Coverage for pygeodesy/ellipsoidalVincenty.py : 95%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# -*- coding: utf-8 -*-
geocentric (ECEF) L{Cartesian} and L{VincentyError} and functions L{areaOf}, L{intersections2}, L{nearestOn} and L{perimeterOf}.
Pure Python implementation of geodesy tools for ellipsoidal earth models, transcribed from JavaScript originals by I{(C) Chris Veness 2005-2016} and published under the same MIT Licence**, see U{Vincenty geodesics <https://www.Movable-Type.co.UK/scripts/LatLongVincenty.html>}. More at U{geographiclib<https://PyPI.org/project/geographiclib>} and U{GeoPy<https://PyPI.org/project/geopy>}.
Calculate geodesic distance between two points using the U{Vincenty <https://WikiPedia.org/wiki/Vincenty's_formulae>} formulae and one of several ellipsoidal earth models. The default model is WGS-84, the most accurate and widely used globally-applicable model for the earth ellipsoid.
Other ellipsoids offering a better fit to the local geoid include Airy (1830) in the UK, Clarke (1880) in Africa, International 1924 in much of Europe, and GRS-67 in South America. North America (NAD83) and Australia (GDA) use GRS-80, which is equivalent to the WGS-84 model.
Great-circle distance uses a spherical model of the earth with the mean earth radius defined by the International Union of Geodesy and Geophysics (IUGG) as M{(2 * a + b) / 3 = 6371008.7714150598} meter or approx. 6371009 meter (for WGS-84, resulting in an error of up to about 0.5%).
Here's an example usage of C{ellipsoidalVincenty}:
>>> from pygeodesy.ellipsoidalVincenty import LatLon >>> Newport_RI = LatLon(41.49008, -71.312796) >>> Cleveland_OH = LatLon(41.499498, -81.695391) >>> Newport_RI.distanceTo(Cleveland_OH) 866,455.4329158525 # meter
You can change the ellipsoid model used by the Vincenty formulae as follows:
>>> from pygeodesy import Datums >>> from pygeodesy.ellipsoidalVincenty import LatLon >>> p = LatLon(0, 0, datum=Datums.OSGB36)
or by converting to anothor datum:
>>> p = p.convertDatum(Datums.OSGB36)
@newfield example: Example, Examples '''
# make sure int division yields float quotient raise ImportError('%s 1/2 == %d' % ('division', division))
CartesianEllipsoidalBase, \ LatLonEllipsoidalBase, _nearestOn Distance3Tuple sincos2, unroll180
'''Error raised from I{Vincenty}'s C{direct} and C{inverse} methods for coincident points or lack of convergence. '''
'''Extended to convert geocentric, L{Cartesian} points to Vincenty-based, ellipsoidal, geodetic L{LatLon}. '''
'''Convert this cartesian point to a C{Vincenty}-based geodetic point.
@kwarg LatLon_datum_kwds: Optional L{LatLon}, B{C{datum}} and other keyword arguments, ignored if C{B{LatLon}=None}. Use B{C{LatLon=...}} to override this L{LatLon} class or specify C{B{LatLon}=None}.
@return: The geodetic point (L{LatLon}) or if B{C{LatLon}} is C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)} with C{C} and C{M} if available.
@raise TypeError: Invalid B{C{LatLon}}, B{C{datum}} or other B{C{LatLon_datum_kwds}}. '''
'''Using the formulae devised by U{I{Thaddeus Vincenty (1975)} <https://WikiPedia.org/wiki/Vincenty's_formulae>} for an (oblate) ellipsoidal model of the earth to compute the geodesic distance and bearings between two given points or the destination point given an start point and initial bearing.
Set the earth model to be used with the keyword argument datum. The default is Datums.WGS84, which is the most globally accurate. For other models, see the Datums in module datum.
Note: This implementation of I{Vincenty} methods may not converge for some valid points, raising a L{VincentyError}. In that case, a result may be obtained by increasing the epsilon and/or the iteration tolerance and/or limit, see properties L{LatLon.epsilon} and L{LatLon.iterations}. '''
def bearingTo(self, other, wrap=False): # PYCHOK no cover '''DEPRECATED, use method C{initialBearingTo}. ''' return self.initialBearingTo(other, wrap=wrap)
'''Compute the initial and final bearing (forward and reverse azimuth) from this to an other point, using I{Vincenty}'s C{inverse} method. See methods L{initialBearingTo} and L{finalBearingTo} for more details.
@arg other: The other point (L{LatLon}). @kwarg wrap: Wrap and unroll longitudes (C{bool}).
@return: A L{Bearing2Tuple}C{(initial, final)}.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit and/or if this and the B{C{other}} point are coincident or near-antipodal. '''
'''Compute the destination point after having travelled for the given distance from this point along a geodesic given by an initial bearing, using I{Vincenty}'s C{direct} method. See method L{destination2} for more details.
@arg distance: Distance (C{meter}). @arg bearing: Initial bearing (compass C{degrees360}). @kwarg height: Optional height, overriding the default height (C{meter}, same units as C{distance}).
@return: The destination point (L{LatLon}).
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit.
@example:
>>> p = LatLon(-37.95103, 144.42487) >>> d = p.destination(54972.271, 306.86816) # 37.6528°S, 143.9265°E '''
'''Compute the destination point and the final bearing (reverse azimuth) after having travelled for the given distance from this point along a geodesic given by an initial bearing, using I{Vincenty}'s C{direct} method.
The distance must be in the same units as this point's datum axes, conventionally C{meter}. The distance is measured on the surface of the ellipsoid, ignoring this point's height.
The initial and final bearing (forward and reverse azimuth) are in compass C{degrees360}.
The destination point's height and datum are set to this point's height and datum, unless the former is overridden.
@arg distance: Distance (C{meter}). @arg bearing: Initial bearing (compass C{degrees360}). @kwarg height: Optional height, overriding the default height (C{meter}, same units as B{C{distance}}).
@return: A L{Destination2Tuple}C{(destination, final)}.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit.
@example:
>>> p = LatLon(-37.95103, 144.42487) >>> b = 306.86816 >>> d, f = p.destination2(54972.271, b) >>> d LatLon(37°39′10.14″S, 143°55′35.39″E) # 37.652818°S, 143.926498°E >>> f 307.1736313846706 '''
'''Compute the distance between this and an other point along a geodesic, using I{Vincenty}'s C{inverse} method. See method L{distanceTo3} for more details.
@arg other: The other point (L{LatLon}). @kwarg wrap: Wrap and unroll longitudes (C{bool}).
@return: Distance (C{meter}).
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit and/or if this and the B{C{other}} point are coincident or near-antipodal.
@example:
>>> p = LatLon(50.06632, -5.71475) >>> q = LatLon(58.64402, -3.07009) >>> d = p.distanceTo(q) # 969,954.166 m '''
'''Compute the distance, the initial and final bearing along a geodesic between this and an other point, using Vincenty's C{inverse} method.
The distance is in the same units as this point's datum axes, conventially meter. The distance is measured on the surface of the ellipsoid, ignoring this point's height.
The initial and final bearing (forward and reverse azimuth) are in compass C{degrees360} from North.
@arg other: Destination point (L{LatLon}). @kwarg wrap: Wrap and unroll longitudes (C{bool}).
@return: A L{Distance3Tuple}C{(distance, initial, final)}.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit and/or if this and the B{C{other}} point are coincident or near-antipodal. '''
'''Get the convergence epsilon (C{scalar}). '''
'''Set the convergence epsilon.
@arg eps: New epsilon (C{scalar}).
@raise TypeError: Non-scalar B{C{eps}}.
@raise ValueError: Out of bounds B{C{eps}}. '''
'''Compute the final bearing (reverse azimuth) after having travelled for the given distance along a geodesic given by an initial bearing from this point, using Vincenty's C{direct} method. See method L{destination2} for more details.
@arg distance: Distance (C{meter}). @arg bearing: Initial bearing (compass C{degrees360}).
@return: Final bearing (compass C{degrees360}).
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit.
@example:
>>> p = LatLon(-37.95103, 144.42487) >>> b = 306.86816 >>> f = p.finalBearingOn(54972.271, b) # 307.1736 '''
'''Compute the final bearing (reverse azimuth) after having travelled along a geodesic from this point to an other point, using I{Vincenty}'s C{inverse} method. See method L{distanceTo3} for more details.
@arg other: The other point (L{LatLon}). @kwarg wrap: Wrap and unroll longitudes (C{bool}).
@return: Final bearing (compass C{degrees360}).
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit and/or if this and the B{C{other}} point are coincident or near-antipodal.
@example:
>>> p = new LatLon(50.06632, -5.71475) >>> q = new LatLon(58.64402, -3.07009) >>> f = p.finalBearingTo(q) # 11.2972°
>>> p = LatLon(52.205, 0.119) >>> q = LatLon(48.857, 2.351) >>> f = p.finalBearingTo(q) # 157.9 '''
'''Compute the initial bearing (forward azimuth) to travel along a geodesic from this point to an other point, using I{Vincenty}'s C{inverse} method. See method L{distanceTo3} for more details.
@arg other: The other point (L{LatLon}). @kwarg wrap: Wrap and unroll longitudes (C{bool}).
@return: Initial bearing (compass C{degrees360}).
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit and/or if this and the B{C{other}} point are coincident or near-antipodal.
@example:
>>> p = LatLon(50.06632, -5.71475) >>> q = LatLon(58.64402, -3.07009) >>> b = p.initialBearingTo(q) # 9.141877°
>>> p = LatLon(52.205, 0.119) >>> q = LatLon(48.857, 2.351) >>> b = p.initialBearingTo(q) # 156.11064°
@JSname: I{bearingTo}. '''
'''Get the iteration limit (C{int}). '''
'''Set the iteration limit.
@arg limit: New iteration limit (C{int}).
@raise TypeError: Non-scalar B{C{limit}}.
@raise ValueError: Out-of-bounds B{C{limit}}. '''
'''Convert this point to C{Vincenty}-based cartesian (ECEF) coordinates.
@kwarg Cartesian_datum_kwds: Optional L{Cartesian}, B{C{datum}} and other keyword arguments, ignored if B{C{Cartesian=None}}. Use B{C{Cartesian=...}} to override this L{Cartesian} class or specify B{C{Cartesian=None}}.
@return: The cartesian point (L{Cartesian}) or if B{C{Cartesian}} is C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)} with C{C} and C{M} if available.
@raise TypeError: Invalid B{C{Cartesian}}, B{C{datum}} or other B{C{Cartesian_datum_kwds}}. ''' datum=self.datum)
'''(INTERNAL) Direct Vincenty method.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit. '''
c2a = 0 A, B = 1, 0 else: # e22 == (a / b)**2 - 1
else: raise VincentyError(_no_convergence_, txt=repr(self)) # self.toRepr()
# final bearing (reverse azimuth +/- 180)
# destination latitude in [-90, 90) (1 - E.f) * hypot(sa, t))) # destination longitude in [-180, 180) _dl(E.f, c2a, sa, s, cs, ss, c2sm) + radians(self.lon)) else:
'''(INTERNAL) Inverse Vincenty method.
@raise TypeError: The B{C{other}} point is not L{LatLon}.
@raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible.
@raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit and/or if this and the B{C{other}} point are coincident or near-antipodal. '''
raise VincentyError(_ambiguous_, txt=t) # return zeros like Karney, but unlike Veness
else:
# # omitted and applied only after failure to converge below, see footnote # # under Inverse at <https://WikiPedia.org/wiki/Vincenty's_formulae> # # <https://GitHub.com/ChrisVeness/geodesy/blob/master/latlon-vincenty.js> # elif abs(ll) > PI and self.isantipodeTo(other, eps=self._epsilon): # raise VincentyError('%s, %r %sto %r' % ('ambiguous', self, # _antipodal_, other)) else: raise VincentyError(_no_convergence_, txt='%r %sto %r' % (self, t, other))
# if self.height or other.height: # b += self._havg(other)
else:
'''(INTERNAL) Dl. ''' C * cs * (2 * c2sm**2 - 1)))
'''(INTERNAL) Ds. ''' B / 6.0 * c2sm * ss2))
'''(INTERNAL) Compute A, B polynomials. '''
'''(INTERNAL) Reduced cos, sin, tan. '''
def areaOf(points, datum=Datums.WGS84, wrap=True): # PYCHOK no cover '''DEPRECATED, use function C{ellipsoidalKarney.areaOf}. ''' from pygeodesy.ellipsoidalKarney import areaOf return areaOf(points, datum=datum, wrap=wrap)
equidistant=None, tol=_TOL_M, LatLon=LatLon, **LatLon_kwds): '''Iteratively compute the intersection points of two circles each defined by an (ellipsoidal) center point and a radius.
@arg center1: Center of the first circle (L{LatLon}). @arg radius1: Radius of the first circle (C{meter}). @arg center2: Center of the second circle (L{LatLon}). @arg radius2: Radius of the second circle (C{meter}). @kwarg height: Optional height for the intersection points, overriding the "radical height" at the "radical line" between both centers (C{meter}) or C{None}. @kwarg wrap: Wrap and unroll longitudes (C{bool}). @kwarg equidistant: An azimuthal equidistant projection class (L{EquidistantKarney} or L{Equidistant}) or C{None}. @kwarg tol: Convergence tolerance (C{meter}). @kwarg LatLon: Optional class to return the intersection points (L{LatLon}) or C{None}. @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments, ignored if C{B{LatLon}=None}.
@return: 2-Tuple of the intersection points, each a B{C{LatLon}} instance or L{LatLon4Tuple}C{(lat, lon, height, datum)} if B{C{LatLon}} is C{None}. For abutting circles, the intersection points are the same instance.
@raise IntersectionError: Concentric, antipodal, invalid or non-intersecting circles or no convergence for the B{C{tol}}.
@raise TypeError: Invalid or non-ellipsoidal B{C{center1}} or B{C{center2}} or invalid B{C{equidistant}}.
@raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{height}}.
@see: U{The B{ellipsoidal} case<https://GIS.StackExchange.com/questions/48937/ calculating-intersection-of-two-circles>}, U{Karney's paper <https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section 14 I{Maritime Boundaries}, U{circle-circle<https://MathWorld.Wolfram.com/Circle-CircleIntersection.html>} and U{sphere-sphere<https://MathWorld.Wolfram.com/Sphere-SphereIntersection.html>} intersections. ''' equidistant=E, tol=tol, LatLon=LatLon, **LatLon_kwds)
equidistant=None, tol=_TOL_M, LatLon=LatLon, **LatLon_kwds): '''Locate the closest point on the arc between two other points.
@arg point: Reference point (C{LatLon}). @arg point1: Start point of the arc (C{LatLon}). @arg point2: End point of the arc (C{LatLon}). @kwarg within: If C{True} return the closest point I{between} B{C{point1}} and B{C{point2}}, otherwise the closest point elsewhere on the arc (C{bool}). @kwarg height: Optional height for the closest point (C{meter}) or C{None}. @kwarg wrap: Wrap and unroll longitudes (C{bool}). @kwarg equidistant: An azimuthal equidistant projection class (L{Equidistant} or L{EquidistantKarney}), function L{azimuthal.equidistant} will be invoked if left unspecified. @kwarg tol: Convergence tolerance (C{meter}). @kwarg LatLon: Optional class to return the closest point (L{LatLon}) or C{None}. @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments, ignored if C{B{LatLon}=None}.
@return: Closest point (B{C{LatLon}}).
@raise ImportError: Package U{geographiclib <https://PyPI.org/project/geographiclib>} not installed or not found.
@raise TypeError: Invalid or non-ellipsoidal B{C{point}}, B{C{point1}} or B{C{point2}} or invalid B{C{equidistant}}. ''' from pygeodesy.azimuthal import Equidistant p = _xellipsoidal(point=point) p1 = p.others(point1=point1) p2 = p.others(point2=point2) E = Equidistant if equidistant is None else equidistant return _nearestOn(p, p1, p2, within=within, height=height, wrap=wrap, equidistant=E, tol=tol, LatLon=LatLon, **LatLon_kwds)
def perimeterOf(points, closed=False, datum=Datums.WGS84, wrap=True): # PYCHOK no cover '''DEPRECATED, use function C{ellipsoidalKarney.perimeterOf}. ''' from pygeodesy.ellipsoidalKarney import perimeterOf return perimeterOf(points, closed=closed, datum=datum, wrap=wrap)
intersections2, ispolar, # from .points nearestOn) + _ALL_DOCS(perimeterOf)
# **) MIT License # # Copyright (C) 2016-2020 -- mrJean1 at Gmail -- All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. |