Package pygeodesy :: Module formy
[frames] | no frames]

Module formy

Formulary of basic geodesy functions and approximations.


Version: 20.10.03

Classes
  Radical2Tuple
2-Tuple (ratio, xline) of the radical ratio and radical xline, both scalar and 0.0 <= ratio <= 1.0
Functions
 
antipode(lat, lon)
Return the antipode, the point diametrically opposite to a given point in degrees.
 
antipode_(phi, lam)
Return the antipode, the point diametrically opposite to a given point in radians.
 
bearing(lat1, lon1, lat2, lon2, **options)
Compute the initial or final bearing (forward or reverse azimuth) between a (spherical) start and end point.
 
bearing_(phi1, lam1, phi2, lam2, final=False, wrap=False)
Compute the initial or final bearing (forward or reverse azimuth) between a (spherical) start and end point.
 
compassAngle(lat1, lon1, lat2, lon2, adjust=True, wrap=False)
Return the angle from North for the direction vector (lon2 - lon1, lat2 - lat1) between two points.
 
cosineAndoyerLambert(lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)
Compute the distance between two (ellipsoidal) points using the Andoyer-Lambert correction of the Law of Cosines fromula.
 
cosineAndoyerLambert_(phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)
Compute the angular distance between two (ellipsoidal) points using the Andoyer-Lambert correction of the Law of Cosines fromula.
 
cosineForsytheAndoyerLambert(lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)
Compute the distance between two (ellipsoidal) points using the Forsythe-Andoyer-Lambert correction of the Law of Cosines formula.
 
cosineForsytheAndoyerLambert_(phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)
Compute the angular distance between two (ellipsoidal) points using the Forsythe-Andoyer-Lambert correction of the Law of Cosines formula.
 
cosineLaw(lat1, lon1, lat2, lon2, radius=6371008.77141, wrap=False)
Compute the distance between two points using the spherical Law of Cosines formula.
 
cosineLaw_(phi2, phi1, lam21)
Compute the angular distance between two points using the spherical Law of Cosines formula.
 
equirectangular(lat1, lon1, lat2, lon2, radius=6371008.77141, **options)
Compute the distance between two points using the Equirectangular Approximation / Projection.
 
equirectangular_(lat1, lon1, lat2, lon2, adjust=True, limit=45, wrap=False)
Compute the distance between two points using the Equirectangular Approximation / Projection.
 
euclidean(lat1, lon1, lat2, lon2, radius=6371008.77141, adjust=True, wrap=False)
Approximate the Euclidean distance between two (spherical) points.
 
euclidean_(phi2, phi1, lam21, adjust=True)
Approximate the angular Euclidean distance between two (spherical) points.
 
flatLocal(lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)
Compute the distance between two (ellipsoidal) points using the ellipsoidal Earth to plane projection aka Hubeny formula.
 
hubeny(lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)
Compute the distance between two (ellipsoidal) points using the ellipsoidal Earth to plane projection aka Hubeny formula.
 
flatLocal_(phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)
Compute the angular distance between two (ellipsoidal) points using the ellipsoidal Earth to plane projection aka Hubeny formula.
 
hubeny_(phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)
Compute the angular distance between two (ellipsoidal) points using the ellipsoidal Earth to plane projection aka Hubeny formula.
 
flatPolar(lat1, lon1, lat2, lon2, radius=6371008.77141, wrap=False)
Compute the distance between two (spherical) points using the polar coordinate flat-Earth formula.
 
flatPolar_(phi2, phi1, lam21)
Compute the angular distance between two (spherical) points using the polar coordinate flat-Earth formula.
 
haversine(lat1, lon1, lat2, lon2, radius=6371008.77141, wrap=False)
Compute the distance between two (spherical) points using the Haversine formula.
 
haversine_(phi2, phi1, lam21)
Compute the angular distance between two (spherical) points using the Haversine formula.
 
heightOf(angle, distance, radius=6371008.77141)
Determine the height above the (spherical) earth after traveling along a straight line at a given tilt.
 
horizon(height, radius=6371008.77141, refraction=False)
Determine the distance to the horizon from a given altitude above the (spherical) earth.
 
intersections2(lat1, lon1, radius1, lat2, lon2, radius2, datum=None, wrap=True)
Conveniently compute the intersections of two circles each defined by (geodetic/-centric) center point and a radius, using either ...
 
isantipode(lat1, lon1, lat2, lon2, eps=2.22044604925e-16)
Check whether two points are antipodal, on diametrically opposite sides of the earth.
 
isantipode_(phi1, lam1, phi2, lam2, eps=2.22044604925e-16)
Check whether two points are antipodal, on diametrically opposite sides of the earth.
 
latlon2n_xyz(lat, lon)
Convert lat-, longitude to n-vector (normal to the earth's surface) X, Y and Z components.
 
n_xyz2latlon(x, y, z)
Convert n-vector components to lat- and longitude in degrees.
 
n_xyz2philam(x, y, z)
Convert n-vector components to lat- and longitude in radians.
 
philam2n_xyz(phi, lam)
Convert lat-, longitude to n-vector (normal to the earth's surface) X, Y and Z components.
 
points2(points, closed=True, base=None, Error=<class 'pygeodesy.errors.PointsError'>)
Check a path or polygon represented by points.
 
radical2(distance, radius1, radius2)
Compute the radical ratio and radical line of two intersecting circles.
 
thomas(lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)
Compute the distance between two (ellipsoidal) points using Thomas' formula.
 
thomas_(phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)
Compute the angular distance between two (ellipsoidal) points using Thomas' formula.
 
vincentys(lat1, lon1, lat2, lon2, radius=6371008.77141, wrap=False)
Compute the distance between two (spherical) points using Vincenty's spherical formula.
 
vincentys_(phi2, phi1, lam21)
Compute the angular distance between two (spherical) points using Vincenty's spherical formula.
Variables
  __all__ = _ALL_LAZY.formy
Function Details

antipode (lat, lon)

 

Return the antipode, the point diametrically opposite to a given point in degrees.

Arguments:
  • lat - Latitude (degrees).
  • lon - Longitude (degrees).
Returns:
A LatLon2Tuple(lat, lon).

See Also: Geosphere.

antipode_ (phi, lam)

 

Return the antipode, the point diametrically opposite to a given point in radians.

Arguments:
  • phi - Latitude (radians).
  • lam - Longitude (radians).
Returns:
A PhiLam2Tuple(phi, lam).

See Also: Geosphere.

bearing (lat1, lon1, lat2, lon2, **options)

 

Compute the initial or final bearing (forward or reverse azimuth) between a (spherical) start and end point.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • options - Optional keyword arguments for function bearing_.
Returns:
Initial or final bearing (compass degrees360) or zero if start and end point coincide.

bearing_ (phi1, lam1, phi2, lam2, final=False, wrap=False)

 

Compute the initial or final bearing (forward or reverse azimuth) between a (spherical) start and end point.

Arguments:
  • phi1 - Start latitude (radians).
  • lam1 - Start longitude (radians).
  • phi2 - End latitude (radians).
  • lam2 - End longitude (radians).
  • final - Return final bearing if True, initial otherwise (bool).
  • wrap - Wrap and unrollPI longitudes (bool).
Returns:
Initial or final bearing (compass radiansPI2) or zero if start and end point coincide.

compassAngle (lat1, lon1, lat2, lon2, adjust=True, wrap=False)

 

Return the angle from North for the direction vector (lon2 - lon1, lat2 - lat1) between two points.

Suitable only for short, non-near-polar vectors up to a few hundred Km or Miles. Use function bearing for longer vectors.

Arguments:
  • lat1 - From latitude (degrees).
  • lon1 - From longitude (degrees).
  • lat2 - To latitude (degrees).
  • lon2 - To longitude (degrees).
  • adjust - Adjust the longitudinal delta by the cosine of the mean latitude (bool).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Compass angle from North (degrees360).

Note: Courtesy Martin Schultz.

See Also: Local, flat earth approximation.

cosineAndoyerLambert (lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)

 

Compute the distance between two (ellipsoidal) points using the Andoyer-Lambert correction of the Law of Cosines fromula.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as the datum's ellipsoid axes).
Raises:
  • TypeError - Invalid datum.

cosineAndoyerLambert_ (phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)

 

Compute the angular distance between two (ellipsoidal) points using the Andoyer-Lambert correction of the Law of Cosines fromula.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
Returns:
Angular distance (radians).
Raises:
  • TypeError - Invalid datum.

cosineForsytheAndoyerLambert (lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)

 

Compute the distance between two (ellipsoidal) points using the Forsythe-Andoyer-Lambert correction of the Law of Cosines formula.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as the datum's ellipsoid axes).
Raises:
  • TypeError - Invalid datum.

cosineForsytheAndoyerLambert_ (phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)

 

Compute the angular distance between two (ellipsoidal) points using the Forsythe-Andoyer-Lambert correction of the Law of Cosines formula.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
Returns:
Angular distance (radians).
Raises:
  • TypeError - Invalid datum.

cosineLaw (lat1, lon1, lat2, lon2, radius=6371008.77141, wrap=False)

 

Compute the distance between two points using the spherical Law of Cosines formula.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • radius - Mean earth radius (meter).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as radius).
Raises:
  • TypeError - Invalid radius.

cosineLaw_ (phi2, phi1, lam21)

 

Compute the angular distance between two points using the spherical Law of Cosines formula.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
Returns:
Angular distance (radians).

equirectangular (lat1, lon1, lat2, lon2, radius=6371008.77141, **options)

 

Compute the distance between two points using the Equirectangular Approximation / Projection.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • radius - Mean earth radius (meter).
  • options - Optional keyword arguments for function equirectangular_.
Returns:
Distance (meter, same units as radius).

See Also: Function equirectangular_ for more details, the available options, errors, restrictions and other, approximate or accurate distance functions.

equirectangular_ (lat1, lon1, lat2, lon2, adjust=True, limit=45, wrap=False)

 

Compute the distance between two points using the Equirectangular Approximation / Projection.

This approximation is valid for short distance of several hundred Km or Miles, see the limit keyword argument and the LimitError.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • adjust - Adjust the wrapped, unrolled longitudinal delta by the cosine of the mean latitude (bool).
  • limit - Optional limit for lat- and longitudinal deltas (degrees) or None or 0 for unlimited.
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
A Distance4Tuple(distance2, delta_lat, delta_lon, unroll_lon2).
Raises:
  • LimitError - If the lat- and/or longitudinal delta exceeds the -limit..+limit range and limiterrors set to True.

euclidean (lat1, lon1, lat2, lon2, radius=6371008.77141, adjust=True, wrap=False)

 

Approximate the Euclidean distance between two (spherical) points.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • radius - Mean earth radius (meter).
  • adjust - Adjust the longitudinal delta by the cosine of the mean latitude (bool).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as radius).
Raises:
  • TypeError - Invalid radius.

euclidean_ (phi2, phi1, lam21, adjust=True)

 

Approximate the angular Euclidean distance between two (spherical) points.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
  • adjust - Adjust the longitudinal delta by the cosine of the mean latitude (bool).
Returns:
Angular distance (radians).

flatLocal (lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)

 

Compute the distance between two (ellipsoidal) points using the ellipsoidal Earth to plane projection aka Hubeny formula.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as the datum's ellipsoid axes).
Raises:
  • TypeError - Invalid datum.

Note: The meridional and prime_vertical radii of curvature are taken and scaled at the mean of both latitude.

See Also: Functions flatLocal_/hubeny_, cosineLaw, flatPolar, cosineAndoyerLambert, cosineForsytheAndoyerLambert, equirectangular, euclidean, haversine, thomas, vincentys, method Ellipsoid.distance2 and local, flat earth approximation.

hubeny (lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)

 

Compute the distance between two (ellipsoidal) points using the ellipsoidal Earth to plane projection aka Hubeny formula.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as the datum's ellipsoid axes).
Raises:
  • TypeError - Invalid datum.

Note: The meridional and prime_vertical radii of curvature are taken and scaled at the mean of both latitude.

See Also: Functions flatLocal_/hubeny_, cosineLaw, flatPolar, cosineAndoyerLambert, cosineForsytheAndoyerLambert, equirectangular, euclidean, haversine, thomas, vincentys, method Ellipsoid.distance2 and local, flat earth approximation.

flatLocal_ (phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)

 

Compute the angular distance between two (ellipsoidal) points using the ellipsoidal Earth to plane projection aka Hubeny formula.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
Returns:
Angular distance (radians).
Raises:
  • TypeError - Invalid datum.

Note: The meridional and prime_vertical radii of curvature are taken and scaled at the mean of both latitude.

See Also: Functions flatLocal/hubeny, cosineAndoyerLambert_, cosineForsytheAndoyerLambert_, cosineLaw_, flatPolar_, equirectangular_, euclidean_, haversine_, thomas_ and vincentys_ and local, flat earth approximation.

hubeny_ (phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)

 

Compute the angular distance between two (ellipsoidal) points using the ellipsoidal Earth to plane projection aka Hubeny formula.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
Returns:
Angular distance (radians).
Raises:
  • TypeError - Invalid datum.

Note: The meridional and prime_vertical radii of curvature are taken and scaled at the mean of both latitude.

See Also: Functions flatLocal/hubeny, cosineAndoyerLambert_, cosineForsytheAndoyerLambert_, cosineLaw_, flatPolar_, equirectangular_, euclidean_, haversine_, thomas_ and vincentys_ and local, flat earth approximation.

flatPolar (lat1, lon1, lat2, lon2, radius=6371008.77141, wrap=False)

 

Compute the distance between two (spherical) points using the polar coordinate flat-Earth formula.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • radius - Mean earth radius (meter).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as radius).
Raises:
  • TypeError - Invalid radius.

flatPolar_ (phi2, phi1, lam21)

 

Compute the angular distance between two (spherical) points using the polar coordinate flat-Earth formula.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
Returns:
Angular distance (radians).

haversine (lat1, lon1, lat2, lon2, radius=6371008.77141, wrap=False)

 

Compute the distance between two (spherical) points using the Haversine formula.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • radius - Mean earth radius (meter).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as radius).
Raises:
  • TypeError - Invalid radius.

See Also: Distance between two (spherical) points, functions cosineLaw, cosineAndoyerLambert, cosineForsytheAndoyerLambert, equirectangular, euclidean, flatLocal/hubeny, flatPolar, thomas and vincentys and methods Ellipsoid.distance2, LatLon.distanceTo* and LatLon.equirectangularTo.

Note: See note at function vincentys_.

haversine_ (phi2, phi1, lam21)

 

Compute the angular distance between two (spherical) points using the Haversine formula.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
Returns:
Angular distance (radians).

heightOf (angle, distance, radius=6371008.77141)

 

Determine the height above the (spherical) earth after traveling along a straight line at a given tilt.

Arguments:
  • angle - Tilt angle above horizontal (degrees).
  • distance - Distance along the line (meter or same units as radius).
  • radius - Optional mean earth radius (meter).
Returns:
Height (meter, same units as distance and radius).
Raises:
  • ValueError - Invalid angle, distance or radius.

horizon (height, radius=6371008.77141, refraction=False)

 

Determine the distance to the horizon from a given altitude above the (spherical) earth.

Arguments:
  • height - Altitude (meter or same units as radius).
  • radius - Optional mean earth radius (meter).
  • refraction - Consider atmospheric refraction (bool).
Returns:
Distance (meter, same units as height and radius).
Raises:
  • ValueError - Invalid height or radius.

See Also: Distance to horizon.

intersections2 (lat1, lon1, radius1, lat2, lon2, radius2, datum=None, wrap=True)

 

Conveniently compute the intersections of two circles each defined by (geodetic/-centric) center point and a radius, using either ...

1) vector3d.intersections2 for small distances or if no datum is specified, or ...

2) sphericalTrigonometry.intersections2 for a spherical datum or if datum is a scalar representing the earth radius, or ...

3) ellipsoidalKarney.intersections2 for an ellipsoidal datum and if Karney's geographiclib is installed, or ...

4) ellipsoidalVincenty.intersections2 if datum is ellipsoidal otherwise.

Arguments:
  • lat1 - Latitude of the first circle center (degrees).
  • lon1 - Longitude of the first circle center (degrees).
  • radius1 - Radius of the first circle (meter).
  • lat2 - Latitude of the second circle center (degrees).
  • lon2 - Longitude of the second circle center (degrees).
  • radius2 - Radius of the second circle (meter).
  • datum - Optional ellipsoidal or spherical datum (Datum, Ellipsoid, Ellipsoid2, a_f2Tuple or scalar earth radius) or None.
  • wrap - Wrap and unroll longitudes (bool).
Returns:
2-Tuple of the intersection points, each a LatLon2Tuple(lat, lon). For abutting circles, the intersection points are the same instance.
Raises:
  • IntersectionError - Concentric, antipodal, invalid or non-intersecting circles or no convergence.
  • TypeError - Invalid datum.
  • UnitError - Invalid lat1, lon1, radius1 lat2, lon2 or radius2.

isantipode (lat1, lon1, lat2, lon2, eps=2.22044604925e-16)

 

Check whether two points are antipodal, on diametrically opposite sides of the earth.

Arguments:
  • lat1 - Latitude of one point (degrees).
  • lon1 - Longitude of one point (degrees).
  • lat2 - Latitude of the other point (degrees).
  • lon2 - Longitude of the other point (degrees).
  • eps - Tolerance for near-equality (degrees).
Returns:
True if points are antipodal within the eps tolerance, False otherwise.

See Also: Geosphere.

isantipode_ (phi1, lam1, phi2, lam2, eps=2.22044604925e-16)

 

Check whether two points are antipodal, on diametrically opposite sides of the earth.

Arguments:
  • phi1 - Latitude of one point (radians).
  • lam1 - Longitude of one point (radians).
  • phi2 - Latitude of the other point (radians).
  • lam2 - Longitude of the other point (radians).
  • eps - Tolerance for near-equality (radians).
Returns:
True if points are antipodal within the eps tolerance, False otherwise.

See Also: Geosphere.

latlon2n_xyz (lat, lon)

 

Convert lat-, longitude to n-vector (normal to the earth's surface) X, Y and Z components.

Arguments:
  • lat - Latitude (degrees).
  • lon - Longitude (degrees).
Returns:
A Vector3Tuple(x, y, z).

See Also: Function philam2n_xyz.

Note: These are n-vector x, y and z components, NOT geocentric ECEF x, y and z coordinates!

n_xyz2latlon (x, y, z)

 

Convert n-vector components to lat- and longitude in degrees.

Arguments:
  • x - X component (scalar).
  • y - Y component (scalar).
  • z - Z component (scalar).
Returns:
A LatLon2Tuple(lat, lon).

See Also: Function n_xyz2philam.

n_xyz2philam (x, y, z)

 

Convert n-vector components to lat- and longitude in radians.

Arguments:
  • x - X component (scalar).
  • y - Y component (scalar).
  • z - Z component (scalar).
Returns:
A PhiLam2Tuple(phi, lam).

See Also: Function n_xyz2latlon.

philam2n_xyz (phi, lam)

 

Convert lat-, longitude to n-vector (normal to the earth's surface) X, Y and Z components.

Arguments:
  • phi - Latitude (radians).
  • lam - Longitude (radians).
Returns:
A Vector3Tuple(x, y, z).

See Also: Function latlon2n_xyz.

Note: These are n-vector x, y and z components, NOT geocentric ECEF x, y and z coordinates!

points2 (points, closed=True, base=None, Error=<class 'pygeodesy.errors.PointsError'>)

 

Check a path or polygon represented by points.

Arguments:
  • points - The path or polygon points (LatLon[])
  • closed - Optionally, consider the polygon closed, ignoring any duplicate or closing final points (bool).
  • base - Optionally, check all points against this base class, if None don't check.
  • Error - Exception to raise (ValueError).
Returns:
A Points2Tuple(number, points) with the number of points and the points list or tuple.
Raises:
  • PointsError - Insufficient number of points.
  • TypeError - Some points are not base compatible.

radical2 (distance, radius1, radius2)

 

Compute the radical ratio and radical line of two intersecting circles.

The radical line is perpendicular to the axis thru the centers of the circles at (0, 0) and (distance, 0).

Arguments:
  • distance - Distance between the circle centers (scalar).
  • radius1 - Radius of the first circle (scalar).
  • radius2 - Radius of the second circle (scalar).
Returns:
A Radical2Tuple(ratio, xline) where 0.0 <= ratio <= 1.0 and xline is along the distance.
Raises:

thomas (lat1, lon1, lat2, lon2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., wrap=False)

 

Compute the distance between two (ellipsoidal) points using Thomas' formula.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as the datum's ellipsoid axes).
Raises:
  • TypeError - Invalid datum.

thomas_ (phi2, phi1, lam21, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran...)

 

Compute the angular distance between two (ellipsoidal) points using Thomas' formula.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
  • datum - Ellipsoidal datum to use (Datum, Ellipsoid, Ellipsoid2 or a_f2Tuple).
Returns:
Angular distance (radians).
Raises:
  • TypeError - Invalid datum.

vincentys (lat1, lon1, lat2, lon2, radius=6371008.77141, wrap=False)

 

Compute the distance between two (spherical) points using Vincenty's spherical formula.

Arguments:
  • lat1 - Start latitude (degrees).
  • lon1 - Start longitude (degrees).
  • lat2 - End latitude (degrees).
  • lon2 - End longitude (degrees).
  • radius - Mean earth radius (meter).
  • wrap - Wrap and unroll180 longitudes (bool).
Returns:
Distance (meter, same units as radius).
Raises:
  • TypeError - Invalid radius.

See Also: Functions vincentys_, cosineAndoyerLambert, cosineForsytheAndoyerLambert,cosineLaw, equirectangular, euclidean, flatLocal/hubeny, flatPolar, haversine and thomas and methods Ellipsoid.distance2, LatLon.distanceTo* and LatLon.equirectangularTo.

Note: See note at function vincentys_.

vincentys_ (phi2, phi1, lam21)

 

Compute the angular distance between two (spherical) points using Vincenty's spherical formula.

Arguments:
  • phi2 - End latitude (radians).
  • phi1 - Start latitude (radians).
  • lam21 - Longitudinal delta, end-start (radians).
Returns:
Angular distance (radians).

See Also: Functions vincentys, cosineAndoyerLambert_, cosineForsytheAndoyerLambert_, cosineLaw_, equirectangular_, euclidean_, flatLocal_/hubeny_, flatPolar_, haversine_ and thomas_.

Note: Functions vincentys_, haversine_ and cosineLaw_ produce equivalent results, but vincentys_ is suitable for antipodal points and slightly more expensive (3 cos, 3 sin, 1 hypot, 1 atan2, 6 mul, 2 add) than haversine_ (2 cos, 2 sin, 2 sqrt, 1 atan2, 5 mul, 1 add) and cosineLaw_ (3 cos, 3 sin, 1 acos, 3 mul, 1 add).