bearing.
|
|
ispolar(points,
wrap=False)
Check whether a polygon encloses a pole. |
|
|
|
intersections2(center1,
radius1,
center2,
radius2,
height=None,
wrap=True,
equidistant=None,
tol=0.001,
LatLon=<class 'pygeodesy.ellipsoidalVincenty.LatLon'>,
**LatLon_kwds)
Iteratively compute the intersection points of two circles each
defined by an (ellipsoidal) center point and a radius. |
|
|
|
nearestOn(point,
point1,
point2,
within=True,
height=None,
wrap=False,
equidistant=None,
tol=0.001,
LatLon=<class 'pygeodesy.ellipsoidalVincenty.LatLon'>,
**LatLon_kwds)
Locate the closest point on the arc between two other points. |
|
|
|
perimeterOf(points,
closed=False,
datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran... ,
wrap=True)
DEPRECATED, use function ellipsoidalKarney.perimeterOf . |
|
|
|
__all__ = _ALL_LAZY.ellipsoidalVincenty
|
ispolar (points,
wrap=False)
|
|
Check whether a polygon encloses a pole.
- Arguments:
points - The polygon points (LatLon []).
wrap - Wrap and unroll longitudes (bool ).
- Returns:
True if the polygon encloses a pole,
False otherwise.
- Raises:
PointsError - Insufficient number of points
TypeError - Some points are not LatLon or
don't have bearingTo2 , initialBearingTo
and finalBearingTo methods.
|
intersections2 (center1,
radius1,
center2,
radius2,
height=None,
wrap=True,
equidistant=None,
tol=0.001,
LatLon=<class 'pygeodesy.ellipsoidalVincenty.LatLon'>,
**LatLon_kwds)
|
|
Iteratively compute the intersection points of two circles each
defined by an (ellipsoidal) center point and a radius.
- Arguments:
center1 - Center of the first circle (LatLon).
radius1 - Radius of the first circle (meter ).
center2 - Center of the second circle (LatLon).
radius2 - Radius of the second circle (meter ).
height - Optional height for the intersection points, overriding the
"radical height" at the "radical line"
between both centers (meter ) or None .
wrap - Wrap and unroll longitudes (bool ).
equidistant - An azimuthal equidistant projection class (EquidistantKarney or Equidistant) or None .
tol - Convergence tolerance (meter ).
LatLon - Optional class to return the intersection points (LatLon) or None .
LatLon_kwds - Optional, additional LatLon keyword
arguments, ignored if LatLon=None .
- Returns:
- 2-Tuple of the intersection points, each a
LatLon instance or LatLon4Tuple(lat, lon, height,
datum) if LatLon is None .
For abutting circles, the intersection points are the same
instance.
- Raises:
IntersectionError - Concentric, antipodal, invalid or non-intersecting circles or no
convergence for the tol .
TypeError - Invalid or non-ellipsoidal center1 or
center2 or invalid
equidistant .
UnitError - Invalid radius1 , radius2 or
height .
|
nearestOn (point,
point1,
point2,
within=True,
height=None,
wrap=False,
equidistant=None,
tol=0.001,
LatLon=<class 'pygeodesy.ellipsoidalVincenty.LatLon'>,
**LatLon_kwds)
|
|
Locate the closest point on the arc between two other points.
- Arguments:
point - Reference point (LatLon ).
point1 - Start point of the arc (LatLon ).
point2 - End point of the arc (LatLon ).
within - If True return the closest point between
point1 and point2 ,
otherwise the closest point elsewhere on the arc
(bool ).
height - Optional height for the closest point (meter ) or
None .
wrap - Wrap and unroll longitudes (bool ).
equidistant - An azimuthal equidistant projection class (Equidistant or EquidistantKarney), function azimuthal.equidistant will be invoked if left
unspecified.
tol - Convergence tolerance (meter ).
LatLon - Optional class to return the closest point (LatLon) or None .
LatLon_kwds - Optional, additional LatLon keyword
arguments, ignored if LatLon=None .
- Returns:
- Closest point (
LatLon ).
- Raises:
ImportError - Package geographiclib not installed or not found.
TypeError - Invalid or non-ellipsoidal point ,
point1 or point2 or invalid
equidistant .
|