Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

 

# -*- coding: utf-8 -*- 

 

u'''(INTERNAL) base class L{LatLonBase} for elliposiodal, spherical and 

n-vectorial C{LatLon}s. 

 

After I{(C) Chris Veness 2011-2015} published under the same MIT Licence**, 

see U{https://www.Movable-Type.co.UK/scripts/latlong.html}, 

U{<https://www.Movable-Type.co.UK/scripts/geodesy/docs/latlon-ellipsoidal.js.html>} 

and U{https://www.Movable-Type.co.UK/scripts/latlong-vectors.html}. 

 

@newfield example: Example, Examples 

''' 

 

from pygeodesy.basics import map1, property_doc_, property_RO, \ 

_xinstanceof 

from pygeodesy.dms import F_D, F_DMS, latDMS, lonDMS # parseDMS, parseDMS2 

from pygeodesy.ecef import EcefKarney 

from pygeodesy.errors import _datum_datum, IntersectionError, _ValueError 

from pygeodesy.fmath import favg 

from pygeodesy.formy import antipode, compassAngle, cosineAndoyerLambert_, \ 

cosineForsytheAndoyerLambert_, cosineLaw, \ 

equirectangular, euclidean, flatLocal_, \ 

flatPolar, haversine, isantipode, \ 

latlon2n_xyz,points2, thomas_, vincentys 

from pygeodesy.interns import EPS, EPS1, NN, R_M, _COMMA_SPACE_, _item_sq, \ 

_m_, _near_concentric_, _no_intersection_, \ 

_no_overlap_, _0_0, _0_5, _1_0 

from pygeodesy.lazily import _ALL_DOCS 

from pygeodesy.named import _NamedBase, notOverloaded 

from pygeodesy.namedTuples import Bounds2Tuple, LatLon2Tuple, PhiLam2Tuple, \ 

Trilaterate5Tuple, Vector3Tuple 

from pygeodesy.streprs import hstr 

from pygeodesy.units import Distance_, Lat, Lon, Height, Radius, Radius_, Scalar_ 

from pygeodesy.utily import unrollPI 

from pygeodesy.vector3d import Vector3d 

 

from math import asin, cos, degrees, radians 

 

__all__ = () 

__version__ = '20.10.02' 

 

 

class LatLonBase(_NamedBase): 

'''(INTERNAL) Base class for C{LatLon} points on spherical or 

ellipsoidal earth models. 

''' 

_datum = None # L{Datum}, to be overriden 

_Ecef = EcefKarney # preferred C{Ecef...} class 

_e9t = None # cached toEcef (L{Ecef9Tuple}) 

_height = 0 # height (C{meter}) 

_lat = 0 # latitude (C{degrees}) 

_latlon = None # cached (L{LatLon2Tuple}) 

_lon = 0 # longitude (C{degrees}) 

_name = NN # name (C{str}) 

_philam = None # cached (L{PhiLam2Tuple}) 

_v3d = None # cached toVector3d (L{Vector3d}) 

_xyz = None # cached xyz (L{Vector3Tuple}) 

_xyzh = None # cached xyzh (L{Vector4Tuple}) 

 

def __init__(self, lat, lon, height=0, name=NN): 

'''New C{LatLon}. 

 

@arg lat: Latitude (C{degrees} or DMS C{str} with N or S suffix). 

@arg lon: Longitude (C{degrees} or DMS C{str} with E or W suffix). 

@kwarg height: Optional height (C{meter} above or below the earth surface). 

@kwarg name: Optional name (C{str}). 

 

@return: New instance (C{LatLon}). 

 

@raise RangeError: Value of B{C{lat}} or B{C{lon}} outside the valid 

range and C{rangerrors} set to C{True}. 

 

@raise ValueError: Invalid B{C{lat}} or B{C{lon}}. 

 

@example: 

 

>>> p = LatLon(50.06632, -5.71475) 

>>> q = LatLon('50°03′59″N', """005°42'53"W""") 

''' 

self._lat = Lat(lat) # parseDMS2(lat, lon) 

self._lon = Lon(lon) # PYCHOK LatLon2Tuple 

if height: # elevation 

self._height = Height(height) 

if name: 

self.name = name 

 

def __eq__(self, other): 

return self.isequalTo(other) 

 

def __ne__(self, other): 

return not self.isequalTo(other) 

 

def __str__(self): 

return self.toStr(form=F_D, prec=6) 

 

def _havg(self, other, f=_0_5): 

'''(INTERNAL) Weighted, average height. 

 

@arg other: An other point (C{LatLon}). 

@kwarg f: Optional fraction (C{float}). 

 

@return: Average, fractional height (C{float}). 

''' 

return favg(self.height, other.height, f=f) 

 

def _update(self, updated, *attrs): 

'''(INTERNAL) Zap cached attributes if updated. 

''' 

if updated: 

_NamedBase._update(self, updated, '_e9t', '_latlon', '_philam', 

'_v3d', '_xyz', '_xyzh', *attrs) 

 

def antipode(self, height=None): 

'''Return the antipode, the point diametrically opposite 

to this point. 

 

@kwarg height: Optional height of the antipode, height 

of this point otherwise (C{meter}). 

 

@return: The antipodal point (C{LatLon}). 

''' 

a, b = antipode(self.lat, self.lon) # PYCHOK LatLon2Tuple 

h = self.height if height is None else height 

return self.classof(a, b, height=h) 

 

def bounds(self, wide, high, radius=R_M): # PYCHOK no cover 

'''DEPRECATED, use method C{boundsOf}. 

''' 

return self.boundsOf(wide, high, radius=radius) 

 

def boundsOf(self, wide, high, radius=R_M): 

'''Return the SE and NW lat-/longitude of a great circle 

bounding box centered at this location. 

 

@arg wide: Longitudinal box width (C{meter}, same units as 

B{C{radius}} or C{degrees} if B{C{radius}} is C{None}). 

@arg high: Latitudinal box height (C{meter}, same units as 

B{C{radius}} or C{degrees} if B{C{radius}} is C{None}). 

@kwarg radius: Mean earth radius (C{meter}). 

 

@return: A L{Bounds2Tuple}C{(latlonSW, latlonNE)}, the 

lower-left and upper-right corner (C{LatLon}). 

 

@see: U{https://www.Movable-Type.co.UK/scripts/latlong-db.html} 

''' 

w = Scalar_(wide, name='wide') * _0_5 

h = Scalar_(high, name='high') * _0_5 

if radius is not None: 

r = Radius_(radius) 

c = cos(self.phi) 

w = degrees(asin(w / r) / c) if c > EPS else _0_0 # XXX 

h = degrees(h / r) 

w, h = abs(w), abs(h) 

 

r = Bounds2Tuple(self.classof(self.lat - h, self.lon - w, height=self.height), 

self.classof(self.lat + h, self.lon + w, height=self.height)) 

return self._xnamed(r) 

 

def compassAngle(self, other): # PYCHOK no cover 

'''DEPRECATED, use method C{compassAngleTo}. 

''' 

return self.compassAngleTo(other) 

 

def compassAngleTo(self, other, adjust=True, wrap=False): 

'''Return the angle from North for the direction vector between 

this and an other point. 

 

Suitable only for short, non-near-polar vectors up to a few 

hundred Km or Miles. Use method C{initialBearingTo} for 

larger distances. 

 

@arg other: The other point (C{LatLon}). 

@kwarg adjust: Adjust the longitudinal delta by the 

cosine of the mean latitude (C{bool}). 

@kwarg wrap: Wrap and L{unroll180} longitudes and longitudinal 

delta (C{bool}). 

 

@return: Compass angle from North (C{degrees360}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@note: Courtesy Martin Schultz. 

 

@see: U{Local, flat earth approximation 

<https://www.EdWilliams.org/avform.htm#flat>}. 

''' 

self.others(other) 

return compassAngle(self.lat, self.lon, other.lat, other.lon, 

adjust=adjust, wrap=wrap) 

 

def cosineAndoyerLambertTo(self, other, wrap=False): 

'''Compute the distance between this and an other point using 

the U{Andoyer-Lambert correction<https://navlib.net/wp-content/uploads/ 

2013/10/admiralty-manual-of-navigation-vol-1-1964-english501c.pdf>} of 

the U{Law of Cosines<https://www.Movable-Type.co.UK/scripts/latlong.html#cosine-law>} 

formula. 

 

@arg other: The other point (C{LatLon}). 

@kwarg wrap: Wrap and L{unroll180} longitudes (C{bool}). 

 

@return: Distance (C{meter}, same units as the axes of 

this point's datum ellipsoid). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@see: Function L{cosineAndoyerLambert} and methods 

C{cosineForsytheAndoyerLambertTo}, C{cosineLawTo}, 

C{distanceTo*}, C{equirectangularTo}, C{euclideanTo}, 

C{flatLocalTo}/C{hubenyTo}, C{flatPolarTo}, 

C{haversineTo}, C{thomasTo} and C{vincentysTo}. 

''' 

return self._distanceTo_(cosineAndoyerLambert_, other, wrap=wrap) 

 

def cosineForsytheAndoyerLambertTo(self, other, wrap=False): 

'''Compute the distance between this and an other point using 

the U{Forsythe-Andoyer-Lambert correction 

<https://www2.UNB.CA/gge/Pubs/TR77.pdf>} of the U{Law of Cosines 

<https://www.Movable-Type.co.UK/scripts/latlong.html#cosine-law>} 

formula. 

 

@arg other: The other point (C{LatLon}). 

@kwarg wrap: Wrap and L{unroll180} longitudes (C{bool}). 

 

@return: Distance (C{meter}, same units as the axes of 

this point's datum ellipsoid). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@see: Function L{cosineForsytheAndoyerLambert} and methods 

C{cosineAndoyerLambertTo}, C{cosineLawTo}, C{distanceTo*}, 

C{equirectangularTo}, C{euclideanTo}, 

C{flatLocalTo}/C{hubenyTo}, C{flatPolarTo}, 

C{haversineTo}, C{thomasTo} and C{vincentysTo}. 

''' 

return self._distanceTo_(cosineForsytheAndoyerLambert_, other, wrap=wrap) 

 

def cosineLawTo(self, other, radius=None, wrap=False): 

'''Compute the distance between this and an other point using the 

U{spherical Law of Cosines 

<https://www.Movable-Type.co.UK/scripts/latlong.html#cosine-law>} 

formula. 

 

@arg other: The other point (C{LatLon}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None} 

for the mean radius of this point's datum 

ellipsoid. 

@kwarg wrap: Wrap and L{unroll180} longitudes (C{bool}). 

 

@return: Distance (C{meter}, same units as B{C{radius}}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@see: Function L{cosineLaw} and methods C{cosineAndoyerLambertTo}, 

C{cosineForsytheAndoyerLambertTo}, C{distanceTo*}, 

C{equirectangularTo}, C{euclideanTo}, C{flatLocalTo}/C{hubenyTo}, 

C{flatPolarTo}, C{haversineTo}, C{thomasTo} and C{vincentysTo}. 

''' 

return self._distanceTo(cosineLaw, other, radius, wrap=wrap) 

 

@property_RO 

def datum(self): # PYCHOK no cover 

'''(INTERNAL) I{Must be overloaded}. 

''' 

notOverloaded(self, self.datum) 

 

def _distanceTo(self, func, other, radius, **options): 

'''(INTERNAL) Helper for methods C{<func>To}. 

''' 

self.others(other) # up=2 

if radius is None: 

radius = self._datum.ellipsoid.R1 if self._datum else R_M 

return func(self.lat, self.lon, other.lat, other.lon, 

radius=radius, **options) 

 

def _distanceTo_(self, func_, other, wrap=False): 

'''(INTERNAL) Helper for (ellipsoidal) methods C{<func>To}. 

''' 

self.others(other) # up=2 

r, _ = unrollPI(self.lam, other.lam, wrap=wrap) 

r = func_(other.phi, self.phi, r, datum=self.datum) 

return r * self.datum.ellipsoid.a 

 

@property_RO 

def Ecef(self): 

'''Get the ECEF C{class} (L{EcefKarney} or L{EcefVeness}). 

''' 

return self._Ecef 

 

def equals(self, other, eps=None): # PYCHOK no cover 

'''DEPRECATED, use method C{isequalTo}. 

''' 

return self.isequalTo(other, eps=eps) 

 

def equals3(self, other, eps=None): # PYCHOK no cover 

'''DEPRECATED, use method C{isequalTo3}. 

''' 

return self.isequalTo3(other, eps=eps) 

 

def equirectangularTo(self, other, radius=None, **options): 

'''Compute the distance between this and an other point 

using the U{Equirectangular Approximation / Projection 

<https://www.Movable-Type.co.UK/scripts/latlong.html>}. 

 

Suitable only for short, non-near-polar distances up to a 

few hundred Km or Miles. Use method C{haversineTo} or 

C{distanceTo*} for more accurate and/or larger distances. 

 

See function L{equirectangular_} for more details, the 

available B{C{options}} and errors raised. 

 

@arg other: The other point (C{LatLon}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None} for 

the mean radius of this point's datum ellipsoid. 

@kwarg options: Optional keyword arguments for function 

L{equirectangular}. 

 

@return: Distance (C{meter}, same units as B{C{radius}}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@see: Function L{equirectangular} and methods C{cosineAndoyerLambertTo}, 

C{cosineForsytheAndoyerLambertTo}, C{cosineLawTo}, 

C{distanceTo*}, C{euclideanTo}, C{flatLocalTo}/C{hubenyTo}, 

C{flatPolarTo}, C{haversineTo}, C{thomasTo} and C{vincentysTo}. 

''' 

return self._distanceTo(equirectangular, other, radius, **options) 

 

def euclideanTo(self, other, radius=None, **options): 

'''Approximate the C{Euclidian} distance between this and 

an other point. 

 

See function L{euclidean} for the available B{C{options}}. 

 

@arg other: The other point (C{LatLon}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None} for 

the mean radius of this point's datum ellipsoid. 

@kwarg options: Optional keyword arguments for function 

L{euclidean}. 

 

@return: Distance (C{meter}, same units as B{C{radius}}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@see: Function L{euclidean} and methods C{cosineAndoyerLambertTo}, 

C{cosineForsytheAndoyerLambertTo}, C{cosineLawTo}, 

C{distanceTo*}, C{equirectangularTo}, 

C{flatLocalTo}/C{hubenyTo}, C{flatPolarTo}, 

C{haversineTo}, C{thomasTo} and C{vincentysTo}. 

''' 

return self._distanceTo(euclidean, other, radius, **options) 

 

def flatLocalTo(self, other, radius=None, wrap=False): 

'''Compute the distance between this and an other point using the 

U{ellipsoidal Earth to plane projection 

<https://WikiPedia.org/wiki/Geographical_distance#Ellipsoidal_Earth_projected_to_a_plane>} 

aka U{Hubeny<https://www.OVG.AT/de/vgi/files/pdf/3781/>} formula. 

 

@arg other: The other point (C{LatLon}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None} for the 

major radius of this point's datum/ellipsoid. 

@kwarg wrap: Wrap and L{unroll180} longitudes (C{bool}). 

 

@return: Distance (C{meter}, same units as B{C{radius}}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@raise ValueError: Invalid B{C{radius}}. 

 

@see: Function L{flatLocal}/L{hubeny}, methods C{cosineAndoyerLambertTo}, 

C{cosineForsytheAndoyerLambertTo}, C{cosineLawTo}, 

C{distanceTo*}, C{equirectangularTo}, C{euclideanTo}, 

C{flatPolarTo}, C{haversineTo}, C{thomasTo} and 

C{vincentysTo} and U{local, flat Earth approximation 

<https://www.edwilliams.org/avform.htm#flat>}. 

''' 

E = self.datum.ellipsoid 

r = self._distanceTo_(flatLocal_, other, wrap=wrap) * E.a2_ 

a = E.a if radius in (None, 1, _1_0) else Radius(radius) 

return r * a 

 

hubenyTo = flatLocalTo # for Karl Hubeny 

 

def flatPolarTo(self, other, radius=None, wrap=False): 

'''Compute the distance between this and an other point using 

the U{polar coordinate flat-Earth 

<https://WikiPedia.org/wiki/Geographical_distance#Polar_coordinate_flat-Earth_formula>} 

formula. 

 

@arg other: The other point (C{LatLon}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None} 

for the mean radius of this point's datum 

ellipsoid. 

@kwarg wrap: Wrap and L{unroll180} longitudes (C{bool}). 

 

@return: Distance (C{meter}, same units as B{C{radius}}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@see: Function L{flatPolar} and methods C{cosineAndoyerLambertTo}, 

C{cosineForsytheAndoyerLambertTo}, C{cosineLawTo}, 

C{distanceTo*}, C{equirectangularTo}, C{euclideanTo}, 

C{flatLocalTo}/C{hubenyTo}, C{haversineTo}, 

C{thomasTo} and C{vincentysTo}. 

''' 

return self._distanceTo(flatPolar, other, radius, wrap=wrap) 

 

def haversineTo(self, other, radius=None, wrap=False): 

'''Compute the distance between this and an other point using the 

U{Haversine<https://www.Movable-Type.co.UK/scripts/latlong.html>} 

formula. 

 

@arg other: The other point (C{LatLon}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None} for 

the mean radius of this point's datum ellipsoid. 

@kwarg wrap: Wrap and L{unroll180} longitudes (C{bool}). 

 

@return: Distance (C{meter}, same units as B{C{radius}}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@see: Function L{haversine} and methods C{cosineAndoyerLambertTo}, 

C{cosineForsytheAndoyerLambertTo}, C{cosineLawTo}, 

C{distanceTo*}, C{equirectangularTo}, C{euclideanTo}, 

C{flatLocalTo}/C{hubenyTo}, C{flatPolarTo}, 

C{thomasTo} and C{vincentysTo}. 

''' 

return self._distanceTo(haversine, other, radius, wrap=wrap) 

 

@property_doc_(''' the height (C{meter}).''') 

def height(self): 

'''Get the height (C{meter}). 

''' 

return self._height 

 

@height.setter # PYCHOK setter! 

def height(self, height): 

'''Set the height. 

 

@arg height: New height (C{meter}). 

 

@raise TypeError: Invalid B{C{height}} C{type}. 

 

@raise ValueError: Invalid B{C{height}}. 

''' 

h = Height(height) 

self._update(h != self._height) 

self._height = h 

 

def heightStr(self, prec=-2, m=_m_): 

'''Return a string for the height B{C{height}}. 

 

@kwarg prec: Optional number of decimals, unstripped (C{int}). 

@kwarg m: Optional unit of the height (C{str}). 

 

@see: Function L{hstr}. 

''' 

return hstr(self.height, prec=prec, m=m) 

 

def isantipodeTo(self, other, eps=EPS): 

'''Check whether this and an other point are antipodal, 

on diametrically opposite sides of the earth. 

 

@arg other: The other point (C{LatLon}). 

@kwarg eps: Tolerance for near-equality (C{degrees}). 

 

@return: C{True} if points are antipodal within the given 

tolerance, C{False} otherwise. 

''' 

return isantipode(self.lat, self.lon, 

other.lat, other.lon, eps=eps) 

 

def isantipode(self, other, eps=EPS): # PYCHOK no cover 

'''DEPRECATED, use method C{isantipodeTo}. 

''' 

return self.isantipodeTo(other, eps=eps) 

 

@property_RO 

def isEllipsoidal(self): 

'''Check whether this point is ellipsoidal (C{bool} or C{None} if unknown). 

''' 

return self.datum.isEllipsoidal if self._datum else None 

 

def isequalTo(self, other, eps=None): 

'''Compare this point with an other point, I{ignoring} height. 

 

@arg other: The other point (C{LatLon}). 

@kwarg eps: Tolerance for equality (C{degrees}). 

 

@return: C{True} if both points are identical, 

I{ignoring} height, C{False} otherwise. 

 

@raise TypeError: The B{C{other}} point is not C{LatLon} 

or mismatch of the B{C{other}} and 

this C{class} or C{type}. 

 

@raise ValueError: Invalid B{C{eps}}. 

 

@see: Method L{isequalTo3}. 

 

@example: 

 

>>> p = LatLon(52.205, 0.119) 

>>> q = LatLon(52.205, 0.119) 

>>> e = p.isequalTo(q) # True 

''' 

self.others(other) 

 

e = _0_0 if eps in (None, 0, _0_0) else Scalar_(eps, name='eps') 

if e > 0: 

return max(map1(abs, self.lat - other.lat, 

self.lon - other.lon)) < e 

else: 

return self.lat == other.lat and \ 

self.lon == other.lon 

 

def isequalTo3(self, other, eps=None): 

'''Compare this point with an other point, I{including} height. 

 

@arg other: The other point (C{LatLon}). 

@kwarg eps: Tolerance for equality (C{degrees}). 

 

@return: C{True} if both points are identical 

I{including} height, C{False} otherwise. 

 

@raise TypeError: The B{C{other}} point is not C{LatLon} 

or mismatch of the B{C{other}} and 

this C{class} or C{type}. 

 

@see: Method L{isequalTo}. 

 

@example: 

 

>>> p = LatLon(52.205, 0.119, 42) 

>>> q = LatLon(52.205, 0.119) 

>>> e = p.isequalTo3(q) # False 

''' 

return self.isequalTo(other, eps=eps) and self.height == other.height 

 

@property_RO 

def isSpherical(self): 

'''Check whether this point is spherical (C{bool} or C{None} if unknown). 

''' 

return self.datum.isSpherical if self._datum else None 

 

@property_RO 

def lam(self): 

'''Get the longitude (B{C{radians}}). 

''' 

return self.philam.lam if self._philam is None else self._philam.lam 

 

@property_doc_(''' the latitude (C{degrees90}).''') 

def lat(self): 

'''Get the latitude (C{degrees90}). 

''' 

return self._lat 

 

@lat.setter # PYCHOK setter! 

def lat(self, lat): 

'''Set the latitude. 

 

@arg lat: New latitude (C{str[N|S]} or C{degrees}). 

 

@raise ValueError: Invalid B{C{lat}}. 

''' 

lat = Lat(lat) # parseDMS(lat, suffix=_NS_, clip=90) 

self._update(lat != self._lat) 

self._lat = lat 

 

@property_doc_(''' the lat- and longitude, optionally height.''') 

def latlon(self): 

'''Get the lat- and longitude (L{LatLon2Tuple}C{(lat, lon)}). 

''' 

if self._latlon is None: 

self._latlon = LatLon2Tuple(self._lat, self._lon) 

return self._xrenamed(self._latlon) 

 

@latlon.setter # PYCHOK setter! 

def latlon(self, latlonh): 

'''Set the lat- and longitude and optionally the height. 

 

@arg latlonh: New lat-, longitude and height (2- or 

3-tuple of C{degrees} and C{meter}). 

 

@raise TypeError: Height of B{C{latlonh}} not C{scalar} or 

B{C{latlonh}} not C{list} or C{tuple}. 

 

@raise ValueError: Invalid B{C{latlonh}} or M{len(latlonh)}. 

 

@see: Function L{parse3llh} to parse a B{C{latlonh}} string 

into a 3-tuple (lat, lon, h). 

''' 

_xinstanceof(list, tuple, latlonh=latlonh) 

 

if len(latlonh) == 3: 

h = Height(latlonh[2], name=_item_sq(latlonh=2)) 

elif len(latlonh) != 2: 

raise _ValueError(latlonh=latlonh) 

else: 

h = self._height 

 

lat = Lat(latlonh[0]) # parseDMS2(latlonh[0], latlonh[1]) 

lon = Lon(latlonh[1]) 

self._update(lat != self._lat or 

lon != self._lon or h != self._height) 

self._lat, self._lon, self._height = lat, lon, h 

 

def latlon_(self, ndigits=0): # PYCHOK no cover 

'''DEPRECATED, use method C{latlon2}. 

''' 

return self.latlon2(ndigits) 

 

def latlon2(self, ndigits=0): 

'''Return this point's lat- and longitude in C{degrees}, rounded. 

 

@kwarg ndigits: Number of decimal digits (C{int}). 

 

@return: A L{LatLon2Tuple}C{(lat, lon)}, both C{float} 

and rounded away from zero. 

 

@note: The C{round}ed values are always C{float}, also 

if B{C{ndigits}} is omitted. 

''' 

r = LatLon2Tuple(round(self.lat, ndigits), 

round(self.lon, ndigits)) 

return self._xnamed(r) 

 

def latlon2round(self, ndigits=0): # PYCHOK no cover 

'''DEPRECATED, use method C{latlon2}. 

''' 

return self.latlon2(ndigits) 

 

@property_RO 

def latlonheight(self): 

'''Get the lat-, longitude and height (L{LatLon3Tuple}C{(lat, lon, height)}). 

''' 

return self.latlon.to3Tuple(self.height) 

 

@property_doc_(''' the longitude (C{degrees180}).''') 

def lon(self): 

'''Get the longitude (C{degrees180}). 

''' 

return self._lon 

 

@lon.setter # PYCHOK setter! 

def lon(self, lon): 

'''Set the longitude. 

 

@arg lon: New longitude (C{str[E|W]} or C{degrees}). 

 

@raise ValueError: Invalid B{C{lon}}. 

''' 

lon = Lon(lon) # parseDMS(lon, suffix=_EW_, clip=180) 

self._update(lon != self._lon) 

self._lon = lon 

 

@property_RO 

def _N_vector(self): 

'''(INTERNAL) Get the (C{nvectorBase._N_vector_}) 

''' 

from pygeodesy.nvectorBase import _N_vector_ 

r = self._xyz or self._v3d or self.toVector() 

return _N_vector_(r.x, r.y, r.z, h=self.height) 

 

@property_RO 

def phi(self): 

'''Get the latitude (B{C{radians}}). 

''' 

return self.philam.phi if self._philam is None else self._philam.phi 

 

@property_RO 

def philam(self): 

'''Get the lat- and longitude (L{PhiLam2Tuple}C{(phi, lam)}). 

''' 

if self._philam is None: 

self._philam = PhiLam2Tuple(radians(self.lat), 

radians(self.lon)) 

return self._xnamed(self._philam) 

 

def philam2(self, ndigits=0): 

'''Return this point's lat- and longitude in C{radians}, rounded. 

 

@kwarg ndigits: Number of decimal digits (C{int}). 

 

@return: A L{PhiLam2Tuple}C{(phi, lam)}, both C{float} 

and rounded away from zero. 

 

@note: The C{round}ed values are always C{float}, also 

if B{C{ndigits}} is omitted. 

''' 

r = PhiLam2Tuple(round(self.phi, ndigits), 

round(self.lam, ndigits)) 

return self._xnamed(r) 

 

@property_RO 

def philamheight(self): 

'''Get the lat-, longitude in C{radians} and height (L{PhiLam3Tuple}C{(phi, lam, height)}). 

''' 

return self.philam.to3Tuple(self.height) 

 

def points(self, points, closed=True): # PYCHOK no cover 

'''DEPRECATED, use method C{points2}. 

''' 

return self.points2(points, closed=closed) 

 

def points2(self, points, closed=True): 

'''Check a path or polygon represented by points. 

 

@arg points: The path or polygon points (C{LatLon}[]) 

@kwarg closed: Optionally, consider the polygon closed, 

ignoring any duplicate or closing final 

B{C{points}} (C{bool}). 

 

@return: A L{Points2Tuple}C{(number, points)}, C{int} 

and C{list} or C{tuple}. 

 

@raise PointsError: Insufficient number of B{C{points}}. 

 

@raise TypeError: Some B{C{points}} are not C{LatLon}. 

''' 

return points2(points, closed=closed, base=self) 

 

def thomasTo(self, other, wrap=False): 

'''Compute the distance between this and an other point using 

U{Thomas'<https://apps.DTIC.mil/dtic/tr/fulltext/u2/703541.pdf>} 

formula. 

 

@arg other: The other point (C{LatLon}). 

@kwarg wrap: Wrap and L{unrollPI} longitudes (C{bool}). 

 

@return: Distance (C{meter}, same units as the axes of 

this point's datum ellipsoid). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@see: Function L{thomas} and methods C{cosineAndoyerLambertTo}, 

C{cosineForsytheAndoyerLambertTo}, C{cosineLawTo}, C{distanceTo*}, 

C{equirectangularTo}, C{euclideanTo}, C{flatLocalTo}/C{hubenyTo}, 

C{flatPolarTo}, C{haversineTo} and C{vincentysTo}. 

''' 

return self._distanceTo_(thomas_, other, wrap=wrap) 

 

def to2ab(self): # PYCHOK no cover 

'''DEPRECATED, use property C{philam}. 

 

@return: A L{PhiLam2Tuple}C{(phi, lam)}. 

''' 

return self.philam 

 

def to3llh(self, height=None): # PYCHOK no cover 

'''DEPRECATED, use property C{latlonheight} or C{latlon.to3Tuple}C{(}B{C{height}}C{)}. 

 

@return: A L{LatLon3Tuple}C{(lat, lon, height)}. 

''' 

return self.latlonheight if height in (None, self.height) else \ 

self.latlon.to3Tuple(height) 

 

def to3xyz(self): # PYCHOK no cover 

'''DEPRECATED, use method C{toNvector}, C{toVector}, C{toVector3d} 

or property C{xyz} or perhaps (geocentric) C{toEcef}. 

 

@return: A L{Vector3Tuple}C{(x, y, z)}, see property C{xyz}. 

''' 

return self.xyz # self.toVector() 

 

def toCartesian(self, Cartesian=None, **Cartesian_kwds): 

'''Convert this point to cartesian (ECEF) coordinates. 

 

@kwarg Cartesian: Optional class to return the geocentric 

coordinates (C{Cartesian}) or C{None}. 

@kwarg Cartesian_kwds: Optional, additional B{C{Cartesian}} 

keyword arguments, ignored if 

B{C{Cartesian=None}}. 

 

@return: A B{C{Cartesian}} or if B{C{Cartesian}} is C{None}, 

an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, 

datum)} with C{C=0} and C{M} if available. 

 

@raise TypeError: Invalid B{C{Cartesian}} or B{C{Cartesian_kwds}}. 

''' 

r = self.toEcef() 

if Cartesian is not None: # class or .classof 

r = Cartesian(r, **Cartesian_kwds) 

r = self._xnamed(r) 

_datum_datum(r.datum, self.datum) 

return r 

 

def toEcef(self): 

'''Convert this point to geocentric coordinates, also 

known as I{Earth-Centered, Earth-Fixed} (U{ECEF 

<https://WikiPedia.org/wiki/ECEF>}). 

 

@return: An L{Ecef9Tuple}C{(x, y, z, lat, lon, height, 

C, M, datum)} with C{C} 0 and C{M} if available. 

 

@raise EcefError: A C{.datum} or an ECEF issue. 

''' 

if self._e9t is None: 

e = self.Ecef(self.datum).forward(self, M=True) 

self._e9t = self._xnamed(e) 

return self._e9t 

 

def toNvector(self, h=None, Nvector=None, **Nvector_kwds): 

'''Convert this point to C{n-vector} (normal to the earth's 

surface) components, I{including height}. 

 

@kwarg h: Optional height, overriding this point's 

height (C{meter}). 

@kwarg Nvector: Optional class to return the C{n-vector} 

components (C{Nvector}) or C{None}. 

@kwarg Nvector_kwds: Optional, additional B{C{Nvector}} 

keyword arguments, ignored if 

B{C{Nvector=None}}. 

 

@return: A B{C{Nvector}} or an L{Vector4Tuple}C{(x, y, z, h)} 

if B{C{Nvector}} is C{None}. 

 

@raise TypeError: Invalid B{C{Nvector}} or B{C{Nvector_kwds}}. 

''' 

return self.toVector(Vector=Nvector, h=self.height if h is None else h, 

ll=self, **Nvector_kwds) 

 

def toStr(self, form=F_DMS, prec=None, m=_m_, sep=_COMMA_SPACE_): # PYCHOK expected 

'''Convert this point to a "lat, lon [+/-height]" string, 

formatted in the given form. 

 

@kwarg form: Optional format, F_D, F_DM, F_DMS for 

deg°, deg°min′, deg°min′sec″ (C{str}). 

@kwarg prec: Optional number of decimal digits (0..8 or C{None}). 

@kwarg m: Optional unit of the height (C{str}), use C{None} to 

exclude height from the returned string. 

@kwarg sep: Optional separator to join (C{str}). 

 

@return: Point in the specified form (C{str}). 

 

@example: 

 

>>> LatLon(51.4778, -0.0016).toStr() # 51°28′40″N, 000°00′06″W 

>>> LatLon(51.4778, -0.0016).toStr(F_D) # 51.4778°N, 000.0016°W 

>>> LatLon(51.4778, -0.0016, 42).toStr() # 51°28′40″N, 000°00′06″W, +42.00m 

 

''' 

t = [latDMS(self.lat, form=form, prec=prec), 

lonDMS(self.lon, form=form, prec=prec)] 

if self.height and m is not None: 

t += [self.heightStr(m=m)] 

return sep.join(t) 

 

def toVector(self, Vector=None, **Vector_kwds): 

'''Convert this point to C{n-vector} (normal to the earth's 

surface) components, I{ignoring height}. 

 

@kwarg Vector: Optional class to return the C{n-vector} 

components (L{Vector3d}) or C{None}. 

@kwarg Vector_kwds: Optional, additional B{C{Vector}} 

keyword arguments, ignored if 

C{B{Vector}=None}. 

 

@return: A B{C{Vector}} or a L{Vector3Tuple}C{(x, y, z)} 

if B{C{Vector}} is C{None}. 

 

@raise TypeError: Invalid B{C{Vector}} or B{C{kwds}}. 

 

@note: These are C{n-vector} x, y and z components, 

I{NOT} geocentric (ECEF) x, y and z coordinates! 

''' 

r = latlon2n_xyz(self.lat, self.lon) 

if Vector is not None: 

r = Vector(r.x, r.y, r.z, **Vector_kwds) 

return self._xnamed(r) 

 

def toVector3d(self): 

'''Convert this point to C{n-vector} (normal to the earth's 

surface) components, I{ignoring height}. 

 

@return: Unit vector (L{Vector3d}). 

 

@note: These are C{n-vector} x, y and z components, 

I{NOT} geocentric (ECEF) x, y and z coordinates! 

''' 

if self._v3d is None: 

self._v3d = self.toVector(Vector=Vector3d) # XXX .unit() 

return self._xnamed(self._v3d) 

 

def vincentysTo(self, other, radius=None, wrap=False): 

'''Compute the distance between this and an other point using 

U{Vincenty's<https://WikiPedia.org/wiki/Great-circle_distance>} 

spherical formula. 

 

@arg other: The other point (C{LatLon}). 

@kwarg radius: Mean earth radius (C{meter}) or C{None} 

for the mean radius of this point's datum 

ellipsoid. 

@kwarg wrap: Wrap and L{unroll180} longitudes (C{bool}). 

 

@return: Distance (C{meter}, same units as B{C{radius}}). 

 

@raise TypeError: The B{C{other}} point is not C{LatLon}. 

 

@see: Function L{vincentys} and methods C{cosineAndoyerLambertTo}, 

C{cosineForsytheAndoyerLambertTo}, C{cosineLawTo}, 

C{distanceTo*}, C{equirectangularTo}, C{euclideanTo}, 

C{flatLocalTo}/C{hubenyTo}, C{flatPolarTo}, 

C{haversineTo} and C{thomasTo}. 

''' 

return self._distanceTo(vincentys, other, radius, wrap=wrap) 

 

@property_RO 

def xyz(self): 

'''Get the C{n-vector} X, Y and Z components (L{Vector3Tuple}C{(x, y, z)}) 

 

@note: These are C{n-vector} x, y and z components, I{NOT} 

geocentric (ECEF) x, y and z coordinates! 

''' 

if self._xyz is None: 

self._xyz = self.toVector(Vector=Vector3Tuple) 

return self._xnamed(self._xyz) 

 

@property_RO 

def xyzh(self): 

'''Get the C{n-vector} X, Y, Z and H components (L{Vector4Tuple}C{(x, y, z, h)}) 

 

@note: These are C{n-vector} x, y and z components, I{NOT} 

geocentric (ECEF) x, y and z coordinates! 

''' 

if self._xyzh is None: 

self._xyzh = self.xyz.to4Tuple(self.height) 

return self._xnamed(self._xyzh) 

 

 

def _trilaterate5(p1, d1, p2, d2, p3, d3, area=True, eps=EPS1, 

radius=R_M, wrap=False): 

# (INTERNAL) Trilaterate three points by area overlap or 

# by perimeter intersection of three circles (radius is 

# only needed for spherical LatLon.distanceTo) 

 

r1 = Distance_(distance1=d1) 

r2 = Distance_(distance2=d2) 

r3 = Distance_(distance3=d3) 

 

m = 0 if area else (r1 + r2 + r3) 

pc = 0 

t = [] 

for _ in range(3): 

try: 

c1, c2 = p1.intersections2(r1, p2, r2, wrap=wrap) 

 

if area: # check overlap 

if c1 is c2: # abutting 

c = c1 

else: # nearest point on radical 

c = p3.nearestOn(c1, c2, within=True, wrap=wrap) 

d = r3 - p3.distanceTo(c, radius=radius, wrap=wrap) 

if d > eps: # sufficient overlap 

t.append((d, c)) 

m = max(m, d) 

 

else: # check intersection 

for c in ((c1,) if c1 is c2 else (c1, c2)): 

d = abs(r3 - p3.distanceTo(c, radius=radius, wrap=wrap)) 

if d < eps: # below margin 

t.append((d, c)) 

m = min(m, d) 

 

except IntersectionError as x: 

if _near_concentric_ in str(x): # XXX ConcentricError? 

pc += 1 

 

p1, r1, p2, r2, p3, r3 = p2, r2, p3, r3, p1, r1 # rotate 

 

if t: # get min, max, points and count ... 

t = tuple(sorted(t)) 

n = len(t), # as tuple 

# ... or for a single trilaterated result, 

# min *is* max, min- *is* maxPoint and n=1 

return Trilaterate5Tuple(*(t[0] + t[-1] + n)) 

 

if area and pc == 3: # all pairwise concentric ... 

r, p = min((r1, p1), (r2, p2), (r3, p3)) 

# ... return smallest point twice, the smallest 

# and largest distance and n=0 for concentric 

return Trilaterate5Tuple(float(r), p, float(max(r1, r2, r3)), p, 0) 

 

t = _no_overlap_ if area else _no_intersection_ 

f = max if area else min 

raise IntersectionError(area=area, eps=eps, wrap=wrap, 

txt='%s (%s %.3f)' % (t, f.__name__, m)) 

 

 

__all__ += _ALL_DOCS(LatLonBase) 

 

# **) MIT License 

# 

# Copyright (C) 2016-2020 -- mrJean1 at Gmail -- All Rights Reserved. 

# 

# Permission is hereby granted, free of charge, to any person obtaining a 

# copy of this software and associated documentation files (the "Software"), 

# to deal in the Software without restriction, including without limitation 

# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

# and/or sell copies of the Software, and to permit persons to whom the 

# Software is furnished to do so, subject to the following conditions: 

# 

# The above copyright notice and this permission notice shall be included 

# in all copies or substantial portions of the Software. 

# 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

# OTHER DEALINGS IN THE SOFTWARE.